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Abstract

Diffuse large B-cell lymphoma (DLBCL) is an aggressive subtype of B-cell lymphoma characterized by
genetic variability and clinical heterogeneity. Single-cell sequencing technology enables mapping of
intra-tumoral heterogeneity and microenvironment interactions. In this study, we analyzed single-cell and
RNA expression microarray data from over 3,000 DLBCL patients to investigate the immune landscape
of the tumor microenvironment and its association with clinical prognosis. Malignant B cells identified
through B-cell receptor (BCR) clonal analysis and copy number variation (CNV) assessment exhibited
enrichment in pathways related to the cell cycle, DNA replication and p53 signaling, which were closely
related to adverse survival outcomes. Next, the myeloid cells derived from DLBCL tumor tissues could
be further clustered into several distinct types, primarily comprising dendritic cells and macrophages. The
increased prevalence of SPPI+ macrophages within the tumor microenvironment was correlated with
inferior overall survival. Additionally, CellChat analysis revealed that frequent interactions between SPP1+
macrophages and CD8* T cells may contribute to T cell exhaustion and create an immunosuppressive
microenvironment. Collectively, the diverse sub-populations, particularly the immunosuppressive SPP]+
macrophages regulated immune suppression status within tumor microenvironment and represented a
potential therapeutic target for DLBCL patients.
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is the
predominant subtype of B-cell lymphoma, accounting
for ~approximately 30-40% of non-Hodgkin
lymphomas (NHL)'2. Despite advancements in
clinical response and overall survival due to the
incorporation of the anti-CD20 antibody rituximab
alongside chemotherapy, approximately 30-40% of
DLBCL patients continued to exhibit resistance to this
combination immunotherapy?. Consequently, there is
an urgent need to identify novel therapeutic strategies
and molecular classifications of DLBCL to facilitate
precise clinical management for these
recurrent/refractory patients.

DLBCL can be categorized into two molecular
subgroups, germinal center B-cell-like (GCB) and
activated B-cell-like (ABC), using mRNA expression
profiling (GEP)% These subgroups showed different
prognoses and responses to standard R-CHOP
immunotherapy®. GCB-DLBCL and ABC-DLBCL
made up about 40% and 50% of DLBCL cases
respectively, with a small unclassifiable group
comprising 10-15%%¢. Based on omics data analysis,
the novel molecular DLBCL classification had recently
been developed. The four genetic categories had been
identified as MCD, BN2, N1, and EZB subtypes in
DLBCL patients by oncogenic mutations, including
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MYDS88, CD79B, NOTCH1 and NOTCH2 and EZH2,
which improved the treatment strategy and prognosis
of DLBCL patients’.

The biology and clinical behavior of DLBCL
were influenced not only by the molecular alterations
within the DLBCL tumor cells themselves but also by
their  interactions  with  the  surrounding
microenvironment. Evidence from both lymphoma
patients and animal models suggested that within the
lymphoma niche, external stimuli provided by
microenvironmental cells and the extracellular matrix
(ECM) played a significant role in disease
development, progression, and response to
treatment®-10. Consequently, elucidating the precise
cellular and molecular mechanisms that facilitated
tumor immune evasion remained a critical objective
for enhancing current immunotherapies or
developing novel therapeutic strategies. Based on the
microenvironmental gene expression profiles,
stromal-1 and stromal-2 signature had been identified
to be related to the survival outcomes of DLBCL
patients. The stromal-1 signature characterized by
extracellular matrix deposition and histiocytic
infiltration was associated with favorable survival in
DLBCL. In contrast the stromal-2 signature marked by
angiogenesis correlated with poor clinical outcomes8.
Recently four distinct lymphoma microenvironment
classification were found by transcription gene

analysis, including  “germinal  center-like”,
“mesenchymal”, “inflammatory” and “depleted”
subtypes. Furthermore, patients with GC-like

lymphoma microenvironment responded best to
R-CHOP chemoimmunotherapy and had the highest
survival rates, while those with “depleted”
lymphoma microenvironment had the lowest
response and survival rates, which indicated the
significant prognostic value of tumor
microenvronement’. Given the increasing evidence
that the prognostic value of the TME was significant
and independent of current standards, this area is of
clear pathophysiological importance.

