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Abstract 

Objective: APBB1IP is a Rap1-binding protein that mainly acts as a regulator of leukocyte recruitment 
and pathogen clearance through complement-mediated phagocytosis. However, the role of APBB1IP in 
tumor immunity remains unclear. This study was carried out to evaluate the prognostic landscape of 
APBB1IP in pan-cancer analysis and investigate the relationship between APBB1IP expression and immune 
infiltration. 
Methods: We explored the expression pattern and prognostic value of APBB1IP in pan-cancer analysis 
through Kaplan-Meier Plotter and multiple databases, including TCGA, Oncomine. We then assessed the 
correlation between APBB1IP expression and immune cell infiltration using the TIMER database. 
Furthermore, we identified the proteins that interact with APBB1IP and performed epigenetic and 
transcriptional analyses. Multivariate Cox regression analyses were applied to construct a prognostic 
model, which consisted of APBB1IP and its interacting proteins, based on the lung cancer cohorts from 
the Gene Expression Omnibus (GEO) database. 
Results: The expression of APBB1IP was correlated with the prognosis of several types of cancer. 
APBB1IP upregulation was found to be associated with increased immune cell infiltration, especially for 
CD8+ T cells, natural killer (NK) cells, and immune regulators. A link was found between APBB1IP and 
immune-related proteins including RAP1A/B, TLN1/2 and VCL in the interaction network. 
Conclusion: APBB1IP can serve as a prognostic biomarker in pan-cancer analysis. APBB1IP upregulation 
was correlated with increased immune-cell infiltration, and the expression APBB1IP in different tumors 
might be related to the tumor immune microenvironment. 
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Introduction 
The amyloid β (A4) precursor protein-binding, 

family B, member 1 interacting protein (APBB1IP) was 
identified as a binding partner of the amyloid β (A4) 
precursor protein–binding, family B, member 1 
(APBB1) [1]. Subsequently, APBB1IP was found to 
interact with the small guanosine triphosphatase 
(GTPase) Rap1 in a yeast two-hybrid screen [2]. 
APBB1IP belongs to the MRL (Mig-10/RIAM/ 
Lamellipodin) family of adaptor proteins, which have a 
proline-rich region at the C terminus and a highly 
conserved pattern of 27 amino acids in a predicted 

coiled-coil region immediately N-terminal to the RA 
domain [2]. 

APBB1IP is an intrinsic element of the integrin 
activation machinery, and is required for Rap1- 
induced affinity changes in β1 and β2 integrins in T 
cells [2]. Moreover, APBB1IP was demonstrated to 
also be involved in Rap1-mediated activation of 
αIIbβ3 integrin in platelets [3]. Based on these 
molecular mechanisms, the APBB1IP mainly is 
thought to mainly function in the activation and 
modulation of innate immune responses, as a 
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regulator of leukocyte recruitment and pathogen 
clearance through complement-mediated phago-
cytosis [4-6]. However, APBB1IP also plays a central 
role in cancer cell migration and invasion, and 
APBB1IP-depleted melanoma cells displayed 
decreased persistent cell migration directionality, 
thereby reducing cancer invasion [7]. However, there 
are no systemic studies on the role of APBB1IP in 
different human cancers, and it remains unclear 
whether the effects of APBB1IP might be context- 
dependent, varying in different cancers. 

The tumor microenvironment (TME) contains 
various cells, with infiltrating immune cells 
accounting for a large proportion [8]. The roles and 
prognostic value of infiltrating immune cells have 
been extensively studied in various malignant tumors 
[9, 10]. Immunotherapy, as an alternative approach to 
anticancer treatment, has been developed in recent 
years to reactivate the adaptive and innate immune 
systems and create a robust antitumoral immune 
response. For instance, mall-molecule inhibitors of 
cytotoxic T lymphocyte associated antigen 4 (CTLA4), 
programmed death-1 (PD-1), and programmed death 
ligand-1 (PD-L1) were found to have promising 
antitumor effects on non-small-cell lung carcinoma 
and colorectal cancer [11, 12]. Unfortunately, only a 
small proportion of patients with certain cancer types 
respond well to current immunotherapies [12]. Thus, 
it is necessary to explore additional potential targets. 

In this study, we evaluated the expression 
signature and prognostic value of the APBB1IP gene 
in pan-cancer analysis using the TCGA pan-cancer 
database and Kaplan-Meier Plotter. We then explored 
the potential relationships between APBB1IP 
expression and immune infiltration levels. Finally, the 
potential mechanisms were also explored by 
bioinformatic analysis. 

Methods 
Data Acquisition 

Mutation data, RNA sequencing data, and 
clinical data for 33 cancer types were obtained from 
TCGA using UCSC Xena [13]. GSE13213 [14] and 
GSE29016 [15] gene expression profiles were retrieved 
from the gene expression omnibus database. The 
inclusion and exclusion criteria adopted for the 
samples were (1) the loss of expression of APBB1IP; 
(2) the loss of follow-up information; (3) uncertain 
TNM stage; and (4) accompanied by other diseases. In 
GSE13213 and GSE29016, 117 and 68 lung cancer 
samples were retrieved respectively for subsequent 
analysis. Other data were obtained from public 
databases as described in the corresponding parts. 

APBB1IP gene expression analysis 
The mRNA expression of APBB1IP in different 

cancer types was analyzed in the ONCOMINE 
database. [16] The threshold was set to a P-value of 
0.01 and fold-change of 2. APBB1IP expression in 
normal tissue and tumor tissue was compared across 
cancers using the Wilcoxon test, and the results were 
visualized using the R packages “ggpubr”. 

Survival analysis 
The prognosis of patients with high- tumors and 

low-APBB1IP tumors was compared using univariate 
Cox analysis for each cancer subtype, and genes with 
a P value < 0.05 were considered as prognostic genes. 
Overall survival analysis was performed via Kaplan- 
Meier survival analysis using the “survival” and 
“survminer” R packages. 

