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Abstract 

Immune checkpoint inhibitors are effective treatments for many tumors. However, existing 
biomarkers can benefit only a small selection of colorectal cancer patients. Super-enhancers are 
associated with various tumor characteristics. We wondered whether super-enhancer-related 
genes could be novel biomarkers for immunotherapy. We screened super-enhancer-related genes 
that were highly correlated with immune infiltration through weighted gene co-expression network 
analysis on the basis of chromatin immunoprecipitation sequencing data. A prognostic risk signature 
was established using least absolute shrinkage and selection operator and cox regression models. By 
analyzing the correlations between the expression of model genes and the immunophenotypic and 
microsatellite instability scores, we determined that PLAU and GSDMC expression had high 
predictive value for immunotherapy efficacy. Moreover, we predicted the sensitivity of the PLAU 
and GSDMC proteins to drugs by virtual docking. Finally, we validated the effect of the 
super-enhancer activity on PLAU and GSDMC expression. Overall, our study identified 
super-enhancer-based biomarkers for predicting survival and immunotherapy efficacy in colorectal 
cancer. 
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Introduction 
According to the report from the American 

Cancer Society in 2023 [1], colorectal cancer (CRC) is 
the third most common cancer in the world in terms 
of incidence and mortality. Despite the popularization 
and development of radiotherapy, chemotherapy, and 
surgery for cancer treatment [2-4], CRC continues to 
have a high mortality around the world, and that rate 
is only increasing. A poor prognosis is the principal 
cause of the high mortality of CRC [5]. The 
development of immunotherapy has provided a new 

option for the treatment of CRC [6], and 
immunotherapy alone or in combination with 
traditional therapy has become a cornerstone of CRC 
treatment in clinical practice [7, 8]. The tumor 
microenvironment (TME) is composed of stromal 
cells, immune cells, vascular endothelium, and 
intravascular blood cells [9]. Among them, immune 
cells play dual roles in antitumor activity and tumor 
immune escape [10, 11]. Immunotherapy achieves the 
therapeutic effect of controlling or eliminating tumors 
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by externally interfering with the body's immune 
system to restart the "tumor–immunity" cycle of 
recognizing and killing tumor cells [12]. 
Immunotherapy is superior to traditional treatments 
because of its high specificity and less side effects [13, 
14].  

Currently, inhibitors targeting immune 
checkpoint proteins such as PD-1, PD-L1, and CTLA-4 
have been broadly applied in clinical practice [12, 15]. 
However, considering some specific side effects, such 
as peripheral neuropathy, headache [16] and hearing 
loss [17], caused by immune checkpoint inhibitors 
(ICIs), it needs to exactly select the patients suitable 
for ICIs. Some biomarkers have been identified and 
are considered predictive factors for CRC 
immunotherapy response, such as the 
immunophenotype score (IPS) [18], microsatellite 
instability (MSI) [19], and tumor mutation burden 
(TMB) [20, 21], but the currently known biomarkers 
can only recommend immunotherapy to be 
administered to a small percentage of patients, and 
the efficacy of immunotherapy on these biomarker- 
indicated patients is also not reliable. Identifying 
specific biomarkers is the way forward for tumor 
immunotherapy, allowing it to benefit more patients 
[22]. In recent years, new biomarkers for predicting 
the response of tumors treated with ICIs have been 
widely studied. For example, studies have shown that 
the Royal Marsden Hospital (RMH) score is an 
independent biomarker for predicting PFS in NSCLC 
patients receiving ICI treatment [23].  

A super-enhancer (SE) is a large cluster of 
multiple adjacent common enhancers. Super- 
enhancers drive the regulation of cell fate-related gene 
expression. Specific histone modifications, 
particularly histone 3 lysine 27 acetylation (H3K27ac), 
are essential for super-enhancer activity [24]. As 
powerful transcription regulators, super-enhancers 
play crucial roles in the accumulation of many major 
transcription factors and other cofactors [25, 26]. 
Bromodomain and outer end (BET) proteins, such as 
BRD4, recognize and bind to histone acetylated lysine 
residues in the super-enhancer region to facilitate 
gene transcription [27]. Studies have shown that 
immune evasion in CRC is also regulated by 
super-enhancers [28]. Thus, we wondered whether 
these genes regulated by super-enhancers could serve 
as new biomarkers for predicting the efficacy of 
immunotherapy. Inhibitors or drugs that target these 
genes may yield improved outcomes in 
immunotherapy. Given the important roles of super- 
enhancers in cancer, this study aimed to identify new 
super-enhancer-related biomarkers that can predict 
the immunotherapy efficacy and outcomes of patients 
with colorectal cancer. 

Materials and Methods 
Screening super-enhancer-related genes on 
the basis of H3K27ac ChIP-seq data 

The ChIP-seq data have been deposited in the 
Gene Expression Omnibus (GEO) under accession 
number GSE198223. The sequencing data were 
aligned to the human HG19 genome using BOWTIE 
V2.1.0 software. The data were transferred for peak 
calling by MACS V1.4.2 software. Statistically 
significant ChIP-enriched peaks were identified by 
comparison of the IP data with the input data. An 
enrichment region was regarded as a region 
containing constituent enhancer lines and was used to 
calculate the identity signal. The ROSE tool was used 
to generate a stitched enhancer by combining the 
enhancers within a range of 12.5 kb. All stitched 
enhancers were ranked by the signal of the IP group 
after subtracting the input group, and super- 
enhancers were identified based off of a specific 
threshold for the stitched enhancer signal. The 
super-enhancers were annotated by the correlated 
coding genes using the newest Arraystar UCSC 
database and other UCSC RefSeq databases. 

