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Abstract

Obstructive sleep apnea (OSA) is characterized by recurrent intermittent hypoxia (IH) and has been
increasingly associated with lung cancer incidence and mortality. However, how |H-related biological programs
relate to immune remodeling, stemness-associated phenotypes, and therapeutic resistance in lung cancer
remains incompletely understood. We integrated single-cell RNA sequencing data from |H-exposed murine
lung tissues (GSE301350) with bulk transcriptomic datasets from TCGA-LUAD and GSE31210 to examine
hypoxia-associated cellular and transcriptional patterns. Stemness was quantified using CytoTRACE and
transcriptome-based stemness scoring, and its associations with immune infiltration, immune checkpoint
expression, TIDE scores, predicted drug sensitivity, and immunotherapy response were evaluated. A
stemness-based prognostic model was constructed using LASSO Cox regression and validated in independent
cohorts. Single-cell analysis revealed marked immune remodeling under intermittent hypoxia (IH), including
expansion of effector T cells, and monocytes/macrophages, populations alongside reduced B cells and dendritic
cells. In human LUAD cohorts, stemness-high tumors were associated with mitochondrial and metabolic
stress—related transcriptional programs, and increased expression of immune checkpoint genes (PD-1, PD-L1,
CTLA4, LAG3). Elevated stemness scores correlated with higher TIDE scores, poorer overall survival, and
reduced predicted responsiveness to immunotherapy. LASSO modeling identified a six-gene stemness
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signature (EIF5A, MELTF, SEMA3C, CPS1, TCNI, SELENOK), that consistently stratified patients into high- and
low-risk groups across TCGA and GSE31210 cohorts. Multivariate Cox regression confirmed the risk score as
an independent prognostic factor. Drug sensitivity analyses further suggested that stemness-high tumors may
exhibit increased susceptibility to selected kinase inhibitors (Dasatinib, A-770041) and metabolic modulators
(Phenformin, Salubrinal). OSA-associated IH is linked to stemness-associated transcriptional plasticity, immune
suppression, and adverse clinical outcomes in lung cancer. The identified stemness-based gene signature
provides a robust prognostic biomarker and highlights potential therapeutic vulnerabilities, supporting
integrative strategies that combine stemness and immune -targeted approaches with immunotherapy in

OSA-associated lung cancer.

Keywords: obstructive sleep apnea; intermittent hypoxia; lung cancer; stemness; immune evasion; prognostic model;

immunotherapy

1. Introduction

Obstructive sleep apnea (OSA) is a highly
prevalent sleep-related = breathing  disorder
characterized by recurrent episodes of upper airway
collapse and intermittent hypoxia (IH) [1-3].
Epidemiological studies have established OSA as a
risk factor for a broad spectrum of cardiometabolic
diseases, including hypertension, type 2 diabetes, and
atherosclerosis, as well as respiratory conditions such
as chronic obstructive pulmonary disease and
pulmonary hypertension [4-6]. More recently,
increasing attention has been directed toward the
potential link between OSA and cancer. Clinical
cohort studies and meta-analyses suggest that OSA
severity, particularly nocturnal hypoxemia, correlates
with higher incidence and mortality of lung cancer,
yet the underlying molecular mechanisms remain
poorly understood [7-10]. Lung cancer remains the
leading cause of cancer-related deaths worldwide,
with non-small cell lung cancer (NSCLC) accounting
for approximately 85% of all cases [11, 12]. Despite
advances in immunotherapy and targeted therapy,
the prognosis of advanced NSCLC remains
unsatisfactory, highlighting the urgent need for
improved biomarkers and mechanistic insights [13,
14]. Hypoxia is a well-recognized hallmark of the
tumor  microenvironment (TME), promoting
epithelial-to-mesenchymal transition, angiogenesis,
immune suppression, and therapeutic resistance [15,
16]. Given that OSA subjects experience recurrent
systemic and tissue-level hypoxic stress, intermittent
hypoxia may act as a “priming factor” that accelerates
lung tumorigenesis and shapes the TME toward
malignancy [10, 17]. However, most prior studies
have focused on bulk transcriptomic or animal
models, leaving the cell-type-specific effects of IH
largely unexplored [18, 19].

Recent advances in single-cell RNA sequencing
(scRNA-seq) provide unprecedented opportunities to
dissect the heterogeneity of lung tissues under
OSA-associated IH conditions [20, 21]. By resolving
cell-type-specific transcriptional programs, scRNA-

seq allows the identification of altered immune
infiltration, stemness-associated reprogramming, and
immunometabolic shifts that bulk analyses cannot
capture [22]. In particular, cellular stemness, the
degree to which tumor and immune cells adopt
progenitor-like transcriptional states has emerged as a
critical determinant of tumor progression, immune
evasion, and therapy response. Computational
approaches such as CytoTRACE and integrative
stemness scoring now enable quantification of
stemness at both single-cell and bulk-tumor levels,
facilitating the construction of prognostic models with
direct clinical applicability [23-25]. Candidate genes
and pathways highlighted in this study were
prioritized wusing a quantitative, multi-criteria
framework, incorporating stemness association,
statistical robustness, cross-dataset consistency, and
relevance to hypoxia and immune regulation, rather
than isolated statistical significance.

