Journal of Cancer 2026, Vol. 17

338

g0y [VYSPRING

vgﬁ INTERNATIONAL PUBLISHER

Research Paper

=sournal of Cancer

2026; 17(2): 338-358. doi: 10.7150/jca.119265

|dentification of super-enhancer-based biomarkers for
predicting survival and immunotherapy efficacy in

colorectal cancer

Yanan Yu'#, Xiuxiu Zhang?*, Xiaolin Ma'#, Jiao Ren!, Jinglei Zhang?!, Luoyu Zhu!, Yanfang Chen®*, Zhong

Lu'™, Jiagiu Lit*

1. Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University,

Weifang 261053, Shandong, China.

2. Department of Medical Oncology, Rizhao central hospital, Rizhao 276801, Shandong, China.
3. Department of Radiotherapy, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053,

Shandong, China.

#Yanan Yu, Xiuxiu Zhang and Xiaolin Ma contributed equally to this work.

4 Corresponding authors: Jiaqiu Li, lijg@sdsmu.edu.cn, Zhong Lu, luzhong@sdsmu.edu.cn, Yanfang Chen, sudachenyanfang@163.com.

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https:/ /creativecommons.org/licenses/by/4.0/).

See https:/ /ivyspring.com/terms for full terms and conditions.

Received: 2025.06.10; Accepted: 2025.12.17; Published: 2026.01.01

Abstract

Immune checkpoint inhibitors are effective treatments for many tumors. However, existing
biomarkers can benefit only a small selection of colorectal cancer patients. Super-enhancers are
associated with various tumor characteristics. We wondered whether super-enhancer-related
genes could be novel biomarkers for immunotherapy. We screened super-enhancer-related genes
that were highly correlated with immune infiltration through weighted gene co-expression network
analysis on the basis of chromatin immunoprecipitation sequencing data. A prognostic risk signature
was established using least absolute shrinkage and selection operator and cox regression models. By
analyzing the correlations between the expression of model genes and the immunophenotypic and
microsatellite instability scores, we determined that PLAU and GSDMC expression had high
predictive value for immunotherapy efficacy. Moreover, we predicted the sensitivity of the PLAU
and GSDMC proteins to drugs by virtual docking. Finally, we validated the effect of the
super-enhancer activity on PLAU and GSDMC expression. Overall, our study identified
super-enhancer-based biomarkers for predicting survival and immunotherapy efficacy in colorectal
cancer.
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Introduction

According to the report from the American
Cancer Society in 2023 [1], colorectal cancer (CRC) is
the third most common cancer in the world in terms
of incidence and mortality. Despite the popularization
and development of radiotherapy, chemotherapy, and
surgery for cancer treatment [2-4], CRC continues to
have a high mortality around the world, and that rate
is only increasing. A poor prognosis is the principal
cause of the high mortality of CRC [5]. The
development of immunotherapy has provided a new

option for the treatment of CRC [6], and
immunotherapy alone or in combination with
traditional therapy has become a cornerstone of CRC
treatment in clinical practice [7, 8]. The tumor
microenvironment (TME) is composed of stromal
cells, immune cells, vascular endothelium, and
intravascular blood cells [9]. Among them, immune
cells play dual roles in antitumor activity and tumor
immune escape [10, 11]. Immunotherapy achieves the
therapeutic effect of controlling or eliminating tumors
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by externally interfering with the body's immune
system to restart the "tumor-immunity" cycle of
recognizing and killing tumor cells [12].
Immunotherapy is superior to traditional treatments
because of its high specificity and less side effects [13,
14].

Currently,  inhibitors  targeting  immune
checkpoint proteins such as PD-1, PD-L1, and CTLA-4
have been broadly applied in clinical practice [12, 15].
However, considering some specific side effects, such
as peripheral neuropathy, headache [16] and hearing
loss [17], caused by immune checkpoint inhibitors
(ICIs), it needs to exactly select the patients suitable
for ICIs. Some biomarkers have been identified and
are considered predictive factors for CRC
immunotherapy response, such as the
immunophenotype score (IPS) [18], microsatellite
instability (MSI) [19], and tumor mutation burden
(TMB) [20, 21], but the currently known biomarkers
can only recommend immunotherapy to be
administered to a small percentage of patients, and
the efficacy of immunotherapy on these biomarker-
indicated patients is also not reliable. Identifying
specific biomarkers is the way forward for tumor
immunotherapy, allowing it to benefit more patients
[22]. In recent years, new biomarkers for predicting
the response of tumors treated with ICIs have been
widely studied. For example, studies have shown that
the Royal Marsden Hospital (RMH) score is an
independent biomarker for predicting PFS in NSCLC
patients receiving ICI treatment [23].

A super-enhancer (SE) is a large cluster of
multiple adjacent common enhancers. Super-
enhancers drive the regulation of cell fate-related gene
expression. Specific histone modifications,
particularly histone 3 lysine 27 acetylation (H3K27ac),
are essential for super-enhancer activity [24]. As
powerful transcription regulators, super-enhancers
play crucial roles in the accumulation of many major
transcription factors and other cofactors [25, 26].
Bromodomain and outer end (BET) proteins, such as
BRD4, recognize and bind to histone acetylated lysine
residues in the super-enhancer region to facilitate
gene transcription [27]. Studies have shown that
immune evasion in CRC is also regulated by
super-enhancers [28]. Thus, we wondered whether
these genes regulated by super-enhancers could serve
as new biomarkers for predicting the efficacy of
immunotherapy. Inhibitors or drugs that target these
genes may yield improved outcomes in
immunotherapy. Given the important roles of super-
enhancers in cancer, this study aimed to identify new
super-enhancer-related biomarkers that can predict
the immunotherapy efficacy and outcomes of patients
with colorectal cancer.

