J Cancer 2015; 6(4):333-341. doi:10.7150/jca.10565

Research Paper

Expression and Splice Variant Analysis of Human TCF4 Transcription Factor in Esophageal Cancer

Gang He*, Xingying Guan*, Xuedan Chen, Yan Wang, Chao Luo, Bo Zhang

Department of Medical Genetics, Third Military Medical University, Chongqing 400038, China
*These authors contribute equally to this work.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
He G, Guan X, Chen X, Wang Y, Luo C, Zhang B. Expression and Splice Variant Analysis of Human TCF4 Transcription Factor in Esophageal Cancer. J Cancer 2015; 6(4):333-341. doi:10.7150/jca.10565. Available from http://www.jcancer.org/v06p0333.htm

File import instruction


Objective: The human T cell transcription factor-4 (TCF4) interacts functionally with β-catenin in the Wnt signaling pathway, whose deregulation is involved in the tumorigenesis of various types of cancers. Recent studies showed that TCF4 mRNAs were subject to alternative splicing, which was proposed to be important in regulating transactivational properties of the corresponding protein isoforms. Here we investigated the splicing isoforms and the roles of TCF4 in human esophageal squamous cell carcinoma.

Methods: RT-PCR and subsequent cloning and sequencing were applied to identify the splicing isoforms. Western blotting and realtime PCR were used to analyze the expression of TCF4. Knockdown of TCF4 was achieved with siRNA and stable transfection of expression vectors was performed.

Results: Our results showed there were a lot of different isoforms of TCF4 mRNA both in human esophageal cancers and cell line. Further, knockdown of TCF4E isoform expression in EC109 cells inhibited the cell growth, while overexpression of TCF4M isoform did not alter its transcription activity. Moreover, sixteen potential binding proteins of TCF4 were preliminarily identified by mass spectrometry.

Conclusions: Our data suggested that deregulation of TCF4 isoforms may contribute to the tumorigenesis of ESCC.

Keywords: TCF4, colon cancer, esophageal squamous cell carcinoma, alternative splicing, tumorigenesis