In this study, we integrated scRNA-seq data
from OSA-associated IH lung models (GSE301350)
with bulk transcriptomic datasets (TCGA-LUAD and
external validation cohorts) to investigate the role of
stemness in OSA-related lung cancer. Through
comprehensive  analyses, including immune
infiltration deconvolution, checkpoint gene profiling,
TIDE assessment, and drug sensitivity prediction, we
aimed to delineate the molecular mechanisms linking
OSA-driven hypoxia to tumor progression and
therapeutic resistance. Furthermore, we developed
and validated a stemness-based prognostic model
using LASSO Cox regression, demonstrating its
independent predictive value and translational
potential in guiding personalized therapy (Figure 1)
[26, 27]. Our work provides novel insights into how
OSA-associated intermittent hypoxia may reprograms
the lung microenvironment through stemness-
associated and immune-related mechanisms, thereby
enhancing cancer susceptibility and progression.
These findings not only improve mechanistic
understanding of the OSA-cancer link but also
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identify actionable biomarkers and therapeutic
vulnerabilities that could inform future precision
oncology strategies for patients with OSA-related
lung cancer. We emphasize that this study does not
assume direct molecular equivalence between murine
intermittent hypoxia models and human lung
adenocarcinoma. Instead, the murine single-cell
RNA-seq data were used as a mechanistic discovery
framework to characterize hypoxia-responsive
cellular states and immune remodeling, while
independent human LUAD transcriptomic cohorts
were leveraged to assess the clinical relevance of
stemness-associated transcriptional programs. This

integrative strategy allows hypoxia-linked biological
themes identified in experimental models to be
contextualized and validated at the prognostic and
immunological level in human disease, without
implying direct cross-species gene-level concordance.

2. Methods

2.1 Data acquisition and preprocessing

The single-cell RNA-seq dataset GSE301350,
comprising lung tissues from mice exposed to
intermittent hypoxia (IH) or normoxia (Nx), was
downloaded from the Gene Expression Omnibus
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Figure 1. Study workflow and integrative analyses for OSA-associated lung cancer. Study workflow and integrative analyses for OSA-associated lung cancer.
Overview of the computational and experimental strategy. Multi-omics data (TCGA-LUAD, GSE301350, GSE31210, GSE78820) and single-cell RNA-seq datasets were integrated
to quantify stemness (CytoTRACE, stemness scores), characterize immune infiltration (CIBERSORT, ESTIMATE), and assess functional pathways (GO ontology, and KEGG,).
Prognostic modeling was performed using LASSO Cox regression and validated in independent cohorts. Inmunotherapy response was evaluated using TIDE and IMvigor210
datasets, and drug sensitivity was predicted using GDSC data. The pipeline highlights the integration of stemness quantification, immune landscape profiling, and therapeutic

prediction in OSA-associated lung cancer.
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(GEO). Raw count matrices were processed using the
Seurat R package (v4.4.1). Cells with fewer than 200
detected genes, more than 5,000 detected genes, or >
10% mitochondrial gene content were excluded. Gene
expression matrices were normalized and
log-transformed, followed by principal component
analysis (PCA) and batch effect correction using
Harmony [28-30]. Dimensionality reduction was
performed using t-distributed stochastic neighbor
embedding (t-SNE) and uniform  manifold
approximation and projection (UMAP).

2.2 Cell-type annotation and marker gene
identification

Cell clustering was performed with the Seurat
“FindClusters” function at a resolution of 0.5-1.2.
Marker genes for each cluster were identified by the
“FindMarkers” function using Wilcoxon rank-sum
testing with thresholds of |log2 fold change| > 0.25
and adjusted p < 0.05. Cell types were annotated
based on canonical lineage markers, cross-referenced
with the CellMarker database and published
literature [31-35].

2.3 Stemness estimation and functional
enrichment

Cellular differentiation potential at the single-
cell level was inferred using CytoTRACE, with higher
scores indicating greater transcriptional similarity to
progenitor-like states. At the bulk-transcriptomic
level stemness scores for TCGA-LUAD and GSE31210
samples were calculated by summing the weighted
expression of stemness-associated product of gene
using pre-defined coefficients. Functional enrichment
analyses were conducted to identify pathway-
associated transcriptional programs linked to
stemness and hypoxia-related phenotypes. Gene
Ontology biological process (GO-BP) and KEGG
pathway gene sets were analyzed using the
clusterProfiler package (v4.10.0). Enrichment results
were interpreted as coordinated gene expression
patterns rather than direct evidence of biological
pathway activation or mechanistic causality.
Statistical significance was assessed using adjusted
p-values, with pathways meeting an adjusted p-value
< 0.05 and false discovery rate (FDR) < 0.25
considered significantly enriched [36-41].