Materials and Methods

Screening super-enhancer-related genes on
the basis of H3K27ac ChlIP-seq data

The ChIP-seq data have been deposited in the
Gene Expression Omnibus (GEO) under accession
number GSE198223. The sequencing data were
aligned to the human HGI19 genome using BOWTIE
V2.1.0 software. The data were transferred for peak
calling by MACS V14.2 software. Statistically
significant ChIP-enriched peaks were identified by
comparison of the IP data with the input data. An
enrichment region was regarded as a region
containing constituent enhancer lines and was used to
calculate the identity signal. The ROSE tool was used
to generate a stitched enhancer by combining the
enhancers within a range of 12.5 kb. All stitched
enhancers were ranked by the signal of the IP group
after subtracting the input group, and super-
enhancers were identified based off of a specific
threshold for the stitched enhancer signal. The
super-enhancers were annotated by the correlated
coding genes using the newest Arraystar UCSC
database and other UCSC RefSeq databases.

Weighted gene co-expression network analysis
(WGCNA)

First, we utilized the R package "ESTIMATE" to
calculate the immune score, stromal score, estimated
score, and tumor purity for the samples in the
TCGA-COAD (colon cancer) cohort [29]. After
conducting WGCNA to cluster the samples, we set the
cutHeight to 4000 based on the degree of sample
dispersion and used the 'cutreeStatic' function to
remove 10 samples with a height above 4000 for data
cleaning. In the end, we included a total of 455
patients with COAD in this study. We used a
topological overlap matrix to determine the
appropriate soft threshold parameter to use (p=5).
Next, we used dynamic hybridization cleavage to
identify co-expressed gene modules. Hierarchical
clustering trees were created using dynamic hybrid
cutting, where genes with similar functions or
expression data form a branch, which in turn forms a
gene module. Finally, we calculated the Pearson
correlation between modular signature genes (MEs)
and the immune infiltration score, as well as tumor
purity. A significant correlation was considered when
adjust P < 0.05. Using normalized TCGA-COAD
expression profile data and the CIBERSORT
algorithm, an LM22 gene matrix file containing 22
immune cell subtypes was used to calculate the
proportions of 22 immune cell types. The composition
of the immune cells was visualized using a box plot.
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Dataset and sample extraction

We acquired RNA sequencing expression data,
genomic mutation data and associated clinical data
for COAD patients from the TCGA database. The
count data were analyzed using the R package
"DESeq2", and the differential genes were selected on
the basis of a |logyfold change | 21 and adjust P < 0.05.
Normalized FPKM data were used to generate
heatmaps of differentially expressed genes using the
R package "pheatmap". The volcano plot was
visualized using the packages "ggpubr" and
"gothemes".

Prognostic analysis

Using the TIDE database [30] for prognostic
analysis of the GEO CRC datasets, we analyzed the
correlation between gene expression and overall
survival (OS) and disease-free survival (DFS) with a
cutoff p-values of 0.05. The “Query gene” module in
the TIDE database was used to analyze the 9 immune
infiltration-related differentially expressed genes. We
obtained their prognostic value in multiple CRC
datasets in the “Expression” section. The optimal
critical value was calculated via the "surviviner"
software package, and the survival curves of the six
target genes were validated through TPM data in the
TCGA-COAD queue.

Construction of the prognostic risk model

On the basis of 404 samples with clinical
information from the TCGA-COAD cohort, the
LASSO-Cox model (R package "glmnet") identified 6
risk genes related to immune infiltration in the
training group. The risk score based on this model
was subsequently calculated. The R package
"survminer" was used to determine the optimal cutoff
point for the high- and low-risk groups. Next, we
performed survival analysis and plotted Kaplan—
Meier (K-M) curves with the "survival" and
"survminer" packages. Finally, using the 'time-ROC'
package, we plotted ROC curves to calculate the 1-, 3-,
and 5-year survival rates of patients. The prognostic
model was subsequently validated with a validation
set.

Immunotherapy efficacy prediction

In 2017, Charoentong et al. [31] reported that the
IPS could predict the response to immune checkpoint
inhibitors. Therefore, we downloaded the IPS of
TCGA-COAD patients from the TCIA database, tested
the relationship between gene expression levels and
the IPS with the Wilcoxon rank sum test, and
visualized it using the "ggpubr" package. In addition,
previous research has shown that patients with
MSI-H tumors have a better response to ICIs [20, 32].

Consequently, using the TCGA module in the
integrated bioinformatics analysis platform ACLBI,
we analyzed the correlation between single gene
expression and the MSI score in COAD to estimate the
predictive effect of single gene expression on the
efficacy of ICIs. The "Biomarker Evaluation" module
in the TIDE database was used to compare the target
gene with other biomarkers. The predictive
performance of biomarkers for the treatment effect of
different cohorts of ICIs was expressed by the AUC.
The larger the AUC was, the better the predictive
effect. We subsequently analyzed the correlation
between target gene expression and cytotoxic T cell
(CTL) function by the 'Query Gene' module. The
relationships between the expression levels of PLAU
and GSDMC in melanoma and the outcomes of
patients receiving immunotherapy were validated
through the 'immunotherapy' module in the Kaplan—
Meier plotter database.