Kaplan-Meier Plotter Database Analysis 
Kaplan-Meier plotter was used to assess the 

effects of 54,675 genes on survival using 10,461 cancer 
samples. These samples include 5,143 breast, 1,816 
ovarian, 2,437 lung, and 1,065 gastric cancer samples 
on the HGU133 Plus 2.0 array with a mean follow-up 
of 69, 40, 49, and 33 months, respectively. The 
correlation between APBB1IP expression and survival 
in 21 different cancers was analyzed using 
Kaplan-Meier plotter [17]. The hazard ratio (HR), 95% 
confidence interval and log-rank P-value were also 
computed. 

TIMER analysis 
The TIMER database was used to systematically 

analyze the tumor-infiltrating immune cells (TIICs) in 
32 cancer types in more than 10,000 samples from The 
Cancer Genome Atlas (TCGA) database [18]. TIMER 
applies a previously published statistical 
deconvolution method to infer the abundance of 
tumor-infiltrating immune cells (TIICs) from gene 
expression profiles [19]. Gene modules were used to 
analyze APBB1IP expression in several types of cancer 
and the correlation of APBB1IP expression with the 
abundance of infiltrating immune cells, after which 
Spearman’s rho value and statistical significance were 
obtained. The correlation between APBB1IP 
expression and several immune cell markers was also 
analyzed by Spearman correlation to identify the 
potential subtypes of infiltrating immune cells. 
Immune gene markers were selected from the website 
of R&D Systems. 

Immune factors correlation analysis 
Different immune factors lists were obtained 

from the Tumor Immune System Interactions 
Database [20], which includes immunoinhibitory and 
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immunostimulatory factors. The Spearman method 
was used to determine the correlation coefficients. 

GO functional analysis and KEGG pathway 
enrichment analysis of DEGs 

GO functional analysis is a useful method for 
annotating genes and identifying characteristic 
biological attributes from high-throughput genome or 
transcriptome data [21]. KEGG incorporates a wide 
range of databases, including those on genomes, 
biological pathways, diseases, drugs and chemical 
substances [22]. The Database for Annotation, 
Visualization and Integrated Discovery, an online 
bioinformatics database [23], was used for the GO 
functional analysis and KEGG pathway enrichment 
analysis, with FDR<0.05 as the cut-off criterion. 

PPI network and TF regulatory network 
A PPI network was developed using the online 

database STRING (http://string-db.org) [24]. 
Cytoscape software was used to construct a PPI 
network and analyze the interactions between 
APBB1IP and associated proteins [25]. The iRegulon 
Cytoscape plugin was used to predict the TF 
regulatory network. 

Transcription analysis 
We downloaded miRNA data and the location of 

potential binding sites on the 3′UTR of APBB1IP from 
miRWalk [26]. The Spearman correlation between the 
expression of these miRNAs and APBB1IP was 
investigated using STARBASE v3.0 [27]. 

Genetic and epigenetic analysis 
GSCALite consists of analytical modules for 

multi-omics data from TCGA 11 160 samples across 33 
cancer types (TCGA Cancer), 746 drug data from 
Genomics of Drug Sensitivity in Cancer (GDSC) and 
the Cancer Therapeutics Response Portal (CTRP), as 
well as normal tissue expression data of 11 688 
samples from GTEx (GTEx Normal Tissue). We used 
GSCALite to analyzed the single nucleotide variation, 
copy number variation, methylation and pathway 
activity [28]. 

Construction of a Prognostic Model 
APBB1IP and associated genes were evaluated 

by step-wise multivariate Cox regression analysis. 
Risk scores were calculated based on gene expression 
multiplied by a linear combination of a regression 
coefficient obtained from the multivariate Cox 
analysis. Patients were assigned to high- and low-risk 
groups according to the median risk score. The 
survival analysis of patients in the high- and low-risk 
groups was conducted using the “survival” R package. 
The receiver operating characteristic (ROC) curve was 

implemented by the R software package “survival 
ROC”. 

Results 
Pan-cancer Analysis of APBB1IP mRNA 
Expression Levels 

To explore its role in cancer, the APBB1IP mRNA 
expression levels were analyzed over a cancer-wide 
range in Oncomine. The results revealed that the 
expression of APBB1IP was inconsistently up- or 
down-regulation in different cancer types (Figure 1A). 
The details of APBB1IP expression in multiple cancers 
are summarized in Table S1. To further evaluate 
APBB1IP expression in different cancers, we 
examined the expression levels of APBB1IP in all 33 
cancer types available in TCGA the pan-cancer 
database (Summery of TCGA data are in Table S2). 
The differential expression patterns of APBB1IP in 
tumors and adjacent normal tissues are shown in 
Figure 1B, APBB1IP expression was lower in some 
cancers, including BLCA, BRCA, COAD, LUAD, 
LUSC, PAAD and READ, while others were 
characterized by high APBB1IP expression (GBM, 
KIRC, KIRP and STAD). These findings demonstrate 
the intrinsic differences in the expression of APBB1IP 
between different tumor types, and detailed analyses 
of APBB1IP expression were considered for further 
analysis. 