Given the controversies surrounding the latent
role of the tumor microenvironment (TME) in the
pathogenesis and progression as reported in several
studies, recent research employing high-dimensional,
single-cell analyses of primary tumors had
significantly advanced our understanding of cancer
biology'!. The detailed characterization of cellular
heterogeneity in DLBCL at the single-cell level hold
promise for the development of more effective
molecularly targeted therapies and prognostic
biomarkers. In this study, we utilized single-cell RNA
sequencing (scRNA-seq) and RNA expression
microarray data from existing literature to construct a
comprehensive cellular atlas of both malignant and

non-malignant cells in DLBCL. This approach
allowed us to investigate the impact of key signatures
of malignant B cells and infiltrating immune cells on
the pathogenesis and prognosis of DLBCL, potentially
informing the development of novel molecularly
targeted therapies and immunotherapeutic strategies.

Results

Generation of a single-cell atlas for DLBCL

The single-cell RNA sequencing data derived
from tumor tissues of 12 samples diagnosed with
DLBCL (GSA-Human HRA002297 and GEO
GSE182436) were reclustered and analyzed. A total of
54,199 high-quality single-cell transcriptomes from an
initial 59,066 cells were analyzed, with an average of
2,378 genes detected per cell. T-cell receptor (TCR)
and B-cell receptor (BCR) sequences were identified in
15,037 and 12,428 cells, respectively. Nonlinear
dimensionality reduction was conducted using the
Uniform Manifold Approximation and Projection
(UMAP) method. Based on canonical marker gene
expression, we discovered 4 different major clusters: B
lymphocytes, myeloid cells, CD4* T cells and CD8* T
cells (Figure 1A). The violin plot illustrated the
principal genes for distinguishing the four major
clusters (Figure 1B-C). B cells displayed a higher
expression of CD19, MS4A1 and CD79A. A higher
expression of CD33, TYROBP and ITGAX was showed
in myeloid cells. The expression level of CD3D, CD3E,
and CD4 was found to be markedly elevated in CD4*
T cells. CD3D, CD3E and CD8A genes were found to
be highly expressed in CD8* T cells. As illustrated in
Figure 1D, the stacked bar chart depicted the four cell
clusters in 12 DLBCL samples. Significant variation
was observed in the proportions of these cell clusters
among samples. B cells were the most abundant cell
type presented in the DLBCL tumor tissues, with
infiltrating T cells and myeloid cells being the
next-most abundant.

Heterogeneity of malignant B cell predicted
the DLBCL prognosis

Malignant B cells and normal B cells were
further identified from 12 DLBCL samples to study
tumor heterogeneity in DLBCL. UMAP analysis was
conducted to display the clustering of B cells
belonging to each individual patient (Figure 2A). By
using BCR clonal analysis and inferCNV assessment,
we finally classified B cells into two clusters,
consisting of 25,419 malignant B cells and 4,013
tumor-infiltrating normal B cells (Figure 2B, Figure
S1A-E). Next, we made a comparison between the
malignant and normal B cells of each sample to find
significantly differentially expressed genes (Figure
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2C). KEGG pathway analysis further revealed the
significantly enriched pathways, including cell cycle,
DNA replication, and p53 related signal pathways
(Figure 2D). We validated the related pathway
signatures using GEO cohorts. The Kaplan-Meier plot

showed higher expression levels of genes associated
with the cell cycle, DNA replication and p53 signal
pathway were correlated with survival disadvantage
within GEO database GSE32918 (Figure 2E),
GSE181063 and GSE31312 (Figure S1).
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Figure 1. Single-cell analysis revealed the heterogeneity of the tumor microenvironment in the integrated DLBCL samples. (A) UMAP visualization of
54,199 single cells derived from DLBCL tumor tissues. UMAP plot showing the major lineages within tumor samples. Marker genes used for lineage definition were summarized
in Supplementary Table S1. (B) Violin plots showing the expression of representative marker genes across major immune lineages. (C) UMAP plot showing the marker genes
expression levels, with color intensity reflecting expression in individual cells. (D) Stacked bar plots showing the relative composition of immune cell subtypes across tumor
samples from 12 patients, highlighting the inter-patient variability in microenvironmental cellular composition.
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Figure 2. Single-cell analysis revealed distinct transcriptional characteristics of malignant and non-malignant infiltrating B cells in DLBCL. (A) UMAP plot
showing B cells derived from 12 DLBCL patients. Each dot represents a single cell, colored by patient origin. (B) UMAP plot showing the malignant and non-malignant B cells.
Malignant status was inferred using an integrated approach combining BCR clonality analysis and CNV estimation from scRNA-seq (inferCNV). (C) Volcano plot showing
differentially expressed genes (DEGs) between malignant and non-malignant B cells. Significantly upregulated and downregulated genes were highlighted in red and blue,
respectively (|logzFC| > 1.5, p < 0.05). (D) Bubble plot presenting KEGG pathway enrichment analysis for the upregulated and downregulated DEGs. The size of the bubbles
reflects the number of genes involved, while the color intensity represents the statistical significance of enrichment. (E) Kaplan—Meier survival curves illustrating the prognostic
relevance of GSVA scores based on selected pathway signatures in external GEO RNA expression microarray datasets.
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Clustering of myeloid cells from single-cell
RNA sequencing