2.4 Survival analysis and prognostic model
construction

Differentially expressed genes between high-
and low-stemness groups were identified using
limma (v3.54.2). Genes associated with overall
survival were first screened by wunivariate Cox
regression (p < 0.05). To minimize overfitting, least

absolute shrinkage and selection operator (LASSO)
Cox regression was applied using the glmnet package
with 10-fold cross-validation. A multigene prognostic
signature was established, and a risk score was
calculated as the sum of each gene’s expression
weighted by its regression coefficient. Patients were
stratified into high- and low-risk groups using the
median risk score. Model performance was evaluated
using  Kaplan-Meier  survival analysis and
time-dependent receiver operating characteristic
(ROC) curves (timeROC package).

2.5 Independent validation

The prognostic model was validated in the
GSE31210 dataset. Risk scores were computed using
the same formula derived from TCGA-LUAD.
Kaplan-Meier and ROC analyses were performed to
assess  predictive accuracy. Univariate and
multivariate Cox regression analyses incorporating
age, sex, TNM stage, and clinical stage were
conducted to determine independent prognostic
value [42-46].

2.6 Immune infiltration and checkpoint
analysis

Immune cell proportions were estimated using
CIBERSORT with 22 leukocyte subsets and 1,000
permutations. Stromal and immune scores were
calculated using the ESTIMATE algorithm. Immune
checkpoint expression was compared between
stemness-defined groups using Wilcoxon rank-sum
tests. Associations between stemness score and
immune checkpoint expression were assessed using
Pearson correlation.

2.7 TIDE and immunotherapy response
prediction

The Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm was used to estimate tumor immune
escape potential. Associations between TIDE and
stemness scores were evaluated using Spearman
correlation. External immunotherapy cohorts with
clinical response data were used to assess whether
stemness risk groups predicted treatment outcomes,
with patients categorized as responders (complete
response [CR] or partial response [PR]) or
non-responders (stable disease [SD] or progressive
disease [PD]) [47-51].

2.8 Drug sensitivity analysis

Drug response prediction was performed using
the oncoPredict package. Estimated half-maximal
inhibitory concentration (IC50) values for compounds
in the GDSC database were compared between high-
and low-risk groups using Wilcoxon testing.
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Candidate drugs were selected based on consistent
differences across cohorts and biological relevance to
stemness-related pathways [52-56].

2.9 Statistical analysis

All statistical analyses were performed in R
(v4.4.1). Continuous variables were compared using
the Wilcoxon rank-sum test or Student’s t-test, as
appropriate. Correlations were assessed by Pearson or
Spearman coefficients. Survival differences were
determined using the log-rank test. A two-tailed
p-value < 0.05 was considered statistically significant
unless otherwise specified [57-61].

3. Results

3.1 Differential gene expression and LASSO
modeling identify stemness-associated
prognostic signatures in OSA-related lung
cancer

To  uncover molecular mediators  of
stemness-driven progression in OSA-related lung
cancer, we first compared transcriptomes between
high- and low-stemness tumors. Volcano plot analysis
revealed hundreds of differentially expressed genes
(DEGs), with  significant  upregulation  of
developmental regulators and suppression of
mitochondrial/respiratory chain genes (Figure 2A).
Heatmap clustering confirmed that stemness-high
tumors were characterized by enhanced expression of
adhesion, morphogenesis, and extracellular matrix
remodeling genes, while low-stemness tumors were
enriched in oxidative phosphorylation and electron
transport pathways (Figure 2B). We next performed
univariate Cox regression to assess the prognostic
impact of DEGs. Several genes, including EIF5A and
MELTF, emerged as high-risk factors, while others,
such as SFTPB and SELENOK, displayed protective
associations (Figure 2C). This dichotomy highlights
the complex transcriptional landscape in which
stemness-high tumors harness developmental
pathways to enhance aggressiveness while silencing
mitochondrial guardians that maintain cellular
homeostasis. To refine these observations into a
clinically actionable model, we applied LASSO Cox

regression. Cross-validation identified a
parsimonious panel of 15 genes with optimal
prognostic value (Figure 2D). This stemness-

associated signature integrates developmental drivers
such as PTPRH, AHNAK2, PCDH?7, metabolic
regulators CPS1, SFTPB, and hypoxia-responsive
factors such as TCN1, TMPRSS11E, reflecting the
multifaceted nature of OSA-induced tumor evolution.
Importantly, the predictive capacity of this model
provides a robust framework for stratifying patients

by risk, linking stemness biology to clinical outcomes.
Collectively, these analyses establish a mechanistic
bridge between OSA-related hypoxia, stemness
reprogramming, and clinical prognosis. By
pinpointing gene signatures tied to both
mitochondrial ~dysfunction and developmental
activation, the LASSO-derived model offers not only
prognostic insights but also potential therapeutic
targets to disrupt the stemness-hypoxia-immune axis
in lung cancer.