Weighted gene co-expression network analysis 
(WGCNA) 

First, we utilized the R package "ESTIMATE" to 
calculate the immune score, stromal score, estimated 
score, and tumor purity for the samples in the 
TCGA-COAD (colon cancer) cohort [29]. After 
conducting WGCNA to cluster the samples, we set the 
cutHeight to 4000 based on the degree of sample 
dispersion and used the 'cutreeStatic' function to 
remove 10 samples with a height above 4000 for data 
cleaning. In the end, we included a total of 455 
patients with COAD in this study. We used a 
topological overlap matrix to determine the 
appropriate soft threshold parameter to use (β=5). 
Next, we used dynamic hybridization cleavage to 
identify co-expressed gene modules. Hierarchical 
clustering trees were created using dynamic hybrid 
cutting, where genes with similar functions or 
expression data form a branch, which in turn forms a 
gene module. Finally, we calculated the Pearson 
correlation between modular signature genes (MEs) 
and the immune infiltration score, as well as tumor 
purity. A significant correlation was considered when 
adjust P < 0.05. Using normalized TCGA-COAD 
expression profile data and the CIBERSORT 
algorithm, an LM22 gene matrix file containing 22 
immune cell subtypes was used to calculate the 
proportions of 22 immune cell types. The composition 
of the immune cells was visualized using a box plot. 
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Dataset and sample extraction 
We acquired RNA sequencing expression data, 

genomic mutation data and associated clinical data 
for COAD patients from the TCGA database. The 
count data were analyzed using the R package 
"DESeq2", and the differential genes were selected on 
the basis of a |log2fold change|≥1 and adjust P < 0.05. 
Normalized FPKM data were used to generate 
heatmaps of differentially expressed genes using the 
R package "pheatmap". The volcano plot was 
visualized using the packages "ggpubr" and 
"ggthemes". 

Prognostic analysis 
Using the TIDE database [30] for prognostic 

analysis of the GEO CRC datasets, we analyzed the 
correlation between gene expression and overall 
survival (OS) and disease-free survival (DFS) with a 
cutoff p-values of 0.05. The “Query gene” module in 
the TIDE database was used to analyze the 9 immune 
infiltration-related differentially expressed genes. We 
obtained their prognostic value in multiple CRC 
datasets in the “Expression” section. The optimal 
critical value was calculated via the "surviviner" 
software package, and the survival curves of the six 
target genes were validated through TPM data in the 
TCGA-COAD queue. 

Construction of the prognostic risk model 
On the basis of 404 samples with clinical 

information from the TCGA-COAD cohort, the 
LASSO-Cox model (R package "glmnet") identified 6 
risk genes related to immune infiltration in the 
training group. The risk score based on this model 
was subsequently calculated. The R package 
"survminer" was used to determine the optimal cutoff 
point for the high- and low-risk groups. Next, we 
performed survival analysis and plotted Kaplan‒
Meier (K‒M) curves with the "survival" and 
"survminer" packages. Finally, using the 'time-ROC' 
package, we plotted ROC curves to calculate the 1-, 3-, 
and 5-year survival rates of patients. The prognostic 
model was subsequently validated with a validation 
set. 

Immunotherapy efficacy prediction 
In 2017, Charoentong et al. [31] reported that the 

IPS could predict the response to immune checkpoint 
inhibitors. Therefore, we downloaded the IPS of 
TCGA-COAD patients from the TCIA database, tested 
the relationship between gene expression levels and 
the IPS with the Wilcoxon rank sum test, and 
visualized it using the "ggpubr" package. In addition, 
previous research has shown that patients with 
MSI-H tumors have a better response to ICIs [20, 32]. 

Consequently, using the TCGA module in the 
integrated bioinformatics analysis platform ACLBI, 
we analyzed the correlation between single gene 
expression and the MSI score in COAD to estimate the 
predictive effect of single gene expression on the 
efficacy of ICIs. The "Biomarker Evaluation" module 
in the TIDE database was used to compare the target 
gene with other biomarkers. The predictive 
performance of biomarkers for the treatment effect of 
different cohorts of ICIs was expressed by the AUC. 
The larger the AUC was, the better the predictive 
effect. We subsequently analyzed the correlation 
between target gene expression and cytotoxic T cell 
(CTL) function by the 'Query Gene' module. The 
relationships between the expression levels of PLAU 
and GSDMC in melanoma and the outcomes of 
patients receiving immunotherapy were validated 
through the 'immunotherapy' module in the Kaplan‒
Meier plotter database. 

Correlation between gene expression and the 
tumor microenvironment 

Sangerbox 3.0 was used to analyze the 
relationship between gene expression and the tumor 
microenvironment. First, we analyzed the data via 
immunoinfiltration analysis in the "Pan-cancer 
analysis" module. The data were obtained from 
"TCGA+GTEx" and subjected to log (x+0.001) 
transformation. In the immune cell analysis (TIMER) 
module, we subsequently assessed the Spearman rank 
correlation between gene expression and immune 
cells in the tumor microenvironment. Finally, we 
assessed the relationships between gene expression 
and immune checkpoint genes through the ACLBI 
website. 

Drug sensitivity analysis and molecular 
docking 

We downloaded the IC50s (half-maximal 
inhibitory concentrations) of the drugs and gene 
expression levels of colorectal cancer cell lines from 
the GDSC2 and CTRPv2 databases. The correlation of 
PLAU and GSDMC expression with the drug IC50 
was calculated using R software, and scatter plots 
were generated. The 3D structures of the proteins 
were obtained from the Protein Data Bank (PDB) 
database. The structures of the small molecule drugs 
were downloaded from the PubChem database. The 
binding sites of the proteins were identified by the 
GHECOM algorithm. AutoDock Tools was used for 
the molecular docking of proteins to small molecule 
drugs. Then, we visualized the docking results via 
PyMOL software. Finally, Ligplus software was used 
to determine the two-dimensional structure of protein 
amino acid residues that interact with small-molecule 
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drugs. 

Cell culture 
The human colon cancer cell lines HCT116 and 

DLD1 were used for this study. The cells were 
obtained from the Cell Bank of the Chinese Academy 
of Sciences. HCT116 and DLD1 cells were cultured at 
37 °C in a 5% CO2 incubator in McCoy's 5A medium 
or RPMI 1640 medium supplemented with 10% fetal 
bovine serum. The cells were tested for mycoplasma 
contamination every two months. 