Eight myeloid cell subclusters were identified by
single-cell RNA sequencing analysis within the
integrated expression profiles of 12 DLBCL samples.
This analysis characterized the transcriptional
heterogeneity of infiltrating myeloid cells in DLBCL.
The UMAP plot revealed distinct clustering of
myeloid cells across patients based on their
expression of immune markers (Figure 3A). We
defined the identity of each cluster by evaluating
subset-specific differentially expressed genes (Figure
3B-C). The CLEC9A* cDC1 cluster was characterized
by the expression of CLECY9A, BATF3, and ID2,
whereas the CDIC* cDC2 cluster was defined by
CD1C, FCGR2B, and CLEC10A. The LAMP*+ ¢DC3
cluster was distinguished by high expression levels of
LAMP3, FSCN1, and CCR7. Clusters C1QC* Macro
and SPP1* Macro could be differentiated based on the
expression levels of CIQA/B/C and SPP1 respectively.
A subset of cells with high expression of FCN1 was
identified distinct from macrophages, which
contained FCNI* Monolike cells and CDI16*
Monocytes. The LILRA4* pDC cluster was defined by
the expression of LILRA4, IRF4, and IRF7. Cluster
distribution plot revealed that clusters CIQC* Macro,
FCN1* Monolike, and SPP1* Macro constituted the
predominant populations across all samples, a finding
that was corroborated by the UMAP analysis.

Based on clustering results from scRNA-seq
data, we defined transcriptional signatures
representative of distinct cell subpopulations.
Subsequently, we evaluated the prognostic relevance
between the signatures and patient survival outcomes
using a cell type deconvolution algorithm in
independent RNA expression microarray data cohorts
from GEO database. There was a consistent indication
that elevated levels of FCN1* monolike cells and
SPP1* macrophages were associated with poor
prognosis across multiple DLBCL cohorts GSE31312
(Figure 3D), GSE10846, GSE11318 and GSE87371
(Figure S2).

Clustering of CD4* T cells from single-cell
RNA sequencing

We characterized nine different CD4* T cell
clusters within the TME of DLBCL from single-cell
transcriptomes in 12 samples (Figure 4A). In order to
verify the reliability of the basis of nine clusters of
CD4* T cells, the expression patterns of representative
marker genes in different cell clusters were analyzed.
CCR7+ Tn cells were defined by the expression of
CCR7, SELL and S1PR1; TCE7+ Tm cells by TCF7,
CCR7 and IL7R; CD69* Tm cells by CD69, NR4A1/2

and MYADM. Temra* CX3CR1 cells were
characterized by CX3CR1, KLRGI, and SIPR5;
GZMK* Tem cells by GZMK, GNLY, and NKG7. IFNG*
Tfh/Th1 cells were marked by IL21, IFNG, and CCL3;
whereas IL65T* Tth cells expressed IL6ST, CD200 and
BCL6. TNFRSF9* Treg cells were defined by FOXP3
and  TNFRSF9; ISG*  Treg mainly by
interferon-stimulated genes (ISGs) (Figure 4B-C). To
investigate the association between CD4" T-cell
subsets in tumor microenvironment and DLBCL
patient’s prognosis, we applied the same analytical
framework used in myeloid cell analysis. Survival
analyses revealed that an increased enrichment of
TNFRSF9* Treg cells within the TME was significantly
associated with poor survival. Conversely, enriched
proportion of IFNG* Tfth/Th1 cells showed significant
association with better outcomes across multiple
independent GEO cohorts GSE32918 (Figure 4D) and
GSE87371,  GSE31312,  GSE10846,  GSE11318,
GSE117556 (Figure S3).