3.2 Stemness-associated gene signature
robustly predicts survival across training and
validation cohorts

To wvalidate the prognostic value of the
stemness-associated signature derived from LASSO
analysis, we first applied it to the TCGA-LUAD
training dataset. Patients stratified into high- and
low-risk groups demonstrated markedly divergent
outcomes, with the high-risk group exhibiting
significantly worse overall survival (p < 0.0001, Figure
3A). Time-dependent ROC analysis confirmed good
predictive performance, with AUC values of 0.74,
0.72, and 0.65 for 1-, 3-, and 5-year survival,
respectively, indicating that the model retains both
short- and medium-term prognostic utility.
Independent validation in the GSE31210 cohort
yielded consistent results, with high-risk patients
again showing significantly poorer survival (p =
0.003, Figure 3B). Predictive accuracy was
comparable, with AUC values of 0.78, 0.65, and 0.69
across 1-, 3-, and 5-year timepoints, demonstrating the
robustness and generalizability of the model across
different patient populations. Examination of
gene-specific Cox coefficients highlighted both risk
and protective components of the model (Figure 3C).
EIF5A, MELTF, SEMA3C, CPS1, and TCN1 were
identified as risk-promoting genes, each associated
with adverse prognosis and consistent with their roles
in proliferation, metabolic rewiring, and hypoxia
responses. In contrast, SELENOK emerged as a
protective factor, potentially linked to its role in
antioxidant defense and maintenance of cellular
homeostasis. Together, these results confirm that the
stemness-driven gene signature derived from
OSA-related hypoxia biology provides a reliable and
externally validated prognostic model. By integrating
developmental regulators, metabolic genes, and
hypoxia-responsive factors, the model captures the
multifaceted influence of intermittent hypoxia on
lung  tumor  evolution.  Importantly,  the
reproducibility of its predictive power across TCGA
and GSE31210 underscores its translational potential
as a clinical tool for patient risk stratification and
treatment planning.
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Figure 2. Identification of stemness-associated prognostic genes. (A) Volcano plot of differentially expressed genes (high vs. low stemness groups). (B) Heatmap of up-
and downregulated genes, enriched in mitochondrial and developmental pathways. (C) Univariate Cox analysis highlighting risk and protective genes. (D) LASSO regression

identifying optimal prognostic gene set with cross-validation curve.
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3.3 Stemness-based risk score serves as an
independent prognostic factor in OSA-related
lung cancer

To test whether the stemness-derived risk score
could serve as an independent prognostic factor, we
performed multivariate Cox regression analysis
incorporating clinicopathological features (Figure
4A). The risk score remained significantly associated
with overall survival even after adjustment for age,
sex, and TNM stage, confirming its independence
from traditional clinical parameters. Subsequently, we
extracted only the significant predictors to construct a
refined model (Figure 4B). In this reduced analysis,
the stemness risk score, together with N stage and T
stage, consistently emerged as robust prognostic
indicators, whereas variables such as age and gender
did not reach statistical significance. Time-dependent
ROC analysis further demonstrated that the stemness
risk score outperformed conventional variables in
predictive accuracy, maintaining AUC values above
0.70 across multiple timepoints (Figure 4C). This
stability underscores the clinical value of the model as
a reliable risk stratification tool. Together, these
findings establish the OSA-associated stemness
signature as an independent prognostic factor with
superior predictive performance compared to
traditional staging systems, thereby providing a
molecularly informed framework for patient
management.

3.4 Stemness-high tumors display altered
immune infiltration, checkpoint expression,
and stromal remodeling

We next investigated the immune and stromal
correlates of stemness by integrating CIBERSORT,
checkpoint profiling, and ESTIMATE analysis.
CIBERSORT deconvolution revealed significant
enrichment of immunoregulatory populations in
stemness-high tumors, including activated CD4" T
cells, regulatory T cells, and M2-polarized
macrophages, whereas low-stemness  tumors
displayed relatively higher fractions of naive B cells
and resting dendritic cells (Figure 5A). These shifts
suggest that stemness programs not only promote
effector activation but also skew the immune milieu
toward an immunosuppressive phenotype dominated
by Tregs and M2 macrophages. Consistent with this
observation,  checkpoint  expression  analysis
demonstrated broadly elevated levels of inhibitory
molecules in the stemness-high group, including
PDCD1 (PD-1), CD274 (PD-L1), CTLA4, and LAG3
(Figure 5B). The coordinated upregulation of these
checkpoints implies that stemness-driven tumors rely
on multiple redundant inhibitory pathways to
dampen T-cell activation and evade immune
destruction. Interestingly, some costimulatory ligands
were also variably increased, reflecting a mixed
signaling environment that may initially activate but
ultimately exhaust T-cell responses. ESTIMATE
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analysis further highlighted that stemness-high
tumors harbored significantly higher stromal scores,
while immune and composite scores did not differ
markedly between groups (Figure 5C). This pattern
suggests that stemness not only influences immune
cell infiltration but also enhances stromal remodeling,
potentially reinforcing physical and metabolic
barriers to immune clearance. Notably, the immune