Quantitative real-time PCR (qRT‒PCR) 
The cells in the 6-well plate were treated with the 

BRD4 inhibitors-JQ1 and I-BET-762 for 24 hours, after 
which the RNA was extracted from the cells via 
TRIzol. The qPCR detection method was the same as 
previously reported [33]. β-actin was used as the 
endogenous control for normalization. The sequences 
of the primers used are as follows: 

PLAU-F: CAGATTCCTGCCAGGGAGAC, R: 
GCCAGGCCATTCTCTTCCTT; GSDMC-F: AGGTCA 
TTTGGATGGCCCTG, R: CCAGGATGCTCCTTAC 
CAGC; β-actin-F: CACCAACTGGGACGACAT, R: 
ACAGCCTGGATAGCAACG. 

Chromatin immunoprecipitation-qPCR 
ChIP assays were conducted as reported in 

previous studies [34] with the anti-H3K27ac (Abcam, 
ab177178, Cambridge, UK), anti-P300 (Abcam, 
ab275378, Cambridge, UK) and anti-BRD4 (Bethyl 
Laboratories, A301-985A100, Montgomery, TX, USA) 
antibodies. The primer sequences for the PLAU and 
GSDMC super-enhancer regions are shown below: 

PLAU-E1-F: GCAAGGCACCCTCGTACTTT, 
PLAU-E1-R: GCAAGTTCACGCTTAGACAGC; 
PLAU-E2-F: AGACTCACCCTGTGCCTACA, PLAU- 
E2-R: CCCGGAGGCAACCCAATAAT; PLAU-E3-F: 
TGTTGAAGAGTCCGTCTGCC, PLAU-E3-R: TTGTC 
TGTGTCCCTGTGTGG; PLAU-Promoter-F: GGTGTC 
ACGCTTCATAACGG, PLAU-Promoter-R: GGCTGT 
CATGCTGATTGCTG; GSDMC-E1-F: ACCTCCTGC 
GGTCAAGTAGA, GSDMC-E1-R: AGTCAGGGACC 
CATTGGTGA. 

H3K27ac ChIP-seq tracking 
We downloaded H3K27ac ChIP-seq data for cell 

lines from the ENCODE database [35]. The WashU 
Epigenome Browser was used to visualize the 
H3K27ac tracks. 

Electrophoretic mobility shift assay (EMSA) 
and super-shift EMSA 

First, we extracted the nuclear proteins from 
HCT116 cells via the Nuclear and Cytoplasmic 

Protein Extraction Kit (Beyotime, P0028) according to 
the protocol described in the user guide. After BCA 
quantification, the final concentration of protein was 
adjusted to 1 µg/µl. The proteins were subsequently 
mixed with the probes and incubated at room 
temperature for 30 minutes. Two microliters of 
sample mixture mixed with 4 µl of loading dye (6×) 
was loaded into each gel lane. The gel was run in 
0.5×TBE buffer at 150 V for 60 min and transferred to 
a nylon membrane at 300 mA for 30 min. Then, the 
membrane was crosslinked for 20 min with an 
ultraviolet lamp and sealed for 20 min. The membrane 
was incubated with diluted antibodies for 30 min at 
room temperature. Finally, after the membrane was 
eluted and dried, graphs were obtained using a 
chemiluminescence apparatus. The probes were 
synthesized by Servicebio (Wuhan, China). The probe 
sequences are listed below: 

E1: F: 5’-Biotin-GCAAGGCACCCTCGTACTTT- 
3’, R: 5’-Biotin-AAAGTACGAGGGTGCCTTGC-3’; 
E1: Cold probe F: 5’-GCAAGGCACCCTCGTACTTT- 
3’, R: 5’-AAAGTACGAGGGTGCCTTGC-3’; E1: 
Mutant probe F: 5’-GCAATACAGACTCCTAGCAG- 
3’, R: 5’-CTGCTAGGAGTCTGTATTGC-3’; E2: F: 
5’-Biotin-AGACTCACCCTGTGCCTACA-3’, R: 5’- 
Biotin-TGTAGGCACAGGGTGAGTCT-3’; E2: Cold 
probe F: 5’-AGACTCACCCTGTGCCTACA-3’, R: 
5’-TGTAGGCACAGGGTGAGTCT-3’; E2: Mutant 
probe F: 5’-AGACGAACCTTCCGCCTATT-3’, R: 
5’-AATAGGCGGAAGGTTCGTCT-3’; E3: F: 5’-Biotin- 
TGTTGAAGAGTCCGTCTGCC-3’, R: 5’-Biotin-GG 
CAGACGGACTCTTCAACA-3’; E3: Cold probe F: 
5’-TGTTGAAGAGTCCGTCTGCC-3’, R: 5’-GGCAGA 
CGGACTCTTCAACA-3’; E3: Mutant probe F: 
5’-TGTGGAATACTTCGTCTGCC-3’, R: 5’-GGCAGA 
CGAAGTATTCCACA-3’. 

Tissue samples collection and analysis 
This research was approved by The Institute of 

Research Medical Ethics Committee of the Affiliated 
Hospital of Shandong Second Medical University. 
Colorectal cancer tissues and paired normal tissues 
from eighteen patients were collected from the 
Affiliated Hospital of Shandong Second Medical 
University. All patients signed the informed consent 
forms. The RNA extraction and qPCR detection 
method is the same as above.  

Statistical analysis 
Statistical significance was assessed with a 

two-sided Student's t test via GraphPad Prism 7 
software. The results are expressed as the means ± 
standard deviations. If the results did not have the 
same standard deviation, a t test with Welch's 
correction was used. In addition, statistical tests were 
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performed using R software version 4.2.2, and 
p-values less than 0.05 were considered to indicate 
statistically significant differences. 