Clustering of CD8* T cells from single-cell
RNA sequencing

CD8* T cells represent the predominant
infiltrating lymphocyte population in the DLBCL
tumor microenvironment. CD8" T cells were analyzed
and classified into nine distinct subpopulations based
on their functional states and the expression profiles
of lineage-defining genes across 12 samples (Figure
5A). To validate the reliability of this classification, we
analyzed the expression patterns of representative
marker genes across the identified clusters (Figure
5C-D). TCF7* T Naive cells were characterized by high
expression of TCF7 and LEF1, and IL7R* Tm cells
exhibited diminished TCF7 expression alongside
elevated IL7R and ZNF683, clearly distinguished from
Naive CD8* T cells. KIR* NK like T cells were
transcriptionally similar to NK cells and expressed
KIR genes and KLR family genes. In the trajectory of
CD8* T cells, there was a transition from the
pre-exhaustion T cells (Pre Tex), which expressed
cytotoxic molecules, including GZMK and GZMA and
low level of exhaustion markers, to cells GZMK* Tex,
which expressed inhibitory receptors such as PDCD1
and LAG3. Next these cells changed into terminally
exhausted T cells (Terminal Tex), which were
characterized by high expression of
exhaustion-related genes and reduced effector
function (Figure 5B). The progression from Pre Tex
cells to GZMK* Tex, and finally to Terminal Tex cells
indicated an important step of CD8" T cells
dysfunction in TME. Moreover, we observed a
distinct subset of exhausted T cells (TCF7+ Tex)
expressing exhaustion markers and stem-like gene
TCF7, indicating a progenitor-exhausted signature.
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Figure 3. Fine-grained characterization of myeloid cell subpopulations in DLBCL. (A) UMAP plot showing the major lineages of myeloid cells. Marker genes used for
lineage definition were summarized in Supplementary Table S1. (B) Dot plot showing the expression of marker genes associated with myeloid cells. Both dot size and color
indicate effect size (ES) reflecting the average scaled expression level and the proportion of cells expressing each gene within a cluster. (C) UMAP plots colored by the
log-normalized expression levels of selected canonical marker genes for myeloid cell subtypes based on scRNA-seq data. Color intensity reflects expression in individual cells. (D)
Kaplan—Meier plot showing worse clinical outcome in DLBCL patients with the higher proportion of SPPI* myeloid and FCN I+ moonlike cells in external GEO RNA expression
microarray datasets. Patients were stratified based on enrichment scores of specific cell-type signatures, and differences in overall survival were assessed.
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Figure 4. Fine-grained delineation of CD4* T-cell subpopulations in DLBCL. (A) UMAP plot showing the major lineages of CD4* T cells. Marker genes used for lineage
definition were summarized in Supplementary Table S1. (B) Dot plot showing the expression of marker genes associated with CD4* T cells. Both dot size and color indicate effect
size (ES), reflecting the average scaled expression level and the proportion of cells expressing each gene within a cluster. (C) UMAP plots colored by the log-normalized
expression levels of canonical CD4* T-cell marker genes based on scRNA-seq data. Color intensity reflects expression in individual cells. (D) Kaplan—Meier survival curves
demonstrating the prognostic relevance of selected signatures associated with CD4* T-cell subsets in external GEO RNA expression microarray datasets. Patients were stratified
based on enrichment scores of specific cell-type signatures, and differences in overall survival were assessed.
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Figure 5. Fine-scale characterization of CD8* T-cell subpopulations in DLBCL. (A) UMAP plot showing the major lineages of CD8* T cells. Marker genes used for
lineage definition are summarized in Supplementary Table S1. (B) Bar plots illustrating the GSVA scores for exhaustion and effector programs across Pre Tex, GZMK* Tex and
Terminal Tex cells. The exhaustion score was calculated based on the expression of PDCD I, TOX, CXCLI3, TIGIT, CTLA4, TNFRSF9, HAVCR2 and LAG3; the effector score was
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marker genes for CD8" T-cell subsets based on scRNA-seq data. Color intensity reflects expression in individual cells. (D) Dot plot shows the expression of marker genes
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within a cluster. (E) Kaplan—Meier survival curves evaluating the prognostic significance of selected CD8" T-cell-related signatures in external GEO RNA expression microarray
datasets. Patients were stratified based on enrichment scores of specific cell-type signatures, and differences in overall survival were assessed.
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To validate the association between CD8* T cell
subsets in the tumor microenvironment and clinical
outcomes, survival analyses were conducted in the
independent DLBCL cohorts. Remarkably, the
DLBCL patients had a better prognosis with a higher
proportion of TCF7* T naive cells. In contrast, the
elevated proportion total Tex cells (combination of Pre
Tex + GZMK* Tex + Terminal Tex + TCF7* Tex) were
related to diminished survival rate in DLBCL patients
within GSE181063 (Figure 5E), GSE11318, GSE117556,
GSE32918, GSE10846 and GSE87371 (Figure S4).