Correlation between gene expression and the
tumor microenvironment

Sangerbox 3.0 was used to analyze the
relationship between gene expression and the tumor
microenvironment. First, we analyzed the data via
immunoinfiltration analysis in the '"Pan-cancer
analysis" module. The data were obtained from
"TCGA+GTEx" and subjected to log (x+0.001)
transformation. In the immune cell analysis (TIMER)
module, we subsequently assessed the Spearman rank
correlation between gene expression and immune
cells in the tumor microenvironment. Finally, we
assessed the relationships between gene expression
and immune checkpoint genes through the ACLBI
website.

Drug sensitivity analysis and molecular
docking

We downloaded the IC50s (half-maximal
inhibitory concentrations) of the drugs and gene
expression levels of colorectal cancer cell lines from
the GDSC2 and CTRPv2 databases. The correlation of
PLAU and GSDMC expression with the drug 1C50
was calculated using R software, and scatter plots
were generated. The 3D structures of the proteins
were obtained from the Protein Data Bank (PDB)
database. The structures of the small molecule drugs
were downloaded from the PubChem database. The
binding sites of the proteins were identified by the
GHECOM algorithm. AutoDock Tools was used for
the molecular docking of proteins to small molecule
drugs. Then, we visualized the docking results via
PyMOL software. Finally, Ligplus software was used
to determine the two-dimensional structure of protein
amino acid residues that interact with small-molecule
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drugs.

Cell culture

The human colon cancer cell lines HCT116 and
DLD1 were used for this study. The cells were
obtained from the Cell Bank of the Chinese Academy
of Sciences. HCT116 and DLD1 cells were cultured at
37 °C in a 5% CO» incubator in McCoy's 5A medium
or RPMI 1640 medium supplemented with 10% fetal
bovine serum. The cells were tested for mycoplasma
contamination every two months.

Quantitative real-time PCR (qQRT-PCR)

The cells in the 6-well plate were treated with the
BRD4 inhibitors-JQ1 and I-BET-762 for 24 hours, after
which the RNA was extracted from the cells via
TRIzol. The qPCR detection method was the same as
previously reported [33]. B-actin was used as the
endogenous control for normalization. The sequences
of the primers used are as follows:

PLAU-F: CAGATTCCTGCCAGGGAGAC, R:
GCCAGGCCATTCTCTTCCTT; GSDMC-F: AGGTCA
TTTGGATGGCCCTG, R: CCAGGATGCTCCITAC
CAGC; p-actin-F: CACCAACTGGGACGACAT, R:
ACAGCCTGGATAGCAACG.

Chromatin immunoprecipitation-qPCR

ChIP assays were conducted as reported in
previous studies [34] with the anti-H3K27ac (Abcam,
ab177178, Cambridge, UK), anti-P300 (Abcam,
ab275378, Cambridge, UK) and anti-BRD4 (Bethyl
Laboratories, A301-985A100, Montgomery, TX, USA)
antibodies. The primer sequences for the PLAU and
GSDMC super-enhancer regions are shown below:

PLAU-E1-F:  GCAAGGCACCCTCGTACTTT,
PLAU-E1-R: GCAAGTTCACGCTITAGACAGG;
PLAU-E2-F: AGACTCACCCTGTGCCTACA, PLAU-
E2-R: CCCGGAGGCAACCCAATAAT; PLAU-E3-F:
TGTTGAAGAGTCCGTCTGCC, PLAU-E3-R: TTGTC
TGTGTCCCTGTGTGG; PLAU-Promoter-F: GGTGTC
ACGCTTCATAACGG, PLAU-Promoter-R: GGCTGT
CATGCTGATTGCTG; GSDMC-E1-F: ACCTCCTGC
GGTCAAGTAGA, GSDMC-E1-R: AGTCAGGGACC
CATTGGTGA.

H3K27ac ChlIP-seq tracking

We downloaded H3K27ac ChIP-seq data for cell
lines from the ENCODE database [35]. The WashU
Epigenome Browser was used to visualize the
H3K27ac tracks.

Electrophoretic mobility shift assay (EMSA)
and super-shift EMSA

First, we extracted the nuclear proteins from
HCT116 cells via the Nuclear and Cytoplasmic

Protein Extraction Kit (Beyotime, P0028) according to
the protocol described in the user guide. After BCA
quantification, the final concentration of protein was
adjusted to 1 pg/ul. The proteins were subsequently
mixed with the probes and incubated at room
temperature for 30 minutes. Two microliters of
sample mixture mixed with 4 pl of loading dye (6x)
was loaded into each gel lane. The gel was run in
0.5xTBE buffer at 150 V for 60 min and transferred to
a nylon membrane at 300 mA for 30 min. Then, the
membrane was crosslinked for 20 min with an
ultraviolet lamp and sealed for 20 min. The membrane
was incubated with diluted antibodies for 30 min at
room temperature. Finally, after the membrane was
eluted and dried, graphs were obtained using a
chemiluminescence apparatus. The probes were
synthesized by Servicebio (Wuhan, China). The probe
sequences are listed below:

El: F: 5-Biotin-GCAAGGCACCCTCGTACTTT-
3, R: 5-BiotinrAAAGTACGAGGGTGCCTTGC-3’;
E1: Cold probe F: 5-GCAAGGCACCCTCGTACTTT-
3, R 5-AAAGTACGAGGGTGCCTTGC-3; EI:
Mutant probe F: 5’-GCAATACAGACTCCTAGCAG-
3, R: 5-CTGCTAGGAGTCTGTATTGC-3; E2: F:
5-Biotin-AGACTCACCCTGTGCCTACA-3, R: 5-
Biotin-TGTAGGCACAGGGTGAGTCT-3’; E2: Cold
probe F: 5-AGACTCACCCTGTGCCTACA-3, R:
5-TGTAGGCACAGGGTGAGTCT-3; E2: Mutant
probe F: 5-AGACGAACCITCCGCCTATT-3, R:
5-AATAGGCGGAAGGTTCGTCT-3’; E3: F: 5'-Biotin-
TGTTGAAGAGTCCGTCTGCC-3’, R: 5-Biotin-GG
CAGACGGACTCTTCAACA-3; E3: Cold probe F:
5-TGTTGAAGAGTCCGTCTGCC-3', R: 5'-GGCAGA
CGGACTCTTCAACA-3; E3: Mutant probe F:
5-TGTGGAATACTTCGTCTGCC-3, R: 5'-GGCAGA
CGAAGTATTCCACA-3".

Tissue samples collection and analysis

This research was approved by The Institute of
Research Medical Ethics Committee of the Affiliated
Hospital of Shandong Second Medical University.
Colorectal cancer tissues and paired normal tissues
from eighteen patients were collected from the
Affiliated Hospital of Shandong Second Medical
University. All patients signed the informed consent
forms. The RNA extraction and qPCR detection
method is the same as above.

Statistical analysis

Statistical significance was assessed with a
two-sided Student's t test via GraphPad Prism 7
software. The results are expressed as the means +
standard deviations. If the results did not have the
same standard deviation, a t test with Welch's
correction was used. In addition, statistical tests were
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performed using R software version 4.2.2, and
p-values less than 0.05 were considered to indicate
statistically significant differences.

Results

Screening super-enhancer-related genes
correlated with immune infiltration through
WGCNA

A schematic flow chart diagram of this study is
shown in Fig. 1. In our latest study [36], we obtained
383 super-enhancer-related mRNAs via ChIP-seq
with the anti-H3K27ac antibody in HCT116 cells
(GSE198223). To  further identify colorectal
cancer-specific super-enhancers, we downloaded and
analyzed the H3K27ac signal of these 383 genes in
normal colonic mucosa by the ChIP-seq data from the
ENCODE database. We compared their H3K27ac
signal in the HCT116 cell and normal colonic mucosa.
If their H3K27ac signal in the HCT116 cell was higher
than that in normal colonic mucosa, we regard them
as specific super-enhancers in the HCT116 cell line.
Ultimately, we identified 239 CRC-specific
super-enhancer-related genes. To assess the
correlation between these genes and the tumor
immune microenvironment, we conducted
calculations for the immune score, stromal score,
estimate score, and tumor purity using the
TCGA-COAD datasets. A total of 455 COAD patients
were selected from the TCGA database for weighted
gene co-expression network analysis (WGCNA). The
scale-free fit indices at different soft thresholds
(powers) are shown in Fig. 2A. We determined f =5
to be the optimal power value. Moreover, we
performed a sample clustering analysis (Fig. 2B).
After the samples were clustered, the adjacent matrix
was transformed to create a TOM matrix, and the
function tree generated by hierarchical clustering was
examined for modules. The dynamic tree cutting
method was used to merge modules with values
greater than 0.75, resulting in a module clustering tree
plot (Fig. 2C) and the construction of mRNA
co-expression networks (Fig. 2D). We performed a
correlation analysis of the modules and trait
groupings generated by the clustering. We created a
heatmap of the modules and trait data, as shown in
Fig. 2E. The correlations and adjust p-values between
each module and trait are presented in the heatmap.
Among them, the turquoise module has the highest
correlation.

We subsequently calculated the proportion of
immune cells in the immune microenvironment of
patients with COAD via the CIBERSORT algorithm
(Fig. 2F). We found that resting CD4 memory T cells
accounted for the largest percentage of immune

microenvironment immune cells in the COAD cohort.
Previous studies have shown that the subgroups with
more resting CD4 memory T cells have reduced
immune escape and the patients will have a better
clinical outcome [37]. Afterwards, we constructed a
composite chart to display the expression
characteristics of turquoise module genes and module
eigengenes (MEs) (Fig. 2G). The scatter plot results
indicated that the correlations between the turquoise
module genes and immune infiltration scores
(immune score, stromal score and estimate score)
were 0.52, 0.67, and 0.65, respectively (Fig. 2H). These
results suggest that the genes in the turquoise module
are significantly positively correlated with the
immune infiltration scores. Because immune cells are
crucial in combating tumor immune responses,
further research on the 83 genes in this module may
help to identify biomarkers and new therapeutic
targets for immunotherapy in colorectal cancer.