Results 
Screening super-enhancer-related genes 
correlated with immune infiltration through 
WGCNA 

A schematic flow chart diagram of this study is 
shown in Fig. 1. In our latest study [36], we obtained 
383 super-enhancer-related mRNAs via ChIP-seq 
with the anti-H3K27ac antibody in HCT116 cells 
(GSE198223). To further identify colorectal 
cancer-specific super-enhancers, we downloaded and 
analyzed the H3K27ac signal of these 383 genes in 
normal colonic mucosa by the ChIP-seq data from the 
ENCODE database. We compared their H3K27ac 
signal in the HCT116 cell and normal colonic mucosa. 
If their H3K27ac signal in the HCT116 cell was higher 
than that in normal colonic mucosa, we regard them 
as specific super-enhancers in the HCT116 cell line. 
Ultimately, we identified 239 CRC-specific 
super-enhancer-related genes. To assess the 
correlation between these genes and the tumor 
immune microenvironment, we conducted 
calculations for the immune score, stromal score, 
estimate score, and tumor purity using the 
TCGA-COAD datasets. A total of 455 COAD patients 
were selected from the TCGA database for weighted 
gene co-expression network analysis (WGCNA). The 
scale-free fit indices at different soft thresholds 
(powers) are shown in Fig. 2A. We determined β = 5 
to be the optimal power value. Moreover, we 
performed a sample clustering analysis (Fig. 2B). 
After the samples were clustered, the adjacent matrix 
was transformed to create a TOM matrix, and the 
function tree generated by hierarchical clustering was 
examined for modules. The dynamic tree cutting 
method was used to merge modules with values 
greater than 0.75, resulting in a module clustering tree 
plot (Fig. 2C) and the construction of mRNA 
co-expression networks (Fig. 2D). We performed a 
correlation analysis of the modules and trait 
groupings generated by the clustering. We created a 
heatmap of the modules and trait data, as shown in 
Fig. 2E. The correlations and adjust p-values between 
each module and trait are presented in the heatmap. 
Among them, the turquoise module has the highest 
correlation.  

We subsequently calculated the proportion of 
immune cells in the immune microenvironment of 
patients with COAD via the CIBERSORT algorithm 
(Fig. 2F). We found that resting CD4 memory T cells 
accounted for the largest percentage of immune 

microenvironment immune cells in the COAD cohort. 
Previous studies have shown that the subgroups with 
more resting CD4 memory T cells have reduced 
immune escape and the patients will have a better 
clinical outcome [37]. Afterwards, we constructed a 
composite chart to display the expression 
characteristics of turquoise module genes and module 
eigengenes (MEs) (Fig. 2G). The scatter plot results 
indicated that the correlations between the turquoise 
module genes and immune infiltration scores 
(immune score, stromal score and estimate score) 
were 0.52, 0.67, and 0.65, respectively (Fig. 2H). These 
results suggest that the genes in the turquoise module 
are significantly positively correlated with the 
immune infiltration scores. Because immune cells are 
crucial in combating tumor immune responses, 
further research on the 83 genes in this module may 
help to identify biomarkers and new therapeutic 
targets for immunotherapy in colorectal cancer. 

Differential gene and prognostic analysis 
On the basis of the TCGA-COAD datasets, we 

analyzed the differential expression of genes 
associated with super-enhancers, resulting in the 
generation of a volcano plot and heatmap (Fig. 
3A-3B). This analysis revealed a total of 33 
upregulated genes and 32 downregulated genes. 
Overlaying the upregulated genes with the 83 
immune infiltration-related genes in the above 
turquoise module via Venn diagrams yielded 9 
immune infiltration-related differentially expressed 
genes (Fig. 3C). Moreover, prognostic analysis of the 
aforementioned 9 genes was conducted using the 
GEO datasets obtained from the TIDE database. The 
results of the K‒M curve analysis revealed that CRC 
patients with elevated expression levels of 8 specific 
genes (ANGPT2, CYP24A1, IFNE, PLAU, FRMD5, 
SERPINE1, ZBED2, and GSDMC) had unfavorable 
prognoses (Fig. 3D). In addition, we further validated 
the relationship between the expression of 6 target 
genes in the TCGA-COAD cohort and the outcomes of 
cancer patients by determining the optimal threshold 
(Fig. S1A and Table S1). 

Construction of the prognostic risk model 
Next, we further explored and validated the 

prognostic value of the 8 prognosis-related genes 
through TCGA data. A total of 404 patients were 
recruited to participate in the study by removing 
some samples with a total survival time of 0 and 
incomplete clinicopathological information from the 
TCGA-COAD dataset. We subsequently randomly 
divided 404 patients into a training set (n = 203) and a 
validation set (n = 201) at a 1:1 ratio. We identified 6 
risk genes through LASSO-Cox regression analysis 
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(Table S2) and constructed immune infiltration risk 
features (Fig. 4A-B). We calculated the risk score on 
the basis of the expression levels of the 6 risk genes via 
the following formula: risk score=FRMD5*(0.2161)+ 
SERPINE1*(0.3810)+IFNE*(0.0325)-CYP24A1*(0.0722)-
GSDMC*(0.1007)-PLAU*(0.4265). Patients in the 
training set were divided into a high-risk group (n = 
101) and a low-risk group (n = 101) according to the 
risk score. We observed that as the risk score 
increased, the mortality of the patients increased (Fig. 
4C). In addition, we constructed a heatmap to display 
the expression levels of the 6 risk genes in the high- 
and low-risk groups (Fig. 4D). We subsequently 
conducted K‒M survival analysis (Fig. 4E) for patients 
in the high- and low-risk groups, which revealed that 
patients in the high-risk group had markedly shorter 
survival times than did those in the low-risk group (p 
< 0.01). Time‒ROC analysis revealed that the AUCs 
for survival at years 1, 3 and 5 were 0.714, 0.694 and 
0.732, respectively, indicating the good sensitivity and 
specificity of the prognostic model developed for the 6 
risk genes in predicting the survival of patients with 
COAD (Fig. 4F). We then validated the prognostic 
signature of the 6 risk genes in the test cohort. 
Similarly, survival analysis of the test cohort revealed 
significant differences in survival time between the 
test groups, with significantly shorter OS in the 
high-risk group (P < 0.05) (Fig. 4G-H). In addition, 
analysis of the time-ROC results for the test cohort 
revealed AUCs of 0.661, 0.663, and 0.625 at years 1, 3 
and 5, respectively (Fig. 4I). 