Interaction between SPP1+* macrophages and
CD8* cells

Subsequently, we employed CellChat to analyze
intercellular communication within the DLBCL tumor
microenvironment focusing on ligand-receptor
interactions and associated signaling pathway. The
heatmap plot showed that the major regulatory axis in
the TME was the infiltrating CD8* T lymphocytes and
myeloid cells (Figure 6A). The network centrality
analysis further clarified the functional roles of
various cell types in mediating cell communications.
Within the network of the TME, CD8* T cells occupied
a central hub position and exhibited significant signal
senders” and receivers’ potential. Myeloid cells mainly
acted as robust signal initiators with limited ability to
receive signals, suggesting they might function as
important upstream regulators in the immune
signaling cascade (Figure 6B). Notably, the SPPI1*
macrophages may play an important regulatory role
in the DLBCL TME due to their remarkably strong
signal sending capacity.

The study also identified that SPP1*
macrophages were widespread communicators to all
clusters of CD8* T cells. Early CD8* T cells, such as
CD8* naive and Pre Tex cells, showed limited
communication efficacy with SPP1* macrophages. On
the other hand, the activated CD8* subsets, including
KIR* NK like CD8+ T cells and GZMK* Tex cells
exhibited increased incoming signals from SPPI*
macrophages (Figure 6C). As indicated by these
findings, SPP1"™ macrophages may interact
preferentially with activated CD8* T cells which may
alter their functional states thus remodeling DLBCL
tumor microenvironment.

We carried out non-negative matrix factorization
analysis (NMF) to identify key outgoing (sending)
and incoming (receiving) signaling and key ligand-
receptor interactions patterns. The heatmap
visualization showed the contributions of various cell
types to different signaling. Myeloid cells especially

the  SPP1*  macrophages  exhibited strong
signal-sending capacities within the outgoing
signaling heatmap. Conversely, the incoming

signaling map indicated that CD8* T cells, especially
Pre-Tex, GZMK* Tex and Terminal Tex subsets,
exhibited  significant signal-receiving activity.
Meanwhile, pathway enrichment analysis showed
that the SPP1 ligand-receptor axis was largely
responsible for these interactions (Figure 6D-E). The
data implied that myeloid cell clusters, specifically
SPP1* macrophages, may facilitate the shift of CD8* T
cells from the effector state toward terminal
exhaustion while contributing to the remodeling of
the tumor microenvironment and immune
suppression.

Discussion

In our study, we analyzed single-cell and RNA
expression microarray data to reveal the possible
relationship between the immune landscape
transcriptome and clinical outcomes in DLBCL
patients. We created a comprehensive cell atlas
encompassing both malignant and nonmalignant cell
populations, providing evidence that the diversity of
myeloid and T lymphocyte subpopulations, along

with specific transcriptomic gene signatures,
significantly predicted the prognosis of DLBCL
patients.