Differential gene and prognostic analysis

On the basis of the TCGA-COAD datasets, we
analyzed the differential expression of genes
associated with super-enhancers, resulting in the
generation of a volcano plot and heatmap (Fig.
3A-3B). This analysis revealed a total of 33
upregulated genes and 32 downregulated genes.
Overlaying the upregulated genes with the 83
immune infiltration-related genes in the above
turquoise module via Venn diagrams yielded 9
immune infiltration-related differentially expressed
genes (Fig. 3C). Moreover, prognostic analysis of the
aforementioned 9 genes was conducted using the
GEO datasets obtained from the TIDE database. The
results of the K-M curve analysis revealed that CRC
patients with elevated expression levels of 8 specific
genes (ANGPT2, CYP24A1, IFNE, PLAU, FRMDS5,
SERPINE1, ZBED2, and GSDMC) had unfavorable
prognoses (Fig. 3D). In addition, we further validated
the relationship between the expression of 6 target
genes in the TCGA-COAD cohort and the outcomes of
cancer patients by determining the optimal threshold
(Fig. S1A and Table S1).

Construction of the prognostic risk model

Next, we further explored and validated the
prognostic value of the 8 prognosis-related genes
through TCGA data. A total of 404 patients were
recruited to participate in the study by removing
some samples with a total survival time of 0 and
incomplete clinicopathological information from the
TCGA-COAD dataset. We subsequently randomly
divided 404 patients into a training set (n = 203) and a
validation set (n = 201) at a 1:1 ratio. We identified 6
risk genes through LASSO-Cox regression analysis
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(Table S2) and constructed immune infiltration risk
features (Fig. 4A-B). We calculated the risk score on
the basis of the expression levels of the 6 risk genes via
the following formula: risk score=FRMD5%*(0.2161)+
SERPINE1*(0.3810)+IFNE*(0.0325)-CYP24A1%(0.0722)-
GSDMC*(0.1007)-PLAU*(0.4265).  Patients in the
training set were divided into a high-risk group (n =
101) and a low-risk group (n = 101) according to the
risk score. We observed that as the risk score
increased, the mortality of the patients increased (Fig.
4C). In addition, we constructed a heatmap to display
the expression levels of the 6 risk genes in the high-
and low-risk groups (Fig. 4D). We subsequently
conducted K-M survival analysis (Fig. 4E) for patients
in the high- and low-risk groups, which revealed that
patients in the high-risk group had markedly shorter
survival times than did those in the low-risk group (p
< 0.01). Time-ROC analysis revealed that the AUCs
for survival at years 1, 3 and 5 were 0.714, 0.694 and
0.732, respectively, indicating the good sensitivity and
specificity of the prognostic model developed for the 6
risk genes in predicting the survival of patients with
COAD (Fig. 4F). We then validated the prognostic
signature of the 6 risk genes in the test cohort.
Similarly, survival analysis of the test cohort revealed
significant differences in survival time between the
test groups, with significantly shorter OS in the
high-risk group (P < 0.05) (Fig. 4G-H). In addition,
analysis of the time-ROC results for the test cohort
revealed AUCs of 0.661, 0.663, and 0.625 at years 1, 3
and 5, respectively (Fig. 41I).

PLAU and GSDMC as biomarkers to predict
immunotherapy efficacy

We then wanted to validate our above
hypothesis by revealing the relationship between
gene expression levels and immunotherapy efficacy.
The patient's antitumor immune response can be
determined by the immunophenotypic score (IPS).
We downloaded the TCGA-COAD IPS score data
from the TCIA database and analyzed the expression
of each of the 6 risk genes in relation to the IPS score.
Among them, the expression of PLAU and GSDMC
was significantly correlated with the IPS score. As
depicted in Fig. 5A and Fig S1B, immunotherapy was
more effective in the high PLAU or high GSDMC
expression group when combined with CTLA4
inhibitors and PD-1 inhibitors. MSI is closely related
to the antitumor immune response and is an
important biomarker for assessing the efficacy of
immunotherapy. Our results revealed a positive
correlation between the expression of PLAU/GSDMC
in CRC and the MSI score (Fig. 5B). GSDMC (r = 0.24,

p < 0.0001) has a higher correlation with MSI score
than PLAU (r = 0.14, p < 0.01). Next, we compared the
predictive  capability of PLAU/GSDMC for
immunotherapy efficacy in multiple human
immunotherapy cohorts (Fig. 52-S3). AUC values >
0.5 means that the algorithm outperformed random.
In Fig. 5C, we compiled histograms for the cohorts
with an AUC > 0.5 and found that PLAU had better
predictive value than existing immunotherapy
efficacy biomarkers, such as MSI and TMB. GSDMC
also had a greater predictive value than TMB. In
particular, we found that melanoma patients with
high expression of PLAU or GSDMC had better
prognosis when treated with PD-1 inhibitors
(nivolumab and pembrolizumab) (Fig. 5D). In short,
the above data showed that PLAU and GSDMC could
be wused as new biomarkers to predict the
immunotherapy efficacy. In addition, we found that
the function of cytotoxic T-cell (CTL) may be inhibited
by high expression of PLAU/GSDMC (Fig. 5E).
Because CTL is the effector cell responsible for
immune response, we assumed that high expression
of PLAU/GSDMC may affect the antitumor immune

response of CTLs. This result implied that
PLAU/GSDMC may also be new targets for
immunotherapy.