PLAU and GSDMC as biomarkers to predict 
immunotherapy efficacy 

We then wanted to validate our above 
hypothesis by revealing the relationship between 
gene expression levels and immunotherapy efficacy. 
The patient's antitumor immune response can be 
determined by the immunophenotypic score (IPS). 
We downloaded the TCGA-COAD IPS score data 
from the TCIA database and analyzed the expression 
of each of the 6 risk genes in relation to the IPS score. 
Among them, the expression of PLAU and GSDMC 
was significantly correlated with the IPS score. As 
depicted in Fig. 5A and Fig S1B, immunotherapy was 
more effective in the high PLAU or high GSDMC 
expression group when combined with CTLA4 
inhibitors and PD-1 inhibitors. MSI is closely related 
to the antitumor immune response and is an 
important biomarker for assessing the efficacy of 
immunotherapy. Our results revealed a positive 
correlation between the expression of PLAU/GSDMC 
in CRC and the MSI score (Fig. 5B). GSDMC (r = 0.24, 

p < 0.0001) has a higher correlation with MSI score 
than PLAU (r = 0.14, p < 0.01). Next, we compared the 
predictive capability of PLAU/GSDMC for 
immunotherapy efficacy in multiple human 
immunotherapy cohorts (Fig. S2-S3). AUC values > 
0.5 means that the algorithm outperformed random. 
In Fig. 5C, we compiled histograms for the cohorts 
with an AUC > 0.5 and found that PLAU had better 
predictive value than existing immunotherapy 
efficacy biomarkers, such as MSI and TMB. GSDMC 
also had a greater predictive value than TMB. In 
particular, we found that melanoma patients with 
high expression of PLAU or GSDMC had better 
prognosis when treated with PD-1 inhibitors 
(nivolumab and pembrolizumab) (Fig. 5D). In short, 
the above data showed that PLAU and GSDMC could 
be used as new biomarkers to predict the 
immunotherapy efficacy. In addition, we found that 
the function of cytotoxic T-cell (CTL) may be inhibited 
by high expression of PLAU/GSDMC (Fig. 5E). 
Because CTL is the effector cell responsible for 
immune response, we assumed that high expression 
of PLAU/GSDMC may affect the antitumor immune 
response of CTLs. This result implied that 
PLAU/GSDMC may also be new targets for 
immunotherapy.  

Correlation between PLAU/GSDMC and the 
tumor microenvironment (TME) 

We utilized the estimation algorithm to evaluate 
the expression status of PLAU and GSDMC in the 
TME. We analyzed the Spearman correlations 
between the expression of these two genes and the 
matrix score, immune score, and estimate score in the 
tumor microenvironment using Sangerbox 3.0. The 
results revealed a positive correlation between 
PLAU/GSDMC expression and the immune 
infiltration score (Fig. S4A). In addition, we 
investigated the potential correlation between the 
expression of PLAU/GSDMC and tumor-associated 
immune cells. As shown in Fig. S4B, the expression of 
PLAU/GSDMC was positively correlated with the 
abundances of B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, macrophages, and dendritic cells. We 
further analyzed the correlation between PLAU/ 
GSDMC expression and PD-1, PD-L1, and CTLA4 
expression in COAD using the ACLBI database. The 
scatter plots revealed a positive correlation between 
the expression of PLAU/GSDMC in COAD and that 
of immune checkpoint genes (Fig. S4C). Overall, the 
expression of PLAU and GSDMC was positively 
correlated with the TME, indicating their potential as 
new targets for immunotherapy in CRC. 



 Journal of Cancer 2026, Vol. 17 

 
https://www.jcancer.org 

344 

 
Figure 1. Workflow of identification of CRC specific super-enhancer-related genes for immunotherapy efficacy prediction. CRC, colorectal cancer; WGCNA, weighted gene 
co-expression network analysis; LASSO, least absolute shrinkage and selection operator; IPS, immunophenotypic score; MSI, microsatellite instability.  
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Figure 2. Screening super-enhancer-related genes correlated with immune infiltration through weighted gene co-expression network analysis (WGCNA). A Scale indpendence 
and Mean connectivity for Multiple Soft Thresholds. B Sample Clustering Tree. C Clusters and merging of gene co-expression modules. D Heatmap of gene co-expression 
networks. E Correlation and p-values of immune infiltration and tumor purity with co-expression modules. F Determine the proportion of various immune cells through the 
Cibersort algorithm. G Heatmap of the association between gene expression and the turquoise module. H Scatter-plots of the correlation between the turquoise module and 
the immune infiltration scores.  
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Figure 3. Differential genes and prognostic analysis. A-B Volcano map and heatmap of differential genes based on the TCGA-COAD datasets. C Venn diagram of the 
intersection of up-regulated genes and turquoise module genes. D Kaplan-Meier curves show the prognostic value of the intersection genes in CRC using TIDE database. 
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Figure 4. Construction of prognostic risk model. A Screening for turning to optimal parameters (lambda) in the LASSO model. B LASSO coefficient curve for prognostic genes. 
C Distribution of risk score and survival time of the high and low risk groups. D Heatmap of six candidate genes expression in the high and low risk groups. E Kaplan-Meier curves 
for overall survival of patients in the high and low risk groups. F Time-ROC curves of the overall survival at 1, 3 and 5 years. G Distribution of risk score and survival time of the 
high and low risk groups in the test cohort. H Kaplan-Meier curves for overall survival of patients in the high and low risk groups in the test cohort. I Time-ROC curves of the 
overall survival at 1, 3 and 5 years in the test cohort.  
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Figure 5. PLAU and GSDMC as biomarkers to predict immunotherapy efficacy. A Relationship between PLAU/GSDMC expression and IPS scores. B Correlation between 
PLAU/GSDMC expression and MSI scores. C The predictive capability of biomarkers for immunotherapy efficacy in multiple human immunotherapy cohorts. D Relationship 
between high and low PLAU, GSDMC expression and prognosis in melanoma patients when treated with PD-1 inhibitors. E Overall survival of colorectal cancer patients with 
different PLAU/GSDMC expression and Cytotoxic T cell (CTL) levels. 
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Predicting the sensitivity of drugs for PLAU 
and GSDMC proteins 