Prognostic Significance of APBB1IP 
Expression in Human Cancers 

We next investigated the prognostic value of 
APBB1IP via pan-cancer analysis in different 
databases. First of all, we used univariate Cox 
proportional hazard regression models to analyze the 
association between APBB1IP expression with the 
overall survival and progression-free survival in 
various cancers in the TCGA. The criterion for 
significant association was a P-value of less than 0.05. 
As shown in the Figure 1C, APBB1IP was associated 
with poor prognosis in LGG (OS: HR = 1.266, 95% CI 
from 1.075 to 1.490, p= 0.005) and UVM (OS: HR = 
2.173, 95% CI from 1.205 to 3.916, p= 0.010), while 
increased expression of APBB1IP was primarily 
associated with a survival advantage in patients with 
CESC, HNSC, KIRP, SKCM, THYM, and UCEC. 
Figure 1D indicated that high expression of APBB1IP 
predicted shorter RFS in patients with LGG and 
PRAD. In patients with ACC, CESC, KIRP and UCEC, 
high APBB1IP expression predicted better disease‐free 
survival. Overall- and progression-free survival 
curves stratified by high- and low-expression of 
APBB1IP in different types of cancer are shown in the 
Figure S1A and S1B, respectively. 
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Figure 1. mRNA Expression Levels Prognostic Significance of APBB1IP in different Cancers. (A) High or low expression of APBB1IP in different human cancer 
tissues compared with normal tissues using the Oncomine database. The number in each cell is the amount of datasets. (B) The level of APBB1IP expression in different tumor 
types from the TCGA database. *P < 0.05, **P < 0.01, ***P < 0.001. (C) Correlation of APBB1IP mRNA expression with OS for different cancer types in TCGA. (D) Correlation 
of APBB1IP mRNA expression with RFS for different cancer types in TCGA. Red squares represent the hazard ratios. Short bars appear due to limited sample size due to which 
the parameters and hazard ratio could not be calculated. OS: overall survival; PFS: progression-free survival. Red Font represented P < 0.05. 

 
To further examine the prognostic potential of 

APBB1IP in different cancers, the Kaplan-Meier 
plotter database was used to evaluate the prognostic 
value of APBB1IP based on gene chip and RNA-seq 
data from the GEO and EGA databases. Low APBB1IP 
expression levels were associated with poorer OS in 
BRCA, CESC, HNSC, KIRP, READ, SARC, THYM and 
UCEC. Conversely, low expression of APBB1IP was 
correlated with better OS in ESCA, LIHC, STAD and 
TGCT (Figure S2A-F). These results demonstrate the 
prognostic significance of APBB1IP expression in 

several human cancers, although their correlation 
may vary depending on the cancer type. 

Correlation of APBB1IP Expression with 
Immune Infiltration and Various Subsets of 
Immune Cells 

It has long been recognized that lymphocytes are 
intimately associated with tumor cells. For instance, it 
was reported that the presence of TILs is associated 
with a more favorable prognosis in patients with 
breast cancer [29]. Multiple correlation-based studies 
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have implicated APBB1IP in signaling events critical 
for integrin-mediated control of immune function [4, 
6], and these findings support a prognostic role of 
APBB1IP in cancer. It is likely that APBB1IP might 
influence the progression of cancer by influencing the 
regulation of immune infiltration. To determine the 
role of APBB1IP expression in TIL abundance, TIMER 
was used to obtain the Spearman correlation values 
for APBB1IP expression and the infiltration levels of 
various immune cells. These correlations were 
presented as heat maps in Figure 2A. The results 
revealed that APBB1IP expression was significantly 
negatively correlated with tumor purity in most 
cancer types, except CHOL, DLBC, KIRC, KIRP, 
MESO, THCA, THYM, UCS and UVM, indicating that 
APBB1IP expression in tumor tissues might be 
induced by the infiltrating immune cells. Higher 
APBB1IP expression in most cancers markedly 
increased the infiltration of immune cells, especially 
in BRCA, CESC, HNSC, PRAD, SKCM, TGCT and 
UCEC. However, In CHOL, DLBC, MESO, and UVM, 
the expression of APBB1IP showed no significant 
correlation with the infiltration of various immune 
cells. 

These results demonstrate that there is a positive 
correlation between APBB1IP expression and 
immune cell infiltration levels in different cancer 
types, such as BRCA, CESC, HNSC, SKCM and 
UCEC, in which APBB1IP expression levels are 
correlated with good prognosis. Since APBB1IP 
expression is related to poor prognosis in LGG, STAD, 
and TGCT, we explore the clinical relevance of 
immune subsets using the “Survival” module in the 
TIMER database. Kaplan-Meier curves showed that 
patients with higher abundance of tumor-infiltrating 
B cells, CD8+ T cells, CD4+ T cells, macrophages, 
neutrophils and dendritic cells had shorter overall 
survival in LGG (Figure S2M). Similarly, in patients 
with STAD, high abundance of macrophages was 
associated with shorter survival time (Figure S2M), 
and the infiltration levels of macrophages and 
neutrophils in TGCT were correlated with shorter 
survival time (Figure S2M). These results indicated 
that APBB1IP might affect patient survival by 
interacting with tumor-infiltrating immune cells, but 
the anti-cancer and pro-cancer effects depend on the 
host environment and cancer types. 

Most immune system components are 
implicated in the initiation and progression of 
melanoma [30, 31]. To further determine the 
correlation between APBB1IP expression levels and 
various subsets of infiltrating immune cells in SKCM, 
we analyzed the correlation between APBB1IP and 
immune cell markers comprising subsets of T cells, B 
cells, monocytes, M1 and M2 macrophages, 

neutrophils, NK cells, and dendritic cells (DCs) in 
SKCM and LGG, in which APBB1IP expression was 
correlated with a poor prognosis. As shown in Table 1 
and Figure 2B, after adjustments for tumor purity, 
APBB1IP expression was significantly correlated with 
most immune cell markers in SKCM, in addition to 
several markers of M1 macrophages and neutrophils. 
By contrast, APBB1IP was not significantly correlated 
with gene markers of CD8+ T cells and NK cells in 
LGG (Figure 2B, 2C). CD8+ T cells constitute the 
majority of TILs and directly induce cell death in 
tumors. Thus, a large number of CD8+ T cells in the 
tumor environment are considered to be associated 
with a favorable prognosis [10, 32, 33]. It is also well 
known that NK cells have spontaneous killing activity 
against tumor cells [34]. These findings could partly 
explain why APBB1IP is related to a bad prognosis in 
LGG. 