Correlation between PLAU/GSDMC and the
tumor microenvironment (TME)

We utilized the estimation algorithm to evaluate
the expression status of PLAU and GSDMC in the
TME. We analyzed the Spearman correlations
between the expression of these two genes and the
matrix score, immune score, and estimate score in the
tumor microenvironment using Sangerbox 3.0. The
results revealed a positive correlation between
PLAU/GSDMC  expression and the immune
infiltration score (Fig. S4A). In addition, we
investigated the potential correlation between the
expression of PLAU/GSDMC and tumor-associated
immune cells. As shown in Fig. S4B, the expression of
PLAU/GSDMC was positively correlated with the
abundances of B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells. We
further analyzed the correlation between PLAU/
GSDMC expression and PD-1, PD-L1, and CTLA4
expression in COAD using the ACLBI database. The
scatter plots revealed a positive correlation between
the expression of PLAU/GSDMC in COAD and that
of immune checkpoint genes (Fig. S4C). Overall, the
expression of PLAU and GSDMC was positively
correlated with the TME, indicating their potential as
new targets for immunotherapy in CRC.
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Predicting the sensitivity of drugs for PLAU
and GSDMC proteins

Next, we screened the sensitive drugs for the
PLAU and GSDMC proteins. We downloaded the
IC50 values of drugs and gene expression levels of
CRC cell lines from the GDSC2 and CTRPv2
databases. We subsequently analyzed the sensitivity
of the PLAU and GDSMC proteins to drugs (Table S3).
Scatter plots of the 8 drugs selected for the PLAU
protein are shown in Fig. 6A, while scatter plots of the
drugs selected for the GSDMC protein are shown in
Fig. 6B. The top three drug structures were
downloaded from the PubChem database (Fig. S5).
Next, we obtained the spatial structures of the PLAU
and GSDMC proteins from the PDB database (Fig. 7A
and Fig. S6A). Using the CHECOM algorithm, we
predicted the binding sites and boxes of the PLAU and
GSDMC proteins (Fig. 7B-C and Fig. S6B-C). In
addition, we utilized AutoDock software for
molecular docking and obtained the free binding
energies of the two proteins with the drugs (Table S4).
Then, via PYMOL software, we visualized the binding
of the selected drugs to the PLAU and GSDMC
proteins (Fig. 7D and Fig. S6D). Finally, we used
Ligplus software to visualize the two-dimensional
interactions between the PLAU and GSDMC proteins
and the small-molecule drugs (Fig. 7E and Fig. S6E).

Super-enhancer activity regulates PLAU and
GSDMC expression

We first validated the relative mRNA expression
levels of PLAU and GSDMC in CRC using our clinical
samples (Fig. S7A). Then we wondered whether the
high expression of PLAU and GSDMC in CRC was up
to the super-enhancer activity. We analyzed H3K27ac
signals in the gene loci of PLAU and GSDMC in
various COAD cells compared with those in normal
colonic mucosa using ChIP-seq data obtained from
the ENCODE database. We observed a greater
H3K27ac signal in the PLAU gene loci than in the
GSDMC gene loci (Fig. 8A and Fig. S7B). After
treatment with the BRD4 inhibitors JQ1 and
I-BET-762, which can block the formation of
super-enhancers [38], the expression levels of PLAU
and GSDMC decreased significantly in COAD cells
(Fig. 8B and Fig. S7C). Through ChIP-qPCR, we
observed significant enrichment of H3K27ac and
BRD4 expression at the super-enhancer sites of PLAU
and GSDMC (Fig. 8C-D and Fig. S7D). Interestingly,
we also detected increased enrichment of the
acetyltransferase P300 expression at these PLAU and
GSDMC gene loci (Fig. 8E and Fig. S7E). Additionally,
we conducted super-shift EMSAs of BRD4 and P300

to further validate our results (Fig. 9). We found that
BRD4, especially P300, could bind to these PLAU

super-enhancer sites.

Discussion

ICIs have shown good clinical efficacy in CRC
patients. However, owing to the heterogeneity of
tumors, ICI treatment is known to be effective in only
a small number of CRC patients. The existing
biomarker MSI-H is considered as a good predictor of
the response to ICIs. However, only 20% of CRC
patients belong to the MSI-H type [39]. Therefore,
identifying new biomarkers to select patients who
may respond well to ICIs is imperative.