Next, we screened the sensitive drugs for the 
PLAU and GSDMC proteins. We downloaded the 
IC50 values of drugs and gene expression levels of 
CRC cell lines from the GDSC2 and CTRPv2 
databases. We subsequently analyzed the sensitivity 
of the PLAU and GDSMC proteins to drugs (Table S3). 
Scatter plots of the 8 drugs selected for the PLAU 
protein are shown in Fig. 6A, while scatter plots of the 
drugs selected for the GSDMC protein are shown in 
Fig. 6B. The top three drug structures were 
downloaded from the PubChem database (Fig. S5). 
Next, we obtained the spatial structures of the PLAU 
and GSDMC proteins from the PDB database (Fig. 7A 
and Fig. S6A). Using the CHECOM algorithm, we 
predicted the binding sites and boxes of the PLAU and 
GSDMC proteins (Fig. 7B-C and Fig. S6B-C). In 
addition, we utilized AutoDock software for 
molecular docking and obtained the free binding 
energies of the two proteins with the drugs (Table S4). 
Then, via PyMOL software, we visualized the binding 
of the selected drugs to the PLAU and GSDMC 
proteins (Fig. 7D and Fig. S6D). Finally, we used 
Ligplus software to visualize the two-dimensional 
interactions between the PLAU and GSDMC proteins 
and the small-molecule drugs (Fig. 7E and Fig. S6E). 

Super-enhancer activity regulates PLAU and 
GSDMC expression 

We first validated the relative mRNA expression 
levels of PLAU and GSDMC in CRC using our clinical 
samples (Fig. S7A). Then we wondered whether the 
high expression of PLAU and GSDMC in CRC was up 
to the super-enhancer activity. We analyzed H3K27ac 
signals in the gene loci of PLAU and GSDMC in 
various COAD cells compared with those in normal 
colonic mucosa using ChIP-seq data obtained from 
the ENCODE database. We observed a greater 
H3K27ac signal in the PLAU gene loci than in the 
GSDMC gene loci (Fig. 8A and Fig. S7B). After 
treatment with the BRD4 inhibitors JQ1 and 
I-BET-762, which can block the formation of 
super-enhancers [38], the expression levels of PLAU 
and GSDMC decreased significantly in COAD cells 
(Fig. 8B and Fig. S7C). Through ChIP‒qPCR, we 
observed significant enrichment of H3K27ac and 
BRD4 expression at the super-enhancer sites of PLAU 
and GSDMC (Fig. 8C‒D and Fig. S7D). Interestingly, 
we also detected increased enrichment of the 
acetyltransferase P300 expression at these PLAU and 
GSDMC gene loci (Fig. 8E and Fig. S7E). Additionally, 
we conducted super-shift EMSAs of BRD4 and P300 

to further validate our results (Fig. 9). We found that 
BRD4, especially P300, could bind to these PLAU 
super-enhancer sites.  

Discussion 
ICIs have shown good clinical efficacy in CRC 

patients. However, owing to the heterogeneity of 
tumors, ICI treatment is known to be effective in only 
a small number of CRC patients. The existing 
biomarker MSI-H is considered as a good predictor of 
the response to ICIs. However, only 20% of CRC 
patients belong to the MSI-H type [39]. Therefore, 
identifying new biomarkers to select patients who 
may respond well to ICIs is imperative.  