Immune Factors and Functional Analysis 
To clarify the mechanisms underlying the 

involvement of APBB1IP in the enhancement of 
immune-cell infiltration, we calculated the Spearman 
correlations of APBB1IP expression with immune 
factors in the TISIDB database, including immuno-
inhibitory and immunostimulatory factors. These 
results are presented as heat maps in Figure 3A, and 
3B. The results indicated that APBB1IP expression is 
positively correlated with both immunoinhibitory and 
immunostimulatory factors in the majority of cancers. 
We chose a correlation coefficient > 0.5 and FDR> 
0.001 as cut-off criteria. According to this analysis, 
APBB1IP was not significantly correlated with 
majority immune factors in CHOL, DLBC, KIRP, 
LAML, MESO, PCPG and THYM. Especially in the 
latter, most immune factors showed a negative 
correlation with APBB1IP, which was opposite to 
other cancer types, suggesting that the immune 
microenvironment of THYM is different from other 
cancers. Accordingly the mechanism by which 
APBB1IP affects the prognosis of THYM might be 
different. 

Next, 35 genes (Table S3) that were significantly 
associated with APBB1IP expression according to the 
cut-off standard in greater than or equal to 15 cancers, 
were selected as candidate genes for GO and KEGG 
pathway analysis in DAVID (https://david.ncifcrf. 
gov/summary.jsp). Figure 3C shows the top 10 most 
highly enriched GO items. Specifically, the immune 
factors were mainly enriched in biological processes 
(BPs) related to the regulation of lymphocyte 
activation, regulation of cell activation, regulation of T 
cell activation, regulation of lymphocyte proliferation, 
immune response, regulation of leukocyte activation, 
regulation of immune system processes, and immune 
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system processes. In terms of function, the immune 
factors were predicted to be associated with the cell 
surface and the external side of plasma membrane. 
More specific information is listed in Table S4. 
Additionally, the most significantly enriched KEGG 
pathways are displayed in Figure 3D. The immune 
factors were enriched in the categories of viral 

myocarditis, primary immunodeficiency, allograft 
rejection, systemic lupus erythematosus, autoimmune 
thyroid disease, type I diabetes mellitus, intestinal 
immune network for IgA production, T cell receptor 
signaling pathway, cell adhesion molecules (CAMs) 
and cytokine-cytokine receptor interaction. The 
detailed information is shown in Table S5. 

 

 
Figure 2. Correlation of APBB1IP Expression with Immune Infiltration and Various Subsets of Immune Cells. (A) The correlation between APBB1IP expression 
and abundance of infiltrating immune cells across cancer types. (B) Correlation of APBB1IP expression with markers of CD8+ T cells in SKCM and LGG. (C) Correlation of 
APBB1IP expression with markers of NK cells in SKCM and LGG. 
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Figure 3. Immune Factors and Functional Analysis. (A) The correlation between the expression of APBB1IP and immunostimulatory factors. (B) The correlation between 
the expression of APBB1IP and immunoinhibitory factors. (C) GO analysis of significantly correlated immune factors. (D) KEGG pathway analysis of correlated immune factors. 
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Table 1. Correlation between APBB1IP and markers of various immune cells in the Tumor Immune Estimation Resource (TIMER) 

Description Gene Markers SKCM LGG 
None Purity None Purity 
Cor P Cor P Cor P Cor P 