Secreted Phosphoprotein-1 (SPP1), also known
as Osteopontin (OPN) was extensively expressed
across a variety of cell types, including T cells, B cells
and myeloid cells'?. Additionally, SPP1 was found in
body fluids such as serum, bovine milk, and human
urine, where it played a role in intercellular
communication and the extracellular matrix.
Elevated levels of circulating SPP1 in serum, as well as
increased SPP1 expression in tumor cells, had been
associated with poor prognosis in multiple cancer
types by promoting tumor cell proliferation,
migration, and invasion'4!5. Regarding circulating
SPP1, the expression level of SPP1 in tumor tissue did
not correlate with plasma SPP1 levels and patient
outcomes, suggesting that non-malignant cells may
contribute to plasma SPP1 concentrations’¢. Recently,
the expression of SPP1 by macrophages had garnered
significant attention in the scientific community. Eri
Matsubara and colleagues have reported that elevated
SPP1 expression in tumor-associated macrophages
(TAMs) was indicative of a poor prognosis in patients
with lung adenocarcinoma’. More recently, Ruben
Bill et al. demonstrated that SPP1 played a role in the
progression of macrophage polarization, with
IFN-y-induced CXCL9 and hypoxia-induced SPP1
emerging as critical features of the tumor
microenvironment!8. Furthermore, the knockdown of
SPP1 in macrophages had been shown to mitigate
tumor cell migration and induce the Thl response by
downregulating PD-L1%. Our findings revealed that
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SPP1* macrophages fostered an immunosuppressive
microenvironment in DLBCL by suppressing T-cell
activation and effector function, consistent with the
finding that SPP1 promotes metastatic tumor growth
in non-small-cell lung cancer®. Importantly, in vivo
administration of the SPPl-blocking antibody
suppressed liver and lung metastases?!. Thus, the
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The complement system, a critical component of
the innate immune system, was instrumental in the
recognition and elimination of pathogens?.
Numerous studies had demonstrated that the
expression of Clq was correlated with markers
indicative of M2-like macrophage phenotypes. Zhang
et al. identified that Clg-positive TAMs exhibited
high expression levels of several macrophage
markers, including CD163 and APOE, as well as
inhibitory molecules such as Tim-3 and PD-1,
suggesting an immunosuppressive role within the
tumor microenvironment?. Furthermore, research by
Lubka Roumenina et al. indicated that TAMs were the
predominant cell type responsible for Clq
production, and the density of Clg-positive cells were
associated with poor prognosis in advanced clear cell
renal cell carcinoma (ccRCC)%. Additionally,
Clg-expressing TAMs and complement activation
products were found to promote inflammation, T-cell
exhaustion, and tumor progression. Notably, the
ablation of Clq, C4, and C3 in mice resulted in a
reduction in tumor growth?:.

T cell exhaustion referred to a range of
dysfunctional states observed in antigen-specific
CD8* T cells, a concept initially characterized in the
context of chronic viral infections?. Due to
mechanisms of immunotolerance and
immunosuppression, CD8* T cells infiltrating tumors
often failed to achieve full activation, subsequently
transitioning into an exhausted and dysfunctional
state characterized by diminished proliferative
capacity, reduced cytokine production, and impaired
tumor cell lysis?®. Gene expression profiling had
demonstrated that exhausted T cells exhibited
upregulation of immune checkpoint receptors,
including PD-1, CTLA-4, Tim-3, LAG-377-2. The
therapeutic targeting of these inhibitory receptors,
particularly CTLA-4 and PD-1, with specific
antibodies had led to significant improvements in
clinical outcomes for patients with advanced
melanoma, non-small-cell lung cancer, renal cell
carcinoma, and B cell malignancies®-33. Numerous
studies have indicated that the extent of exhausted
T-cell infiltration correlates with the response rates to
immunotherapy. Similarly, in our study, DLBCL
patients with a higher percentage of total exhausted
CD8* T cells within tumor microenvironment tended
to have worse survival outcomes. More importantly,
TCF7 expression regulated differentiation of T cells in
tumor tissue®. The loss of T-cell exhaustion
regulatory genes, such as NR4al and NR4a2, triggered
TCF7 expression promoted anti-tumor immunity in
tumor infiltration CD8* T cells 35. Similarly, the
infiltration of stem-like exhausted T
precursor/ progenitor cells, such as TCF7* Tex cells,

were correlated with functionality of memory T cells
and favorable prognosis of DLBCL patients.

The sequence of processes facilitating DNA
replication and cell division was referred to as the cell
cycle. The advancement of cancer was characterized
by aberrant activity within the cell cycle®. DNA
mutations contributed to the dysregulation of cell
cycle kinases; a phenomenon frequently associated
with abnormal cell division and the uncontrolled
proliferation characteristic of cancer cells. Notably,
aberrant activation of cyclin-dependent kinases
(CDKs), a common occurrence in human
malignancies, underscored the rationale for
developing synthetic CDK inhibitors as anticancer
therapeutics®”. Concerning the molecular signatures
within DLBCL tumor cells, our results illustrated that
cell cycle, DNA replication, and p53 signal pathway
related genes were significantly upregulated in
malignant B cells. Consistent with our results, the
upregulated cyclins, cell cycle-specific antigens PCNA
and mini-chromosome maintenance (MCM) proteins
promoted the progression of cell cycle regulation,
DNA replication in various kinds of tumor
development 38-40,

In summary, the intra-tumoral heterogeneity
and microenvironmental interactions characteristic of
DLBCL present promising opportunities for
prognostic stratification and the advancement of
novel immunotherapeutic strategies.

