J Cancer 2020; 11(14):4166-4172. doi:10.7150/jca.41102

Research Paper

Improving stereotactic radiotherapy (SRT) planning process for brain metastases by Cyberknife system: reducing dose distribution in healthy tissues

Yu Xuyao1, Yuan Zhiyong1, Wang Yuwen1, Yu Hui2, Song Yongchun1, Dong Yang1, Zhao LuJun1, Wang Ping1✉

1. Department of Radiotherapy, Tianjin Tumour Hospital, Tianjin, China
2. Biomedical Engineering, Tianjin University, Tianjin, China

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Citation:
Xuyao Y, Zhiyong Y, Yuwen W, Hui Y, Yongchun S, Yang D, LuJun Z, Ping W. Improving stereotactic radiotherapy (SRT) planning process for brain metastases by Cyberknife system: reducing dose distribution in healthy tissues. J Cancer 2020; 11(14):4166-4172. doi:10.7150/jca.41102. Available from http://www.jcancer.org/v11p4166.htm

File import instruction

Abstract

Purpose: To pursue high precision dose in lesions and steeper dose fall-off in healthy tissues of brain metastases stereotactic radiotherapy (SRT), this study investigated an opitimized planning by comparison different prescription dose line in the treatment of brain metastases using Cyberknife (CK) Robotic Radiosurgery System.

Methods: 77 patients (92 lesions) brain metastases patients CK SRT plans were replanned with 50%-80% (5% internal) prescription dose line to cover more than 95% of the planned target volume (PTV), under the same collimator by Multiplan System. Under the precondition of guaranteeing plans all meet the clinical requirements, the plan evaluation paraments (conformal index (CI) and homogeneity index (HI)), plan treatment time parameters (the total number of beams and monitor units (MU)) and dose distribution of organs at risk (OAR) and healthy brain tissues adjacent to the PTV were analyzed respectively.

Resluts: Compared with 70% plans, 65% plans had: 1) average dose (Dmean) and maximum dose (Dmax) of healthy brain tissue outside of the PTV reduced 11.83% and 5.97% markedly; 2) Dmean and Dmax of brainstem decreased 11.43% and 2.86%; 3) the volumes of whole brain minus the tumors received a single dose equivalence of 12 Gy/14 Gy (V12Gy/V14Gy) had marked decline. The dose fall-off was considerably faster in the 60%-65% plans around the PTV and the maximum dose of healthy tissue was prominently lower. While the difference in CI and HI between different plans was not obvious, the plan treatment time was a little higher in 60%-65% plans than 70%-80% plans.

Conclusions: Choosing a relatively lower isodose as the prescription dose line for brain metastases CK SRT planing could improve the dosimetry index of target and immensely reduce high dose in healthy brain tissue and OAR.

Keywords: CyberKnife, stereotactic radiotherapy, brain metastases, treatment plan, prescription dose line