CD8+ T cell CD8A 0.8560732 *** 0.7694524 *** 0.1797299 *** 0.0526211 0.2508652 
  CD8B 0.8331593 *** 0.7260344 *** 0.1783245 *** 0.0817846 0.0740368 
T cell (general) CD3D 0.8765923 *** 0.7843417 *** 0.3926254 *** 0.341427 *** 
  CD3E 0.8909953 *** 0.81022 *** 0.417972 *** 0.3857384 *** 
  CD2 0.8975331 *** 0.8229912 *** 0.4173085 *** 0.3923904 *** 
B cell CD19 0.6846681 *** 0.5602065 *** 0.3834718 *** 0.3352988 *** 
  CD79A 0.724277 *** 0.5894023 *** 0.324637 *** 0.3542463 *** 
Monocyte CD86 0.9296171 *** 0.8931612 *** 0.9074751 *** 0.8943717 *** 
  CD115 (CSF1R) 0.905323 *** 0.867535 *** 0.9069494 *** 0.8913472 *** 
TAM CCL2 0.6663165 *** 0.5284483 *** 0.4837392 *** 0.4375916 *** 
  CD68 0.5852682 *** 0.450489 *** 0.829085 *** 0.8148534 *** 
  IL10 0.716315 *** 0.614492 *** 0.6101679 *** 0.5730547 *** 
M1 Macrophage INOS (NOS2) 0.0510847 0.268534 0.0559468 0.232609 -0.1511358 *** -0.1781116 *** 
  IRF5 0.7086537 *** 0.5635679 *** 0.8953138 *** 0.8761291 *** 
  COX2 (PTGS2) 0.0642153 0.164114 -0.0220597 0.638106 0.1411687 ** 0.070951 0.1213558 
M2 Macrophage CD163 0.7727474 *** 0.7078413 *** 0.3657231 *** 0.3589378 *** 
  VSIG4 0.7660752 *** 0.7124946 *** 0.7985103 *** 0.7744972 *** 
  MS4A4A 0.8297304 *** 0.7714602 *** 0.5797796 *** 0.5803033 *** 
Neutrophils CD66b (CEACAM8) -0.0298919 0.5175338 0.0014881 0.9746913 0.0356518 0.4190064 0.0322264 0.4821109 
  CD11b (ITGAM) 0.7985079 *** 0.7504803 *** 0.9015692 *** 0.8829104 *** 
  CCR7 0.7806993 *** 0.6267265 *** 0.2095446 *** 0.1908896 *** 
Natural killer cell KIR2DL1 0.3978069 *** 0.2549098 *** 0.018379 0.6770348 0.0617757 0.1775405 
  KIR2DL3 0.5712978 *** 0.4038145 *** 0.1169197 ** 0.1191511 ** 
  KIR2DL4 0.6744853 *** 0.5261334 *** 0.4197599 *** 0.4394195 *** 
  KIR3DL1 0.53491 *** 0.3765632 *** -0.0278331 0.5281487 -0.0256187 0.5763447 
  KIR3DL2 0.6360165 *** 0.4703593 *** 0.160454 *** 0.1668523 *** 
  KIR3DL3 0.1615421 *** 0.0930881 *** 0.0763603 0.0831139 0.0825424 0.071389 
  KIR2DS4 0.4411108 *** 0.3118604 *** 0.1341571 ** 0.1188675 ** 
  KLRK1 (NKG2D) 0.7824953 *** 0.6765392 *** -0.0405603 0.357716 0.0365504 0.4252862 
  NCR1 (NKp46) 0.6462555 *** 0.5564235 *** 0.1158136 ** 0.1606459 *** 
  NCR2 (NKp44) 0.3058505 *** 0.2514162 *** 0.0304199 0.490514 0.0647637 0.1574441 
  NCR3 (NKp30) 0.8255278 *** 0.7169654 *** 0.172838 *** 0.1768626 *** 
Dendritic cell HLA-DPB1 0.868107 *** 0.7793636 *** 0.6505592 *** 0.6235519 *** 
  HLA-DQB1 0.8030186 *** 0.6833435 *** 0.4962863 *** 0.4617414 *** 
  HLA-DRA 0.8805606 *** 0.8017141 *** 0.7050379 *** 0.6814707 *** 
  HLA-DPA1 0.8493377 *** 0.7661858 *** 0.6513003 *** 0.6270917 *** 
  BDCA1 (CD1C) 0.6545897 *** 0.4916537 *** 0.3206443 *** 0.3254187 *** 
  BDCA4 (NRP1) 0.4935402 *** 0.4514923 *** 0.1058552 * 0.1603316 *** 
  CD11c (ITGAX) 0.6902283 *** 0.5453348 *** 0.7899023 *** 0.7551692 *** 
Th1 T-bet (TBX21) 0.8701187 *** 0.7846811 *** 0.2129897 *** 0.2334805 *** 
  STAT4 0.7799773 *** 0.671695 *** -0.1770701 *** -0.2653241 *** 
  STAT1 0.643486 *** 0.5645606 *** 0.3297585 *** 0.3193543 *** 
  IFNγ (IFNG) 0.7535284 *** 0.6265012 *** 0.2479673 *** 0.2208263 *** 
  TNFα (TNF) 0.6784416 *** 0.5088296 *** 0.3810268 *** 0.3364843 *** 
Th2 GATA3 0.7460884 *** 0.5580142 *** 0.3701424 *** 0.3215647 *** 
  STAT6 0.064225 0.1640502 0.120339 * 0.5565766 *** 0.4636034 *** 
  STAT5A 0.2495179 *** 0.3128001 *** 0.7509945 *** 0.7019067 *** 
  IL13 0.2016526 *** 0.1185491 * -0.0110191 0.8028152 -0.0236849 0.6054741 
Tfh BCL6 0.3600216 *** 0.3065975 *** 0.203324 *** 0.2535651 *** 
  IL21 0.5664735 *** 0.4559844 *** 0.1068566 * 0.098485 * 
Th17 STAT3 0.3361749 *** 0.3549276 *** 0.4724055 *** 0.5021622 *** 
  IL17A -0.0944109 * -0.191403 *** -0.0189334 0.6678661 -0.0356259 0.4370972 
Treg FOXP3 0.7678603 *** 0.6220553 *** -0.1794219 *** -0.1521192 *** 
  CCR8 0.7853676 *** 0.6941604 *** 0.1045328 * 0.0986246 * 
  STAT5B 0.3224104 *** 0.4384412 *** -0.0256525 0.5609735 0.0785814 0.0861259 
  TGF β (TGFB1) 0.5557131 *** 0.447552 *** 0.8019722 *** 0.7831079 *** 
T cell exhaustion PD1 (PDCD1) 0.8308004 *** 0.7229568 *** 0.3971191 *** 0.3693027 *** 
  CTLA4 0.557273 *** 0.390242 *** 0.3747752 *** 0.3282445 *** 
  LAG3 0.8049163 *** 0.6924997 *** 0.1894906 *** 0.2319562 *** 
  TIM3 (HAVCR2) 0.9274436 *** 0.8854098 *** 0.9365782 *** 0.9274279 *** 

 

PPI Network Establishment and Transcription 
and Epigenetics Analysis of APBB1IP in 
Pan-cancer analysis 

Protein-protein interaction (PPI) analysis can 
reflect the molecular mechanisms of physiological and 

pathological changes that drive cancer progression. 
The PPI network of APBB1IP and its protein partners 
was constructed using the STRING database (https:// 
string-db.org/) and Cytoscape software (Figure 4A). 
The network contained 6 nodes and 15 edges, with the 
5 predicted proteins interacting with APBB1IP 
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including members of the RAS oncogene family 
(RAP1A and RAP1B), talin 1 (TLN1), talin 2 (TLN2), 
and vinculin (VCL). These genes were further 
considered for downstream analysis of the APBB1IP 
network. Subsequently, a TF regulatory network with 
45 nodes was predicted using the iRegulon Cytoscape 
plugin (Figure 4B). Among these TFs, NFYC, MEF2A, 
NF1, IRX6, SRF, E2F1, RARG, SPI1, ELF1 and TEAD1 
were identified as targeting APBB1IP. Additionally, 
they were also predicted to regulate the interacting 
proteins (Figure 4C). Subsequently, we explored the 
Spearman correlations of APBB1IP and these 
transcriptional regulators together with the protein 
partners of APBB1IP, as shown in Figure 4D. Among 
the transcriptional regulators, the expression of SPI1 
was significantly positively associated with APBB1IP 
in the majority of cancers. Furthermore, it was found 
to target TLN1, TLN2 and RAP1A as well. SPI1/PU.1 is 
a member of the ETS family that is critical for 
specifying cell fate and proper hematopoietic 
differentiation [35]. SPI1 plays a crucial part in the 
self-renewal of hematopoietic stem cells (HSCs) as 
well as in myeloid and B lymphoid differentiation [36, 
37]. Based on these findings, SPI1 might function by 
regulating the transcription of APBB1IP and other 
associated proteins. Subsequently, using miRWalk 
(including miRBase, TargetScan, miRDB, and 
miRTarBase), we predicted 19 miRNAs that could 
potentially target the 3′UTR of APBB1IP (Figure 4E). 
Using STARBASE v3.0 with p < 0.05 as screening 
criteria, we investigated the Spearman correlation 
between miRNAs and the expression of APBB1IP in 
32 kinds of cancers from TCGA (Figure 4F). The 
hsa-miR-200b-5p was predicted to have a significant 
inhibitory effect on APBB1IP in BLCA, BRCA, CESC, 
CHOL, COAD, DLBC, GBM, LUAD, LUSC, PAAD, 
READ, SARC, STAD, TGCT and THYM. 