Super-enhancers can drive increased levels of
gene transcription [40] and play an important role in
CRC [41]. The super-enhancer is crucial for multiple
tumor biological characteristics, including the
immune response [42]. Previous studies have
demonstrated that the characteristics of the TME in
tumors is closely related to the patient's response to
immunotherapy [43, 44]. Thus, understanding
immune cell infiltration in the TME provides a
powerful method for identifying CRC patients who
are responsive to ICI therapy. In this study, we
innovatively screened CRC-specific super-enhancer-
related genes associated with immune infiltration by
WGCNA. Notably, 83 genes in the turquoise module
were positively correlated with immune infiltration
scores, indicating that high expression of these genes
may have a significant effect on the immunotherapy
response of patients with colorectal cancer. Similarly,
one recent study identified an immune-related
module by WGCNA in lung cancer [45]. Studying the
expression of these 83 genes in colorectal cancer
patients and their impact on prognosis is highly
important for further screening of biomarkers for the
diagnosis and prognosis of colorectal cancer.
Therefore, a LASSO-Cox prognostic risk model was
constructed on the basis of the TCGA-COAD cohort.
By analyzing the relationship between risk model
gene expression and the immune phenotype score
(IPS), we found that PLAU and GSDMC have high
predictive value for the efficacy of immunotherapy
and may become new targets for CRC
immunotherapy. The various components in the
tumor microenvironment are closely related to
immunotherapy efficacy [46]. Therefore, we further
investigated the correlation between the expression of
PLAU/GSDMC and the immune microenvironment,
which might explain why PLAU/GSDMC expression
can predict immunotherapy efficacy.
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Plasmin activator urokinase (PLAU), a protease
involved in the conversion of plasminogen to plasmin
[47], encodes a serine protease. Studies have shown
that PLAU plays a key role in tumorigenesis and
progression. By binding to their receptors, these
proteases are converted into their active forms,
enabling tumor cells to degrade surrounding
extracellular matrix components. This process
facilitates the invasion and migration of tumor cells
[48]. Additionally, PLAU is closely related to tumor
diagnosis, treatment, and prognosis [49]. Similarly,
we identified a poor prognosis for patients with high
PLAU expression in CRC, suggesting that PLAU could
serve as a biomarker for predicting the prognosis of
patients with CRC. Previous studies have shown that
the overexpression of PLAU is associated with the
immunosuppressive tumor microenvironment in
pancreatic ductal adenocarcinoma. The
overexpression of PLAU was more closely associated
with PD-L1 and PD-L2 but had a weaker correlation
with antitumor immunity [50]. Our research revealed
a significant positive correlation between PLAU
expression and the tumor microenvironment in CRC.
More importantly, PLAU expression was positively
correlated with the IPS, which is an effective means of
predicting the ICI response [31]. CRCs with mismatch
repair defects (AMMR) or severely mutated tumors
with MSI-H can be effectively treated with ICIs [51].
Interestingly, we also found a positive correlation
between PLAU expression and MSI scores in CRC.
Furthermore, we found that PLAU had a better ability
to predict immunotherapy efficacy than some existing
biomarkers, such as MSI and TMB, which have
become reliable biomarkers for predicting the efficacy
of ICIs in certain cancers [52]. Unexpectedly, we
found that PLAU expression might affect the function
of cytotoxic T cells but not their abundance. Similarly,
PLAU is negatively related to CD8* T-cell invasion of
head and neck squamous cell carcinomas [53]. These
data indicated that high expression of PLAU could aid
tumor cells in evading the immune system by
impairing the function of T cells. This finding may be
helpful to explain immunotherapy resistance. These
results suggest that PLAU may serve not only as an
effective biomarker for predicting the efficacy of
immunotherapy but also as a potential new target for
immunotherapy in CRC.

GSDMC is a member of the GSDM family that
has been extensively studied in recent years for its
role in promoting cell pyroptosis[54]. GSDMC is
highly expressed in CRC, and the proliferation of
colorectal cells is reduced after GSDMC is silenced
[55]. In addition, in many tumor types, patients with
high GSDMC expression have a poor prognosis [56].
PD-1-mediated = GSDMC  expression  converts

apoptosis to necroptosis in cancer cells [57]. GSDMC
was found to be valuable in predicting the outcome
and immunotherapy response of patients with
pancreatic adenocarcinoma [58]. In addition, GSDMC
expression was associated with an immune-hot tumor
microenvironment [59]. Similarly, our study revealed
that GSDMC was positively correlated with immune
scores, immune cell infiltration, and the expression of
immune checkpoint genes. These findings indicate
that GSDMC may affect the immunotherapy efficacy
of colorectal cancer by altering immune cells, stromal
cells, and other components in the immune
microenvironment of CRC. Therefore, when
immunotherapy is applied, CRC patients with high
GSDMC expression are likely to have better outcomes.
Indeed, we found that GSDMC expression was
positively correlated with IPS and MSI scores,
suggesting that GSDMC, like PLAU, could serve as a
biomarker for predicting CRC immunotherapy
efficacy. Notably, we found that high expression of
GSDMC had an impact on the function of cytotoxic T
cells. Therefore, we speculate that GSDMC expression
might become a new biomarker for immunotherapy.
Additionally, we elucidated the reasons why
PLAU and GSDMC can predict the efficacy of
immunotherapy. First, there is growing evidence that
immune cells in the tumor microenvironment play a
key role in tumorigenesis and progression [10].
Research has shown that tumor-associated
macrophages (TAMs) can express high levels of
anti-inflammatory factors to promote an inhibitory
immune microenvironment and affect antitumor
immunity [60]. TAMs can also inhibit the recruitment
and activation of T cells, thereby exacerbating
immune  suppression [61].  Cancer-associated
fibroblasts (CAFs) can produce inhibitory cytokines,
suppress the accumulation of T cells near tumors, and
affect the efficacy of immunotherapy [62]. In addition,
a high abundance of Treg cells in the TME is
associated with immune suppression and a poor
prognosis [63, 64]. Our research revealed a significant
positive correlation between the expression of
PLAU/GSDMC and infiltrating immune cells in CRC.
This implies that the higher the expression levels of
these two genes are, the greater the number of
immune cells in the tumor microenvironment. In line
with our findings, the overexpression of PLAU is
positively correlated with the infiltration of various
immune cells in pancreatic cancer [65]. PLAU is also
strongly positively correlated with tumor-infiltrating
lymphocytes in lung adenocarcinoma [66]. The
expression of PLAU may promote an immune-hot
tumor microenvironment. Therefore, the use of
immune checkpoint inhibitors results in better
therapeutic effects. Second, we were surprised to
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observe that the expression level of PLAU/GSDMC
was positively correlated with immune checkpoint
genes. In other words, when the expression of these
two genes increases, the expression of immune
checkpoint genes also increases, increasing the
effectiveness of treatment with immune checkpoint
inhibitors. Currently, many patients who are
theoretically suitable for treatment with ICls are
resistant to PD-1 or PD-L1 inhibitors due to various
factors. For example, deletion of the
-2-microglobulin heterodimer may affect the antigen
presentation of MHC-I and induce resistance to ICls
[67]. Interestingly, studies have demonstrated the
costimulatory effect of LCL161 under conditions in
which TAC-T cells are stimulated with antigen alone,
and increased T-cell survival and proliferation have
been observed [68]. Considering the correlation
between PLAU/GSDMC expression and immune cell
infiltration, as well as PD-1/PD-L1/CTLA4
expression, we  hypothesized  that  better
immunotherapy efficacy could be achieved by
targeting PLAU/GSDMC proteins in combination
with ICls. Therefore, we utilized drug sensitivity
analysis and virtual molecular docking to screen for
drugs that are able to target PLAU/GSDMC proteins.
Overall, our study indicated that targeting
PLAU/GSDMC may offer a potential new strategy for
the immunotherapy of CRC.

