J Cancer 2017; 8(10):1769-1773. doi:10.7150/jca.17803

Short Research Communication

Increased Transgenerational Intestinal Tumorigenesis in Offspring of Ionizing Radiation Exposed Parent APC1638N/+ Mice

Shubhankar Suman1, Santosh Kumar1, Bo-Hyun Moon1, Albert J Fornace Jr.1, Bhaskar V. S. Kallakury2, Kamal Datta1✉

1. Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC USA
2. Department of Pathology, Georgetown University Medical Center, Washington, DC USA.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Suman S, Kumar S, Moon BH, Fornace AJ Jr., Kallakury BVS, Datta K. Increased Transgenerational Intestinal Tumorigenesis in Offspring of Ionizing Radiation Exposed Parent APC1638N/+ Mice. J Cancer 2017; 8(10):1769-1773. doi:10.7150/jca.17803. Available from http://www.jcancer.org/v08p1769.htm

File import instruction


The purpose of the study was to assess transgenerational intestinal tumorigenic effects of low dose ionizing radiation employing a well-characterized mouse model of human colorectal cancer. Mice (6 to 8 weeks old APC1638N/+ mice; n=20 per study group) were exposed to whole-body 25 cGy x-rays and mated 2 days post-irradiation. Intestinal tumorigenesis in male and female F1 mice from No Parents Irradiated (NPI), Both Parents Irradiated (BPI), and Male Parent Irradiated (MPI) groups were compared 210 days after birth. Male and female Direct Parent Irradiated (DPI) groups were additional controls for male and female F1 groups respectively. Data showed higher intestinal tumor frequency (± standard error of the mean) in male and female F1 from BPI (male: 7.81 ± 0.91; female: 5.45 ± 0.36) as well as from MPI (male: 6.30 ± 0.33; female: 4.45 ± 0.33) mice relative to F1 from NPI mice (male: 4.2 ± 0.48; female: 3.35 ± 0.37). Compared to male and female DPI (male: 5.55 ± 0.40; female: 3.60 ± 0.22), tumor frequency in F1 mice of BPI and MPI, though higher, was not statistically significant except for DPI vs. BPI in male mice. Additionally, both BPI and MPI showed increased frequency of larger tumors relative to NPI. In summary, our observations demonstrated that the APC1638N/+ mice due to its low spontaneous tumor frequency could serve as an effective model to study risk of transgenerational carcinogenesis in gastrointestinal tissues after exposure to clinically relevant low doses of ionizing radiation.

Keywords: Mouse model, Transgenerational, Intestinal tumor, Colorectal cancer, Ionizing radiation.