Analysis of Genetic Mutations and Methylation 
of APBB1IP 

To further understand how APBB1IP expression 
is altered across different cancers, we explored the 
Single Nucleotide Variation (SNV) profile of APBB1IP 
and its protein partners using GSCALite [28] (Figure 
5A). All of the 677 analyzed tumors showed at least 1 
mutation. TLN1 had the highest SNV frequency (43%) 
among the analyzed tumors, followed by TLN2 (35%). 
For APBB1IP, the SNV frequency was 20%, at the 
cancer level. Additionally APBB1IP-associated SKCM 
exhibited the highest number of mutations (32), 
followed by LUSC (22) and UCEC (21). The most 
frequent DNA alterations of these 6 genes in the pan- 
cancer analysis were missense mutations. CNVs were 
reported as frequent pathogenic events in cancers, 
which could contribute to increased DNA instability 

and occurrence of genomic imbalance [38]. Figure 5B 
shows the heterozygous/homozygous CNV status of 
each gene in each cancer. Next, the Pearson 
correlation was between gene expression and CNV 
was analyzed in different cancers to identify the genes 
significantly affected by CNV. As shown in Figure 5C, 
the expression of TLN1 and TLN2 was positively 
associated with CNV in most cancers, except for 
APBB1IP, RAP1B, and RAP1A. 

Since DNA methylation is involved in gene 
regulation and cell differentiation [39], we next 
explored whether methylation is involved in the 
regulation of APBB1IP. We found that the 
methylation of APBB1IP was significantly up- 
regulated in LUSC, BLCA, COAD, HNSC, BRCA, 
PAAD, and UCEC, while co-methylation patterns of 
APBB1IP and the protein partners of APBB1IP were 
not observed (Figure 5D). In addition, the expression 
of APBB1IP and protein partners was mainly 
negatively correlated with methylation, with only a 
few positive correlations (Figure 5E), providing clues 
for the deregulation of APBB1IP. 

Cox Progression Analysis and Identification of 
a Prognostic Signature in Lung Cancer 

Multivariate Cox analysis was performed for 
APBB1IP, RAP1A, RAP1B, TLN1, TLN2 and VCL in 
GSE13213. Then, APBB1IP, RAP1B and RAP1B were 
finally selected to establish a prognostic model. The 
model was described using the formula risk 
score = (-0.85392 × expression level of APBB1IP)+ 
(0.422303 × expression level of RAP1A) +(0.377711 × 
expression level of RAP1B). All three genes were 
prognostic for increased risk, including APBB1IP (HR 
= 0.43, 95% CI = 0.25 to 0.73, p value= 0.002), RAP1A 
(HR = 1.53, 95% CI = 1.00 to 2.33, p value= 0.049), and 
RAP1B (HR = 1.46, 95% CI = 1.08 to 1.96, p value= 
0.013). Multivariate Cox regression was used to 
calculate regression coefficients. Risk scores were 
based on gene expression levels multiplied by the 
corresponding regression coefficients. Subsequently, 
117 lung cancer samples were divided into a high-risk 
group (n = 59) and a low-risk group (n = 58) based on 
the median risk score (Figure 6B). The survival status 
and survival time in the model group are shown in 
Figure 6A, while Figure 6C shows a gene expression 
heatmap of the low- and high-risk groups. Survival 
analysis indicated that patients in the high-risk group 
showed markedly poorer overall survival than those 
in the low-risk group (p=1.861e−04; Figure 6D). 
According to the ROC curve of 5-year OS (Figure 6E), 
an area under curve (AUC) value of 0.706 (>0.7), 
indicating that this prognostic model exhibited good 
sensitivity and specificity. To identify the relationship 
between risk score model and clinicopathological 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

604 

characteristics in lung cancer patients, we further 
analyzed the risk score level in lung cancer patients at 
different clinical stages. As revealed in Table 2, risk 
score based on this prognostic model was 
significantly associated with T stage, N stage, TNM 
stage and relapse (both P < 0.05). Subsequently, the 
GSE29016 dataset was used as the testing cohort. The 
Kaplan-Meier analysis shown in Figure 6F indicated 
that the high-risk group had poorer overall survival 
(p=3.842e−02). Time-dependent ROC curves showed 
that the model had good accuracy with a value of 
0.710 in 5 years (Figure 6G). Moreover, analysis of the 
correlation of risk stratification with 
clinicopathological data for patients with lung cancer 
also showed that TNM stage was significant 
associated with risk stratification in the testing cohort 
(Table S6). Next, the relationships between the risk 
score model and immune cell infiltration was 
investigated. As shown in Figure 7A, NK cells 
activation and eosinophil infiltration were positively 
correlated with the risk score. However, negative 
correlations were observed between the risk score and 
memory B cells, gamma delta T cells and resting mast 
cells. Similarly, the high- and low-risk groups also 
showed differential immune cell abundance in 
GSE29106 (Figure 7B). 

