J Cancer 2021; 12(2):595-610. doi:10.7150/jca.50785

Research Paper

Immunological Role and Prognostic Value of APBB1IP in Pan-Cancer Analysis

Qianyun Ge1,2, Ganxun Li1,2, Jin Chen1,2, Jia Song1,2, Guangzhen Cai1,2, Yi he1,2, Xuewu Zhang1,2, Huifang Liang1,2, Zeyang Ding1,2✉, Bixiang Zhang1,2✉

1. Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
2. Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Citation:
Ge Q, Li G, Chen J, Song J, Cai G, he Y, Zhang X, Liang H, Ding Z, Zhang B. Immunological Role and Prognostic Value of APBB1IP in Pan-Cancer Analysis. J Cancer 2021; 12(2):595-610. doi:10.7150/jca.50785. Available from https://www.jcancer.org/v12p0595.htm

File import instruction

Abstract

Objective: APBB1IP is a Rap1-binding protein that mainly acts as a regulator of leukocyte recruitment and pathogen clearance through complement-mediated phagocytosis. However, the role of APBB1IP in tumor immunity remains unclear. This study was carried out to evaluate the prognostic landscape of APBB1IP in pan-cancer analysis and investigate the relationship between APBB1IP expression and immune infiltration.

Methods: We explored the expression pattern and prognostic value of APBB1IP in pan-cancer analysis through Kaplan-Meier Plotter and multiple databases, including TCGA, Oncomine. We then assessed the correlation between APBB1IP expression and immune cell infiltration using the TIMER database. Furthermore, we identified the proteins that interact with APBB1IP and performed epigenetic and transcriptional analyses. Multivariate Cox regression analyses were applied to construct a prognostic model, which consisted of APBB1IP and its interacting proteins, based on the lung cancer cohorts from the Gene Expression Omnibus (GEO) database.

Results: The expression of APBB1IP was correlated with the prognosis of several types of cancer. APBB1IP upregulation was found to be associated with increased immune cell infiltration, especially for CD8+ T cells, natural killer (NK) cells, and immune regulators. A link was found between APBB1IP and immune-related proteins including RAP1A/B, TLN1/2 and VCL in the interaction network.

Conclusion: APBB1IP can serve as a prognostic biomarker in pan-cancer analysis. APBB1IP upregulation was correlated with increased immune-cell infiltration, and the expression APBB1IP in different tumors might be related to the tumor immune microenvironment.

Keywords: APBB1IP, pan-cancer analysis, immune infiltration, prognosis, tumor immune microenvironment