Super-enhancers can drive increased levels of 
gene transcription [40] and play an important role in 
CRC [41]. The super-enhancer is crucial for multiple 
tumor biological characteristics, including the 
immune response [42]. Previous studies have 
demonstrated that the characteristics of the TME in 
tumors is closely related to the patient's response to 
immunotherapy [43, 44]. Thus, understanding 
immune cell infiltration in the TME provides a 
powerful method for identifying CRC patients who 
are responsive to ICI therapy. In this study, we 
innovatively screened CRC-specific super-enhancer- 
related genes associated with immune infiltration by 
WGCNA. Notably, 83 genes in the turquoise module 
were positively correlated with immune infiltration 
scores, indicating that high expression of these genes 
may have a significant effect on the immunotherapy 
response of patients with colorectal cancer. Similarly, 
one recent study identified an immune-related 
module by WGCNA in lung cancer [45]. Studying the 
expression of these 83 genes in colorectal cancer 
patients and their impact on prognosis is highly 
important for further screening of biomarkers for the 
diagnosis and prognosis of colorectal cancer. 
Therefore, a LASSO-Cox prognostic risk model was 
constructed on the basis of the TCGA-COAD cohort. 
By analyzing the relationship between risk model 
gene expression and the immune phenotype score 
(IPS), we found that PLAU and GSDMC have high 
predictive value for the efficacy of immunotherapy 
and may become new targets for CRC 
immunotherapy. The various components in the 
tumor microenvironment are closely related to 
immunotherapy efficacy [46]. Therefore, we further 
investigated the correlation between the expression of 
PLAU/GSDMC and the immune microenvironment, 
which might explain why PLAU/GSDMC expression 
can predict immunotherapy efficacy. 
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Figure 6. Scatter plots of the correlation between PLAU (A), GSDMC (B) expression and the IC50 of drugs. 
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Figure 7. Screening sensitive drugs for PLAU protein. A Three-dimensional structure of the PLAU protein. B-C Predicting the potential binding sites and box of PLAU protein. 
D Analysis of the binding conformation of sensitive drugs to PLAU protein. E Visualization of the two-dimensional structure of drugs bound to PLAU protein.  
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Figure 8. Effect of super-enhancer activity on PLAU expression. A ChIP-seq profiles of H3K27ac signal in the PLAU gene locus in different colorectal cancer cells. B The 
expression levels of PLAU in HCT116 and DLD1 cells treated with JQ1 and I-BET-762 were detected by qPCR. C The relative enrichment of H3K27ac in the PLAU gene locus by 
ChIP-qPCR. D The relative enrichment of BRD4 in the PLAU gene locus by ChIP-qPCR. E The relative enrichment of P300 in the PLAU gene locus by ChIP-qPCR. (Data are 
represented as mean ± SD, **p<0.01, ***p<0.001). 
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Figure 9. The interplay between BRD4/P300 and PLAU super-enhancers was validated using super-shift electrophoretic mobility shift assay (EMSA) in HCT116 cell. 
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Plasmin activator urokinase (PLAU), a protease 
involved in the conversion of plasminogen to plasmin 
[47], encodes a serine protease. Studies have shown 
that PLAU plays a key role in tumorigenesis and 
progression. By binding to their receptors, these 
proteases are converted into their active forms, 
enabling tumor cells to degrade surrounding 
extracellular matrix components. This process 
facilitates the invasion and migration of tumor cells 
[48]. Additionally, PLAU is closely related to tumor 
diagnosis, treatment, and prognosis [49]. Similarly, 
we identified a poor prognosis for patients with high 
PLAU expression in CRC, suggesting that PLAU could 
serve as a biomarker for predicting the prognosis of 
patients with CRC. Previous studies have shown that 
the overexpression of PLAU is associated with the 
immunosuppressive tumor microenvironment in 
pancreatic ductal adenocarcinoma. The 
overexpression of PLAU was more closely associated 
with PD-L1 and PD-L2 but had a weaker correlation 
with antitumor immunity [50]. Our research revealed 
a significant positive correlation between PLAU 
expression and the tumor microenvironment in CRC. 
More importantly, PLAU expression was positively 
correlated with the IPS, which is an effective means of 
predicting the ICI response [31]. CRCs with mismatch 
repair defects (dMMR) or severely mutated tumors 
with MSI-H can be effectively treated with ICIs [51]. 
Interestingly, we also found a positive correlation 
between PLAU expression and MSI scores in CRC. 
Furthermore, we found that PLAU had a better ability 
to predict immunotherapy efficacy than some existing 
biomarkers, such as MSI and TMB, which have 
become reliable biomarkers for predicting the efficacy 
of ICIs in certain cancers [52]. Unexpectedly, we 
found that PLAU expression might affect the function 
of cytotoxic T cells but not their abundance. Similarly, 
PLAU is negatively related to CD8+ T-cell invasion of 
head and neck squamous cell carcinomas [53]. These 
data indicated that high expression of PLAU could aid 
tumor cells in evading the immune system by 
impairing the function of T cells. This finding may be 
helpful to explain immunotherapy resistance. These 
results suggest that PLAU may serve not only as an 
effective biomarker for predicting the efficacy of 
immunotherapy but also as a potential new target for 
immunotherapy in CRC. 

GSDMC is a member of the GSDM family that 
has been extensively studied in recent years for its 
role in promoting cell pyroptosis[54]. GSDMC is 
highly expressed in CRC, and the proliferation of 
colorectal cells is reduced after GSDMC is silenced 
[55]. In addition, in many tumor types, patients with 
high GSDMC expression have a poor prognosis [56]. 
PD-1-mediated GSDMC expression converts 

apoptosis to necroptosis in cancer cells [57]. GSDMC 
was found to be valuable in predicting the outcome 
and immunotherapy response of patients with 
pancreatic adenocarcinoma [58]. In addition, GSDMC 
expression was associated with an immune-hot tumor 
microenvironment [59]. Similarly, our study revealed 
that GSDMC was positively correlated with immune 
scores, immune cell infiltration, and the expression of 
immune checkpoint genes. These findings indicate 
that GSDMC may affect the immunotherapy efficacy 
of colorectal cancer by altering immune cells, stromal 
cells, and other components in the immune 
microenvironment of CRC. Therefore, when 
immunotherapy is applied, CRC patients with high 
GSDMC expression are likely to have better outcomes. 
Indeed, we found that GSDMC expression was 
positively correlated with IPS and MSI scores, 
suggesting that GSDMC, like PLAU, could serve as a 
biomarker for predicting CRC immunotherapy 
efficacy. Notably, we found that high expression of 
GSDMC had an impact on the function of cytotoxic T 
cells. Therefore, we speculate that GSDMC expression 
might become a new biomarker for immunotherapy. 

Additionally, we elucidated the reasons why 
PLAU and GSDMC can predict the efficacy of 
immunotherapy. First, there is growing evidence that 
immune cells in the tumor microenvironment play a 
key role in tumorigenesis and progression [10]. 
Research has shown that tumor-associated 
macrophages (TAMs) can express high levels of 
anti-inflammatory factors to promote an inhibitory 
immune microenvironment and affect antitumor 
immunity [60]. TAMs can also inhibit the recruitment 
and activation of T cells, thereby exacerbating 
immune suppression [61]. Cancer-associated 
fibroblasts (CAFs) can produce inhibitory cytokines, 
suppress the accumulation of T cells near tumors, and 
affect the efficacy of immunotherapy [62]. In addition, 
a high abundance of Treg cells in the TME is 
associated with immune suppression and a poor 
prognosis [63, 64]. Our research revealed a significant 
positive correlation between the expression of 
PLAU/GSDMC and infiltrating immune cells in CRC. 
This implies that the higher the expression levels of 
these two genes are, the greater the number of 
immune cells in the tumor microenvironment. In line 
with our findings, the overexpression of PLAU is 
positively correlated with the infiltration of various 
immune cells in pancreatic cancer [65]. PLAU is also 
strongly positively correlated with tumor-infiltrating 
lymphocytes in lung adenocarcinoma [66]. The 
expression of PLAU may promote an immune-hot 
tumor microenvironment. Therefore, the use of 
immune checkpoint inhibitors results in better 
therapeutic effects. Second, we were surprised to 
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observe that the expression level of PLAU/GSDMC 
was positively correlated with immune checkpoint 
genes. In other words, when the expression of these 
two genes increases, the expression of immune 
checkpoint genes also increases, increasing the 
effectiveness of treatment with immune checkpoint 
inhibitors. Currently, many patients who are 
theoretically suitable for treatment with ICIs are 
resistant to PD-1 or PD-L1 inhibitors due to various 
factors. For example, deletion of the 
β-2-microglobulin heterodimer may affect the antigen 
presentation of MHC-I and induce resistance to ICIs 
[67]. Interestingly, studies have demonstrated the 
costimulatory effect of LCL161 under conditions in 
which TAC-T cells are stimulated with antigen alone, 
and increased T-cell survival and proliferation have 
been observed [68]. Considering the correlation 
between PLAU/GSDMC expression and immune cell 
infiltration, as well as PD-1/PD-L1/CTLA4 
expression, we hypothesized that better 
immunotherapy efficacy could be achieved by 
targeting PLAU/GSDMC proteins in combination 
with ICIs. Therefore, we utilized drug sensitivity 
analysis and virtual molecular docking to screen for 
drugs that are able to target PLAU/GSDMC proteins. 
Overall, our study indicated that targeting 
PLAU/GSDMC may offer a potential new strategy for 
the immunotherapy of CRC. 

