J Cancer 2018; 9(16):2786-2794. doi:10.7150/jca.25356

Research Paper

Polymorphisms in ERCC2 and ERCC5 and Risk of Prostate Cancer: A Meta-Analysis and Systematic Review

Yi Liu1,2#, Yonghui Hu3#, Meng Zhang1,2, Runze Jiang4✉, Chaozhao Liang1,2✉

1. Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
2. Institute of Urology, Anhui Medical University, Hefei, China
3. Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
4. Department of Genetic Center, Jiangmen Maternity and Child Health Care Hospital
#These authors contributed equally to the work.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Citation:
Liu Y, Hu Y, Zhang M, Jiang R, Liang C. Polymorphisms in ERCC2 and ERCC5 and Risk of Prostate Cancer: A Meta-Analysis and Systematic Review. J Cancer 2018; 9(16):2786-2794. doi:10.7150/jca.25356. Available from http://www.jcancer.org/v09p2786.htm

File import instruction

Abstract

Background and Objective: Excision repair cross complementing (ERCC) group genes play important roles in the nucleotide excision repair (NER) way, which can effectively remove bulky lesions and reduce UV-caused DNA damage by environmental chemicals. Polymorphisms in ERCCs were thought to be related to prostate cancer (PCa) risk. However, it has been unclear whether this relationship is consistent. This study aimed to obtain the overall profile regarding the associations between ERCCs polymorphisms and PCa risk.

Materials and Methods: We identified relevant studies by a systematic search of PubMed, Medline, Embase, Google Scholar databases, Web of Science and Wanfang databases up to April 8, 2018. Odds ratios (ORs) with 95% confidential intervals (95%CIs) were conducted to evaluate the associations. All the statistical analyses were conducted basing on STATA 12.0 software.

Results: Finally, a total of 29 previous studies published in 17 publications were included for four polymorphisms in two DNA repair genes (ERCC2-rs1799793, ERCC2-rs238406, ERCC2-rs13181 and ERCC5-rs17655). Overall, we observed no significant connection between these four polymorphisms and PCa risk. However, after stratifying the studies by ethnicity, ERCC2-rs1799793 polymorphism was associated with an increased risk of PCa in Asian patients and the relationship was subsequently validated with the allelic model, the homozygous model and the recessive model when extracting the data of Asian patients for specific analyses (B vs. A: OR = 1.537, 95%CI: 1.240-1.906, PA< 0.001; BB vs. AA: OR = 2.089, 95%CI: 1.388-3.145, PA< 0.001 and BB vs. BA + AA: OR = 1.929, 95%CI: 1.313-2.835, PA= 0.020). Furthermore, subgroup analyses were also conducted by Hardy-Weinberg Equilibrium (HWE) and source of control, negative results were identified for ERCC2-rs238406, ERCC2-rs13181 and ERCC5-rs17655 polymorphisms (PA> 0.050).

Conclusion: To sum up, our work demonstrated that ERCC2-rs1799793 polymorphism is positively associated with PCa risk in Asian population. Further larger-scale studies with subjects of the same ethnicity and biological characteristics are required to verify these findings.

Keywords: Excision repair cross complementing (ERCC), single nucleotide polymorphism (SNP), prostate cancer(Pca), risk