infiltration patterns, checkpoint activation, and
stromal remodeling observed in stemness-high
human LUAD tumors are consistent with

hypoxia-driven immune remodeling identified in the

murine intermittent hypoxia model, supporting a
coherent functional link between hypoxic stress,
immune dysfunction, and tumor progression.
Together, these data establish that OSA-associated
stemness is intricately linked with an
immunosuppressive and stromal-enriched tumor
microenvironment. By coupling regulatory immune
infiltration, checkpoint upregulation, and stromal
expansion, stemness programs generate a tumor
ecosystem optimized for immune escape and disease
progression.
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Figure 5. Immune landscape differences between high- and low-stemness groups. (A) CIBERSORT-based immune cell infiltration analysis showing altered abundance
of T cells, macrophages, dendritic cells, and overall immune scores. (B) Expression of immune checkpoint genes compared between high- and low-stemness tumors. (C) Summary

of stemness-immune associations.

3.5 Stemness scores are elevated in tumors
and associated with advanced clinical features
in OSA-related lung cancer

To further elucidate the clinical relevance of
hypoxia-associated stemness programs, we examined
stemness scores across patient subgroups stratified by

clinicopathological features. Tumor tissues exhibited
significantly elevated stemness compared with
matched normal samples (Figure 6A), reinforcing the
concept that intermittent hypoxia and OSA-driven
microenvironmental stress favor acquisition of
progenitor-like traits. This elevation was particularly
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evident in male patients (Figure 6B), suggesting
sex-related differences in hypoxia response pathways,
potentially mediated by hormonal or immunological
factors. In contrast, patient age had no significant
impact on stemness distribution (Figure 6C),
highlighting  that  hypoxia-induced  stemness
remodeling is independent of chronological aging.
Metastatic disease status was tightly linked to
stemness reprogramming: patients with distant
metastasis (M1) harbored significantly higher
stemness scores than non-metastatic cases (MO)
(Figure 6D). Interestingly, lymph node involvement
(N stage) alone did not correlate strongly with
stemness (Figure 6E), suggesting that systemic
dissemination rather than regional spread is more
tightly governed by stemness-driven biology.
Importantly, survival analysis demonstrated that
elevated stemness scores predicted significantly
worse overall survival (Figure 6F), underscoring its
prognostic utility. When stratified by pathological
stage, stemness scores exhibited a progressive rise
with advancing tumor stage (Figure 5G), with marked
increases from stage I-II to III-IV, implicating
stemness as a driver of aggressive disease evolution.
Similarly, analysis of primary tumor burden (T stage)
revealed a stepwise elevation in stemness from T1 to
T3 (Figure 6H), consistent with its role in sustaining
proliferation, therapy resistance, and local
invasiveness. Together, these findings provide
compelling evidence that hypoxia-associated
stemness, initially identified in the single-cell
analyses, translates into clinically measurable signals
that track with tumor aggressiveness, metastatic
spread, and poor survival outcomes. This strongly
supports the hypothesis that OSA-mediated
intermittent hypoxia not only remodels immune and
epithelial compartments but also accelerates
malignant progression through stemness-driven
mechanisms. Targeting stemness-associated
vulnerabilities may therefore represent a promising
therapeutic strategy in OSA-related lung cancer.

3.6 Stemness enrichment is associated with
immune checkpoint activation in OSA-related
lung cancer

Given the prognostic impact of stemness, we
next examined its interplay with immune checkpoint
expression, a central determinant of tumor immune
evasion and immunotherapy responsiveness.
Correlation heatmap analysis revealed that high
stemness scores were strongly associated with
increased expression of classical immune checkpoints,
including PDCD1 (PD-1), CD274 (PD-L1), CTLA4,
LAGS3, and TIGIT, as well as costimulatory ligands
such as CD80/CD86 (Figure 7A). These findings

suggest that stemness-high tumors adopt a
transcriptional program that converges on immune
checkpoint activation, enabling them to suppress
T-cell effector responses and evade immune
surveillance. Boxplot comparisons further
demonstrated that tumors in the high-stemness group
exhibited significantly elevated expression of most
inhibitory checkpoint genes compared with medium-
and low-stemness groups (Figure 7B). Notably,
PD-1/PD-L1, CTLA4, and LAG3 showed the most
pronounced differences, indicating that stemness-
enriched tumors may be particularly dependent on
checkpoint-mediated immunosuppression. In
contrast, only a limited subset of checkpoint
molecules displayed no significant differences across
stemness strata, highlighting the specificity of this
association. These findings underscore a critical
mechanistic link: intermittent hypoxia in OSA may
foster stemness programs that not only drive tumor
aggressiveness but also co-opt immune checkpoint
pathways to facilitate immune evasion. Clinically, this
dual effect provides a rationale for stratifying
OSA-related lung cancer patients by stemness score to
predict immunotherapy response. Patients with high
stemness tumors may derive greater benefit from
checkpoint inhibitor therapies.

