J Cancer 2014; 5(8):715-719. doi:10.7150/jca.9971

Review

Salamander Regeneration as a Model for Developing Novel Regenerative and Anticancer Therapies

Jonathan Fior

Innovative Bioresearch, Milan, Italy.

Abstract

Among vertebrates, urodele amphibians are the only tetrapods with the ability to regenerate complex structures such as limbs, tail, and spinal cord throughout their lives. Furthermore, the salamander regeneration process has been shown to reverse tumorigenicity. Fibroblasts are essential for salamander regeneration, but the mechanisms underlying their role in the formation of a regeneration blastema remain unclear. Here, I review the role of fibroblasts in salamander limb regeneration and how their activity compares with that of human fibroblasts. In addition, the question of whether salamander blastema tissue could induce regeneration and tumor regression in animals with a limited regeneration ability is discussed. A deeper understanding of these processes may lead to the development of novel regenerative and anticancer therapies.

Keywords: salamander regeneration, wound healing, tumor progression, fibroblasts.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Fior J. Salamander Regeneration as a Model for Developing Novel Regenerative and Anticancer Therapies. J Cancer 2014; 5(8):715-719. doi:10.7150/jca.9971. Available from http://www.jcancer.org/v05p0715.htm