Material and Methods

Data process and single cell sequence analysis

Two DLBCL scRNA-seq datasets were sourced
from GSA-Human (HRA002297) and GEO
(GSE182436)10. The HRA002297 dataset comprises
single-cell data derived from nine DLBCL tumor
tissue samples, while the GSE182436 dataset included
data from three patients. After merging the datasets,
we utilized Seurat (v5.2.1) to process the Unique
Molecular Identifier (UMI) count matrices which
represent the number of unique transcripts captured
per cell and conducted quality control, keeping 54,199
cells and 41,166 genes for subsequent analysis*>*3. The
scRNA-seq data was processed through log
transformation, normalization, and dimensionality
reduction, followed by visualization. The Variance
Stabilizing Transformation (VST) method pinpointed
the top 2,000 highly variable genes, and Principal
Component Analysis (PCA) was used for
dimensionality reduction, with UMAP applied for
clustering and visualization*. Batch effects were
corrected using Harmony Integration in Seurat. The
Leiden algorithm was employed for multiscale
clustering to identify cell meta clusters, which were
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annotated based on gene expression profiles®.
Myeloid cells, CD4* T cells, and CD8" T cells were
then analyzed using the same preprocessing and
clustering approach. The related marker genes were
chosen according to canonical immune cell signatures
reported in prior single-cell studies of the tumor
microenvironment and hematopoietic lineages
(Supplementary Table S1) 4% Concerning the
microarray data, we selected seven independent
DLBCL RNA expression microarray data cohorts
from the Gene Expression Omnibus (GEO) database
(GSE10846,  GSE11318,  GSE31312,  GSE32918,
GSES87371, GSE117556 and GSE181063), which totally
contained clinical information and expression data
from over 3,000 DLBCL patients.

Malignancy Identification

First, we analyzed BCR sequencing data and
identified dominant monoclonal and polyclonal B cell
subsets. Subsequently, we performed single-cell Copy
Number Variation (CNV) analysis for these subsets
using the InferCNV (v1.22.0) algorithm. The
malignant B cells were identified based on BCR
clonality analysis, x/\ chain ratio and InferCNV
results®. The reference population for InferCNV was
selected from a cluster containing cells derived from
multiple patient samples that showed no detectable
copy number alterations, supporting its suitability as
a non-malignant baseline.

Cellular composition deconvolution and
survival analysis

Seven cohort datasets were obtained from the
GEO database, which contained over 3,000 samples
and survival data of patients. We utilized scRNA-seq
clustering to determine a transcriptional signature for
specific cell subpopulations. Next, we used the
BayesPrism algorithm to establish a prognosis model
using risk scores generated from these datasets to
determine its relationship with patients’ survival
outcome®. The Overall Survival (OS) was defined as
the time from initiation of disease until death from
any cause. Survival R package (Version 3.8-3) was
employed to study the correlation of risk factors with
survival probability®. Univariate and multivariate
Cox regression analyses were conducted, presented
with 95% confidence intervals, to assess the effect of
the mentioned factors on survival endpoints. Results
shown statistically significant if p value < 0.05. We
only considered findings that showed consistent
survival trends as well as statistical significance in at
least three studies as clinically relevant.

Cell-cell communication analysis

CellChat (version 2.1.2) was used to analyze
intercellular communication based on a curated
ligand-receptor interactions®’. The analysis was
performed on the basis of gene expression data,
quantified as transcriptome-wide read counts
mapped to protein-coding genes. The average
expression level for each identified cell cluster was
computed and served as input to infer
communication  probabilities and  reconstruct
signaling networks.

KEGG pathway enrichment analysis

Pseudobulk count matrices for each cell type
were generated from the Seurat object and normalized
using DESeq?2. Principal Component Analysis (PCA)
was performed to evaluate sample reproducibility
and the stability of inter-sample variation.
Differentially Expressed Genes (DEGs) were
identified using a threshold of |log, fold change| >
1.5 and p < 0.05, and visualized with volcano plots
generated by ggplot2. KEGG pathway enrichment
analysis of DEGs was conducted using cluster Profiler
(v4.14.4), and the top pathways were ranked by
p-values. Gene Set Variation Analysis (GSVA) (v2.0.5)
was performed on selected gene sets or pathways to
calculate enrichment scores for further analysis
(Supplementary Table S2).
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