3.7 High stemness predicts stronger immune
evasion potential by TIDE in OSA-related lung
cancer

To evaluate whether stemness signatures
influence tumor immune escape, we integrated
Tumor Immune Dysfunction and Exclusion (TIDE)
analysis with stemness stratification. Tumors
classified as high-stemness exhibited markedly
elevated TIDE scores compared to medium- and
low-stemness groups (Figure 8A), indicating
enhanced likelihood of immune evasion. This trend
persisted  across  independent  comparisons,
underscoring the robustness of the association. Linear
correlation analysis further confirmed a significant
positive relationship between stemness score and
TIDE value (R = 041, p < 2.2e-16) (Figure 8B),
suggesting ~ that  stemness-enriched tumors
consistently harbor stronger immunosuppressive
potential. Mechanistically, the link between stemness
and TIDE likely reflects synergistic interactions
between progenitor-like transcriptional states,
mitochondrial stress programs, and checkpoint
activation identified before. High-stemness tumors
appear to adopt a metabolic and transcriptional
profile that not only promotes self-renewal and
resistance to differentiation but also fosters an
immune-excluded microenvironment, thereby
evading cytotoxic T-cell surveillance. These dual
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features may explain why OSA-related hypoxia
accelerates both malignant progression and immune
resistance in lung cancer. Clinically, these findings
position stemness as a potential biomarker for
predicting  immunotherapy responsiveness in
OSA-associated lung cancer. Patients with
high-stemness tumors may be less likely to benefit
from immune checkpoint blockade alone and could
require combinational strategies targeting stemness
pathways to overcome adaptive immune resistance.

3.8 Single-cell transcriptomic landscape
reveals immune cell heterogeneity in OSA-
associated lung tissue

Single-cell transcriptomic profiling revealed
profound reshaping of the lung immune
microenvironment in response to OSA-associated

intermittent hypoxia. Dimensionality —reduction
analyses demonstrated clear segregation of OSA and
control cells, reflecting condition-specific
transcriptional programs rather than technical
artifacts. Within this landscape, we identified six
predominant immune populations, including T cells,
B cells, NK cells, monocytes, dendritic cells, and
platelets, each defined by canonical lineage-specific
markers such as CD3D for T cells, MS4A1 for B cells,
NKG7 for NK cells, and FCGR3A for monocytes.
Notably, T cells and monocytes comprised the largest
fractions in OSA lungs, consistent with their central
role in hypoxia-driven inflammation. Quantitative
comparisons revealed a disproportionate expansion
of effector T cells and pro-inflammatory monocytes,
with a concomitant reduction in dendritic cells and B
cells. This shift suggests a skewing toward cytotoxic
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and innate effector programs, potentially at the
expense of antigen-presenting and humoral immune
functions. Such remodeling aligns with previous
observations in OSA patients, where intermittent
hypoxia enhances systemic inflammation, disrupts
adaptive immunity, and promotes an
immunosuppressive milieu favorable for tumor
initiation. The observed expansion of platelets under
hypoxia further underscores the interplay between
coagulation, chronic inflammation, and tumor
microenvironmental priming. Pathway enrichment
analyses provided mechanistic insights into these
cellular shifts. Across immune subsets, we detected
enrichment in oxidative phosphorylation,
mitochondrial dysfunction, and neurodegenerative
disease-related pathways, reflecting the systemic
metabolic burden imposed by intermittent hypoxia.
Importantly, the upregulation of mitochondrial stress
signatures in T cells and monocytes may amplify
reactive oxygen species (ROS) production, fueling
DNA damage and oncogenic signaling cascades.
Simultaneous enrichment in viral infection and
inflammatory signaling pathways highlights an
activated, stress-responsive state that could facilitate
both tissue injury and immune evasion. Taken
together, these findings suggest that OSA-driven
intermittent hypoxia orchestrates a dual-edged
immune reprogramming process: on one hand,
amplifying effector activity and metabolic stress in
monocytes and T cells; on the other, diminishing
antigen presentation and B-cell-mediated
surveillance. Such an imbalance may establish a
chronic inflammatory and metabolically perturbed
lung environment conducive to fibrosis,
epithelial-to-mesenchymal transition, and ultimately,
malignant transformation. This immune remodeling
provides a plausible mechanistic link between OSA
and increased lung cancer susceptibility, and
establishes a foundation  for exploring
immunometabolic vulnerabilities in OSA-related
oncogenesis (Figure 9). Importantly, the single-cell
RNA-seq dataset was derived from non-malignant
murine lung tissue exposed to intermittent hypoxia.
Therefore, epithelial-like populations identified in this
analysis are interpreted as hypoxia-responsive
epithelial states rather than premalignant or early
neoplastic entities. The observed transcriptional
changes reflect hypoxia-induced cellular plasticity,
not direct evidence of tumor initiation.