Super-enhancer-driven genes have potential as 
biomarkers and therapeutic targets for cancers [69]. In 
our study, we observed high H3K27ac signal at the 
PLAU gene locus. In addition, our in vitro 
experiments indicated that the marker-H3K27ac, the 
reader-BRD4, and the creater-P300 of super-enhancers 
were all highly enriched at the enhancer sites of 
PLAU. In sum, our results revealed that 
super-enhancer activity was responsible for the 
expression of PLAU in CRC. Therefore, our study 
revealed a link between the super-enhancer and CRC. 
Interestingly, recent studies have reported the impact 
of immune infiltration super-enhancer regulatory 
genes on immunotherapy efficacy in gastrointestinal 
tumors [70]. Similarly, our latest study revealed that 
super-enhancer-induced LINC00862 could serve as a 
biomarker for predicting immunotherapy efficacy 
[71]. Overall, we confirmed the presence of 
super-enhancers and the influence of super-enhancer 
activity on PLAU expression.  

At present, reliable biomarkers for the 
immunotherapy of colorectal cancer, such as 
dMMR/MSI-H, can only benefit approximately 15% 
of colorectal cancer patients. Therefore, the 
identification of similar biomarkers can aid in the 
accurate selection of patients who may benefit from 
immunotherapy, thereby avoiding ineffective 

treatment. In addition, by screening reliable 
biomarkers, the disease development trend and 
prognosis of colorectal cancer patients can be 
understood in advance, and treatment plans can be 
optimized. This study investigated the correlation 
between the expression of PLAU or GSDMC and the 
tumor microenvironment of colorectal cancer and 
revealed that high expression of PLAU and GSDMC 
maybe regulate the function of CTL cells. Therefore, 
our study provides potential new biomarkers for 
predicting the efficacy of immunotherapy and 
possibly new targets for immunotherapy in CRC. 
Besides, on the basis of these newly discovered 
biomarkers, this study can lead to the development of 
new targeted drugs and provide new options for 
patients with colorectal cancer. However, data on 
immunotherapy for colorectal cancer in existing 
databases are lacking, and the correlation between 
PLAU and GSDMC expression and the prognosis of 
patients with colorectal cancer treated with 
immunotherapy is currently unclear. Therefore, we 
analyzed the impact of PLAU and GSDMC expression 
on the prognosis of melanoma patients treated with 
ICIs. In the future, we will continue to collect relevant 
samples of patients with colorectal cancer treated with 
immunotherapy and further study the correlation 
between PLAU and GSDMC expression and the 
prognosis of colorectal cancer patients treated with 
ICIs. As found in Ke et al.'s latest research, the 
expression of PD-1 and CD69 on effector memory 
CD8+ T cells in the blood can predict the presence of 
tertiary lymphoid structures (TLSs) in the 
macroscopic environment of CRC and serve as 
biomarkers for stratifying CRC patients for 
immunotherapy [72]. In the coming years, through 
the application of large-scale biological data analysis 
and single-cell sequencing, a more comprehensive 
understanding of the tumor microenvironment of 
colorectal cancer can be achieved, facilitating the 
exploration of more biomarkers that reflect the tumor 
immune status and predict the immunotherapy 
response. In addition, by combining existing 
biomarkers such as MSI, TMB, and PD-L1, with newly 
discovered biomarkers, the accuracy of predicting 
immunotherapy efficacy and patient stratification for 
colorectal cancer can be improved.  

Our research has several limitations. First, few 
colorectal cancer patients rely solely on 
immunotherapy in clinical practice, and the sample 
collection requires a longer period of time. Therefore, 
we were unable to analyze the relationship between 
PLAU and GSDMC expression and the prognosis of 
colorectal cancer patients treated with ICIs. In 
addition, owing to the limited collection of IC50 data 
for drugs in existing databases, it is not possible to 



 Journal of Cancer 2026, Vol. 17 

 
https://www.jcancer.org 

356 

comprehensively evaluate the sensitivity of drugs. 
And the complex relationship between diseases and 
drugs cannot be fully considered in the screening 
process, resulting in possible biases in the screening 
results. Furthermore, the construction period of 
animal models is relatively long, and the in vitro 
reactions of drugs differ greatly from the actual 
situation of human trials. Therefore, this study has not 
yet conducted further research on drug sensitivity for 
PLAU and GSDMC proteins. Finally, in the initial 
stage of this study, the correlations between PLAU 
and GSDMC expression and the tumor 
microenvironment of patients with colorectal cancer 
were analyzed using bioinformatics methods. Further 
experiments are needed to clarify the specific 
regulatory mechanisms involved. 

Conclusion 
Collectively, our study identifies super- 

enhancer-based biomarkers for predicting survival 
and immunotherapy efficacy in CRC. The six 
super-enhancer-related signatures could act as a 
potential prognostic biomarker for CRC. PLAU and 
GSDMC expression had high predictive value for 
immunotherapy efficacy.  
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Supplementary figures and tables.  
https://www.jcancer.org/v17p0338s1.pdf 
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