Discussion 
APBB1IP contains Ras association (RA) and 

pleckstrin homology (PH) domains and proline-rich 
regions, which are defining features of the Mig-10/ 
RIAM/Lamellipodin (MRL) family of adapter proteins. 
It was identified as a Rap1-binding protein important 
for integrin-mediated migration and activation of 
leukocytes [2]. In spite of the important roles of 
APBB1IP in the immune system, APBB1IP has not 
been well-studied in immuno-oncology. Here, we 
conducted a pan-cancer analysis of the expression 
profile and prognostic significance of APBB1IP and 
revealed its potential role in tumor immunology via 
bioinformatics analysis. 

In this study, the expression levels of APBB1IP 
were examined and the prognostic landscape in pan- 
cancer analysis were visualized using independent 
datasets in Oncomine and Kaplan-Meier plotter, as 
well as TCGA data for 33 types of cancer. According 
to the combined results from the Oncomine and 
TCGA data, APBB1IP was highly expressed in KIRC, 
KIRP, STAD, sarcoma, as well as brain and CNS 
cancers compared to corresponding normal tissues, 
while it had lower expression levels in BLCA, BRCA, 
COAD, LUAD, LUSC, PAAD, PCCG, READ, liver 
cancer and leukemia. From the comprehensive TCGA 
and Kaplan-Meier plotter data, we found consistent 
prognostic correlations of APBB1IP. Specifically, 

decreased APBB1IP expression was correlated with 
poor prognosis in most tumor types (CESC, HNSC, 
KIRP, THYM, UCEC). However, STAD was an 
exception where high levels of APBB1IP expression 
indicated a poorer prognosis. The discrepancies in 
APBB1IP levels and prognosis in different cancer 
types in different databases might be a reflection of 
different data collection approaches and underlying 
mechanisms pertinent to different biological 
properties. Notably, APBB1IP was up‐regulated in 
KIRP, but high APBB1IP expression indicated a better 
prognosis in this cancer. This counterintuitive finding 
can be explained by the small sample size of the 
normal group (n = 32), which might have led to 
unreliable data on the expression of APBB1IP in KIRP. 
Hence, in future studies, researchers need to collect 
more samples to verify the expression of APBB1IP in 
KIRP. In addition, APBB1IP might play distinct roles 
in the initiation and progression of KIRP. To confirm 
this, further studies are needed to explore the 
expression of APBB1IP in tumors with different stages 
or grades and analyze the relationship between 
APBB1IP expression and survival of KIRP patients 
with different tumor stages or grades. 

Another important finding of this study is that 
APBB1IP expression is correlated with diverse 
immune-cell infiltration levels in most cancer types 
(Figure 2A). Moreover, the correlation between 
APBB1IP and the expression of immune regulators 
indicate a role of APBB1IP in regulating tumor 
immunology in different cancers (Figure 3A). 
Interestingly, although the prognostic implications of 
APBB1IP were not the same in different cancer types, 
APBB1IP expression was consistently positively 
correlated with the immune-cell infiltration levels in 
these cancers. Accordingly, tumor infiltration by the 
same immune cells may have a different effect on the 
prognosis in different cancer types. For example, high 
infiltration of B cells, CD8+ T cells, neutrophils and 
dendritic cells is associated with poor prognosis in 
LGG, but also with better prognosis in SKCM (Figure 
S2M). Furthermore, multiple studies have reported 
differences in the correlation between intratumoral 
immune-cell activity and survival across different 
cancer types [40-44]. Notably, the strongest positive 
correlation was observed between the expression of 
specific markers for CD8+ T cells and NK cells and 
APBB1IP expression in SKCM; while the correlation in 
LGG was lower (Figure 2B-C). CD8+ T cells and NK 
cells are well known as effector cells in the tumor 
microenvironment via their cytolytic activity [45-48]. 
This might be another reason for the different 
prognostic implications of APBB1IP in SKCM and 
LGG.
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Figure 4. Establishment of a PPI Network and Pan-cancer Analysis of Transcription and Epigenetic Factors of APBB1IP. (A) PPI network of APBB1IP and its 
interacting proteins. The PPI consists of 6 nodes and 15 edges, with an average node degree of 5 and average local clustering coefficient of 1 at a PPI enrichment p-value of 3.69 
× 10-4. The color and thickness of the solid line represents the strength of the relationship. (B) TF-target regulatory network of APBB1IP and its interacting proteins. Green 
polygons represent TFs, the purple ellipses represent the target proteins. (C) The TFs that target APBB1IP. Green polygons represents TFs, the purple ellipses represent the 
target proteins. (D) Correlation between the expression of APBB1IP regulators and APBB1IP across cancer types. (E) MiRNAs that target APBB1IP. (F) The correlation between 
the expression of APBB1IP and miRNAs across cancer types. 
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Figure 5. Genetic Mutation and Methylation Analysis of APBB1IP. (A) SNV frequency of APBB1IP and its protein partners. Each gray vertical bar represents a patient. 
The side and top column diagrams show the numbers of variants in each sample or each gene. (B) Pan-cancer analysis of heterozygous/homozygous CNV of APBB1IP and its 
protein partners. Hete Amp: heterozygous amplification; Hete Del: heterozygous deletion; Homo Amp: homozygous amplification; Homo Del: homozygous deletion; None: no 
CNV. (C) Pan-cancer analysis of the CNV correlation with mRNA of APBB1IP and its protein partners. Genes whose mRNA expression significantly correlates with CNV 
percentage (FDR<=0.05) are shown in the figure. Blue bubbles represent a negative correlation, and red bubbles represent positive correlation (genes having a high frequency of 
CNV are shown in a deeper color, indicating a higher correlation. The size of each bubble represents statistical significance. (D) Bubble map of the differential methylation of 
APBB1IP and its protein partner s between normal and cancer samples in TCGA. The significance of differences was analyzed using Student’s t-test. Blue dots represent 
down-regulation of methylation in tumors, and red dots represent up-regulation of methylation in tumors; the darker the color, the greater the difference. The size of the bubble 
represents statistical significance. (E) Correlation between methylation, APBB1IP and its protein partners in cancer samples from TCGA. The data were subjected to Person 
correlation analysis. Blue bubbles indicate that the gene methylation level is up-regulated and gene expression is down-regulated. Red bubbles indicate that the gene methylation 
level and gene expression are up-regulated. The darker the color, the higher the correlation. The size of the bubble represents the statistical significance. 
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Figure 6. Cox Regression Analysis and Identification of a Prognostic Signature in Lung Cancer. (A) The risk score distribution of HCC patients in the GSE13213 
dataset. (B) Patients’ survival status distribution. (C) A heatmap of APBB1IP and RAP1B in low- and high-risk groups. (D) The survival curves of GSE13213 patients in low- and 
high-risk groups. (E) Receiver operating characteristic curve (ROC) analysis predicting overall survival using the risk score in GSE13213. (F) The survival curves of GSE29016 
patients in low- and high-risk groups. (G) Receiver operating characteristic curve (ROC) analysis predicting overall survival using the risk score in GSE29016. 