3.9 CytoTRACE analysis highlights stemness
heterogeneity and differentiation plasticity
under OSA-associated hypoxia

To further characterize how obstructive sleep
apnea-related intermittent hypoxia shapes cellular

differentiation dynamics in the lung, we applied
CytoTRACE to infer stemness across immune and
epithelial cell populations in the single-cell dataset. As
these analyses were performed using non-malignant
murine lung tissue, CytoTRACE scores are
interpreted as reflecting hypoxia-induced
differentiation plasticity rather than intrinsic tumor
stemness or malignant transformation. The analysis
revealed striking heterogeneity in differentiation
potential (Figure 10A), with subsets of monocytes,
dendritic cells, and NK cells displaying high
CytoTRACE scores, indicative of preserved stemness
and plasticity, whereas platelets and epithelial-like
cell populations exhibited lower scores, suggestive of
terminal or stress-associated differentiation states.
Such divergent differentiation landscapes underscore
the impact of hypoxic stress on remodeling the
immune and epithelial compartments of the lung.
Gene-level  correlations  further  illuminated
transcriptional programs associated with stemness.
Positive correlations included canonical T cell
development and survival factors (TCF7, BCL11B,
IL7R, CCR?7), as well as regulators of progenitor-like
states such as LEF1 and CD3E (Figure 10B).
Conversely, negative correlations with metabolic
genes (LDHB) and hypoxia-responsive factors
(PRKCQ-AS1, SRGN) indicate that mitochondrial
dysfunction and stress responses antagonize
differentiation potential, reinforcing the theme of
mito-nuclear imbalance. This dual signature suggests
that intermittent hypoxia simultaneously maintains
progenitor-like traits in certain immune subsets while
driving metabolic exhaustion in others. At the
population  level,  CytoTRACE  stratification
demonstrated that monocytes and dendritic cells
harbored the highest stemness potential (Figure 10C),
consistent with their roles as plastic innate effectors
capable of fueling inflammatory remodeling and
antigen presentation under stress. NK cells also
retained stemness signatures, which may support
cytotoxic adaptability but could also contribute to
immune dysregulation in a hypoxic
microenvironment. In contrast, epithelial-like cell
populations displayed low CytoTRACE scores,
indicating impaired differentiation and a shift toward
metabolic rigidity. This phenotype may reflect the

combined impact of intermittent hypoxia on
mitochondrial dysfunction and chromatin
remodeling, fostering conditions conducive to

malignant persistence and resistance to apoptosis.
Collectively, these findings highlight a paradoxical
role of OSA-driven hypoxia in lung tissues: while it

preserves stemness and plasticity in immune
populations  that may  perpetuate  chronic
inflammation, it simultaneously enforces
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differentiation arrest and metabolic maladaptation in
malignant cells. Such reciprocal programming may
create a tumor-promoting ecosystem, where immune
cell plasticity supports a pro-inflammatory and
pro-angiogenic niche, while malignant cells capitalize
on hypoxia-induced metabolic rewiring to evade
immune surveillance. This stemness imbalance
provides a mechanistic bridge between OSA
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pathophysiology and lung cancer progression,
suggesting that targeting hypoxia-related stemness
pathways could represent a therapeutic avenue. These
stemness-associated ~ features  reflect  altered
differentiation states induced by hypoxic stress and
should not be interpreted as evidence of malignant
transformation.
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Figure 7. Association of stemness scores with immune checkpoint expression. (A) Correlation heatmap showing positive associations between stemness score and
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3.10 Stemness-based risk groups predict
differential responses to immunotherapy

To further evaluate the predictive value of the
stemness-based risk model in the context of
immunotherapy, we applied the model to two
independent ICB-treated cohorts, IMvigor210 and
GSE78820. In the IMvigor210 cohort, Kaplan-Meier
survival analysis revealed that patients in the

high-risk group had significantly shorter overall
survival compared with those in the low-risk group
(Figure 11A). When stratified by treatment response,
non-responders (progressive disease [PD] or stable
disease [SD]) exhibited substantially higher risk
scores than responders (complete response [CR] or
partial response [PR]) (Figure 11B). Consistent with
these findings, response distribution analysis showed
that clinical benefit (CR/PR) was enriched in the
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low-risk group, whereas the high-risk group was
dominated by PD/SD cases (Figure 11C). Similar
trends were observed in the GSE78820
immunotherapy cohort. Kaplan-Meier survival curves
consistently demonstrated inferior outcomes in
high-risk patients compared with their low-risk
counterparts (Figure 11D-F). Boxplot comparisons
further indicated that non-responders carried higher
risk scores than responders, supporting the
robustness of the model across different patient
populations  (Figure 11G). Finally, response
distribution analysis confirmed that the low-risk

results demonstrate that the stemness-based risk score
not only stratifies prognosis but also serves as a
predictive biomarker for immunotherapy efficacy.
Patients in the low-risk group are more likely to
achieve durable clinical benefit from immune

checkpoint blockade, while high-risk patients,
characterized by stemness-associated immune
evasion, exhibit limited responsiveness. These
findings  suggest that integrating stemness

stratification into clinical decision-making may help
identify patients most likely to benefit from
immunotherapy and guide the development of

group was enriched for CR/PR cases, whereas the rational combination strategies for high-risk
high-risk group was predominantly composed of individuals.
non-responders (Figure 11H). Taken together, these
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3.11 Immunohistochemical validation of
stemness-associated genes in LUAD