Super-enhancer-driven genes have potential as
biomarkers and therapeutic targets for cancers [69]. In
our study, we observed high H3K27ac signal at the
PLAU gene locus. In addition, our in vitro
experiments indicated that the marker-H3K27ac, the
reader-BRD4, and the creater-P300 of super-enhancers
were all highly enriched at the enhancer sites of
PLAU. In sum, our results revealed that
super-enhancer activity was responsible for the
expression of PLAU in CRC. Therefore, our study
revealed a link between the super-enhancer and CRC.
Interestingly, recent studies have reported the impact
of immune infiltration super-enhancer regulatory
genes on immunotherapy efficacy in gastrointestinal
tumors [70]. Similarly, our latest study revealed that
super-enhancer-induced LINC00862 could serve as a
biomarker for predicting immunotherapy efficacy
[71]. Overall, we confirmed the presence of
super-enhancers and the influence of super-enhancer
activity on PLAU expression.

At present, reliable biomarkers for the
immunotherapy of colorectal cancer, such as
dMMR/MSI-H, can only benefit approximately 15%
of colorectal cancer patients. Therefore, the
identification of similar biomarkers can aid in the
accurate selection of patients who may benefit from
immunotherapy, thereby avoiding ineffective

treatment. In addition, by screening reliable
biomarkers, the disease development trend and
prognosis of colorectal cancer patients can be
understood in advance, and treatment plans can be
optimized. This study investigated the correlation
between the expression of PLAU or GSDMC and the
tumor microenvironment of colorectal cancer and
revealed that high expression of PLAU and GSDMC
maybe regulate the function of CTL cells. Therefore,
our study provides potential new biomarkers for
predicting the efficacy of immunotherapy and
possibly new targets for immunotherapy in CRC.
Besides, on the basis of these newly discovered
biomarkers, this study can lead to the development of
new targeted drugs and provide new options for
patients with colorectal cancer. However, data on
immunotherapy for colorectal cancer in existing
databases are lacking, and the correlation between
PLAU and GSDMC expression and the prognosis of
patients with colorectal cancer treated with
immunotherapy is currently unclear. Therefore, we
analyzed the impact of PLAU and GSDMC expression
on the prognosis of melanoma patients treated with
ICIs. In the future, we will continue to collect relevant
samples of patients with colorectal cancer treated with
immunotherapy and further study the correlation
between PLAU and GSDMC expression and the
prognosis of colorectal cancer patients treated with
ICIs. As found in Ke et al.'s latest research, the
expression of PD-1 and CD69 on effector memory
CD8+ T cells in the blood can predict the presence of
tertiary lymphoid structures (TLSs) in the
macroscopic environment of CRC and serve as
biomarkers for stratifying CRC patients for
immunotherapy [72]. In the coming years, through
the application of large-scale biological data analysis
and single-cell sequencing, a more comprehensive
understanding of the tumor microenvironment of
colorectal cancer can be achieved, facilitating the
exploration of more biomarkers that reflect the tumor
immune status and predict the immunotherapy
response. In addition, by combining existing
biomarkers such as MSI, TMB, and PD-L1, with newly
discovered biomarkers, the accuracy of predicting
immunotherapy efficacy and patient stratification for
colorectal cancer can be improved.

Our research has several limitations. First, few
colorectal cancer patients rely solely on
immunotherapy in clinical practice, and the sample
collection requires a longer period of time. Therefore,
we were unable to analyze the relationship between
PLAU and GSDMC expression and the prognosis of
colorectal cancer patients treated with ICIs. In
addition, owing to the limited collection of IC50 data
for drugs in existing databases, it is not possible to
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comprehensively evaluate the sensitivity of drugs.
And the complex relationship between diseases and
drugs cannot be fully considered in the screening
process, resulting in possible biases in the screening
results. Furthermore, the construction period of
animal models is relatively long, and the in vitro
reactions of drugs differ greatly from the actual
situation of human trials. Therefore, this study has not
yet conducted further research on drug sensitivity for
PLAU and GSDMC proteins. Finally, in the initial
stage of this study, the correlations between PLAU
and GSDMC expression and the tumor
microenvironment of patients with colorectal cancer
were analyzed using bioinformatics methods. Further
experiments are needed to clarify the specific
regulatory mechanisms involved.

Conclusion

Collectively, our study identifies super-
enhancer-based biomarkers for predicting survival
and immunotherapy efficacy in CRC. The six
super-enhancer-related signatures could act as a
potential prognostic biomarker for CRC. PLAU and
GSDMC expression had high predictive value for
immunotherapy efficacy.
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