 
RAP1A, RAP1B, TLN1, TLN2, and VCL were 

predicted to interact with APBB1IP. Talin1 and talin2 
are large (270 kDa) cytoplasmic adapter proteins 
(Figure 4A) [49, 50]. In resting cells, a large portion of 
talin proteins resides in the cytoplasm in a closed, 
auto-inhibited conformation [51, 52]. Following 
stimulation, talin is efficiently recruited to the plasma 
membrane and transformed from its auto-inhibitory 
conformation to trigger integrin activation. Talin- 
mediated integrin activation is highly dependent on 
the membrane-anchored small GTPase Rap1 protein 
family [53, 54]. It was suggested that talin membrane 
recruitment is triggered through APBB1IP, which 
binds the talin rod domain and thereby links it to the 
plasma membrane [55, 56]. This Rap1–RIAM–talin 

pathway is crucial for leukocyte β2 integrin activation 
[6, 7]. Vinculin (VCL) is a key adaptor molecule that 
links adhesion complexes to actin filaments in 
integrin-based cell extracellular matrix (ECM) 
adhesions or cell-cell junctions [57]. APBB1IP was 
reported to promote the migration and invasion of 
melanoma cells [7], and we speculated that APBB1IP 
might interact with VCL to achieve this function. 
According to our results, high APBB1IP expression 
indicated poor prognosis in SKCM, and we deduced 
that the promoting effect of APBB1IP on the migration 
ability of SKCM might not be associated with its 
prognosis, while the influence on immune infiltration 
might play a leading role. 
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Figure 7. The Relationships Between the Risk Score Model and Immune Cell Infiltration. (A, B) Violin plot showing the relationship between the risk score with the abundances 
of different types of infiltrating immune cells. Red color represents the high-risk group while blue color represents the low-risk group. Differential abundance of immune cell types 
was observed between the high and low-risk groups. (A) GSE13213. (B) GSE29016. 

 
In this study, we found that RAP1A/B and TLN1 

expression is positively associated with APBB1IP 
(Figure 4D). Thus, we displayed the TFs which might 
target APBB1IP and its interacting partners (Figure 
4B). We observed that TFs targeting APBB1IP could 
target its interacting partners at the same time (Figure 
4C). In addition to for TFs, methylation and miRNAs 
can also regulate the protein expression levels. 
According to our results, the methylation levels of 
APBB1IP and RAP1A/B were negatively correlated 
with gene expression (Figure 5E). More specifically, 
APBB1IP methylation was higher in LUSC, BLCA, 

LUAD, COAD, BRCA, HNSC, PRAD, and UCEC 
tumor tissues than in normal control tissues (Figure 
5D). In addition, miR-200b-5p was identified as 
possibly targeting APBB1IP and it was negatively 
associated with the expression of APBB1IP in most 
cancers. 

Nevertheless, although we integrated 
information across multiple databases, this study still 
has some limitations. Since large-scale microarray and 
sequencing data were initially collected by analyzing 
tumor tissue information, the cell-level analysis of 
immune cell markers could have introduced 
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systematic bias. To overcome this problem, future 
studies relying on methods with a higher resolution, 
such as single-cell RNA sequencing, should be 
performed [58, 59]. Next, we could not prove that 
APBB1IP affected patient survival through immune 
infiltration even though we found that APBB1IP 
expression was correlated with both immune cell 
infiltration and patient survival in cancers. Hence, 
future prospective studies are needed to explore the 
relationship between APBB1IP expression and 
immune infiltration in a cancer patient population. 
Finally, we only conducted a bioinformatic analysis of 
APBB1IP expression and patient survival across 
different databases, and further mechanistic studies 
on APBB1IP at the cellular and molecular levels could 
help clarify its functions in cancer initiation and 
progression. 

 

Table 2. Association between the clinicopathologic parameters 
and the risk score levels in GSE13213 

Clinical variables Total Risk score levels p value 
Low High 

Gender    0.228 
Male 60 27 33  
Female 57 32 25  
Age (years)    0.779 
≤60     
>60     
Smoking    0.164 
NO 56 32 24  
YES 61 27 34  
T Stage     
T1+T2 104 56 48 0.036 
T3+T4 13 3 10  
N Stage    0.039 
N0 87 48 39  
>N0 30 10 20  
TNM Stage    0.048 
I+II 92 50 42  
III+IV 25 8 17  
Relapse    0.002 
NO 59 38 21  
YES 58 21 37  
EGFR status    0.619 
WT 72 35 37  
MUT 45 24 21  
KRAS status    0.755 
WT 102 52 50  
MUT 15 7 8  
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