To complement our transcriptomic analyses, we
next assessed the protein-level expression of
representative genes from the stemness-associated
signature using immunohistochemistry (IHC) data
from the Human Protein Atlas (Figure 12). Consistent
with the transcriptional profiles, EIF5A and MELTF
displayed prominent staining in LUAD tissues,
whereas CPS1 and SELENOK exhibited weak or
undetectable expression in most samples. EIF5A
showed moderate-to-strong cytoplasmic and nuclear
staining in malignant epithelial cells, reflecting its role
as a translation initiation factor that supports
proliferative and metabolic programs in stemness-
high tumors. MELTF, a transferrin receptor homolog
involved in iron metabolism and cellular redox
balance, demonstrated enriched membranous and
cytoplasmic staining, further supporting its function
in metabolic reprogramming under hypoxic and
stemness-driven conditions. By contrast, CPS1, a key
enzyme in the urea cycle, and SELENOK, a regulator
of ER-associated protein degradation and redox

homeostasis, were largely absent or only weakly
expressed in tumor sections. The downregulation of
these metabolic regulators is consistent with our
transcriptomic findings that stemness-high tumors
suppress mitochondrial and antioxidant pathways to
favor  proliferative  adaptability. = Quantitative
summaries of IHC scoring revealed that the majority
of LUAD samples exhibited medium-to-high staining
for EIF5A and MELTF, while CPS1 and SELENOK
were predominantly categorized as low or not
detected. This expression pattern highlights a
functional dichotomy: stemness-promoting genes
(EIF5A, MELTF) are selectively upregulated at the
protein level, whereas metabolic homeostasis genes
(CPS1, SELENOK) are suppressed, reinforcing the
hypothesis that OSA-associated hypoxia drives a shift
toward translational and iron-regulated growth
programs while diminishing metabolic resilience.
Together, these IHC findings provide orthogonal
validation of our multi-omics model, confirming that
stemness-associated risk genes are differentially
regulated at the protein level in LUAD tissues. This
reinforces the biological plausibility of our stemness-
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based prognostic signature and further illustrates
how intermittent hypoxia-driven reprogramming
converges on both translational and metabolic axes to
support tumor progression.

3.12 Stemness-based risk groups exhibit
differential drug sensitivity profiles

To investigate whether the stemness-derived risk
signature could inform therapeutic decision-making,
we evaluated drug sensitivity patterns between high-

332
and low-risk groups using estimated IC50 values.
High-risk  tumors  consistently = demonstrated
significantly lower IC50 values for WH-4023,

dasatinib, and A-770041 (Figure 13A-C), indicating
enhanced susceptibility to these targeted agents.
These drugs primarily act on tyrosine kinase and
T-cell signaling pathways, suggesting that
stemness-driven tumors may be particularly

vulnerable to interventions disrupting oncogenic
regulation.

signaling and immune Similarly,
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Figure 12. Immunohistochemical expression of LUAD-associated genes from the Human Protein Atlas. (A) EIF5A: Moderate-to-strong cytoplasmic and nuclear
staining observed in malignant epithelial cells, consistent with its role in sustaining translational activity and proliferation.(B) MELTF: Predominantly membranous and cytoplasmic
staining enriched in tumor cells, highlighting its involvement in iron metabolism and hypoxia-driven redox regulation.(C) CPSI: Weak or absent cytoplasmic staining, reflecting
suppression of urea cycle activity and mitochondrial metabolism in LUAD.(D) SELENOK: Minimal staining in most tumor samples, suggesting downregulation of antioxidant and
ER-associated homeostasis functions. Bar plots summarize staining intensity categories (high, medium, low, not detected) across LUAD patient samples.
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metabolic and stress-response modulators, including
phenformin (a mitochondrial complex I inhibitor) and
salubrinal (an ER stress modulator), also showed
stronger predicted efficacy in the high-risk group
(Figure 13D-E). This aligns with prior observations
that stemness-high tumors harbor mitochondrial
dysfunction and heightened stress responses,
rendering them more sensitive to compounds
targeting bioenergetic and proteostasis
vulnerabilities. Taken together, these findings
highlight that OSA-associated stemness not only
drives tumor aggressiveness and immune evasion but
also defines a distinct therapeutic vulnerability
landscape. Patients stratified into the high-risk group
may benefit from tailored regimens incorporating
kinase inhibitors and metabolic modulators, whereas
low-risk patients may require alternative therapeutic
strategies. This integration of stemness biology with

drug response prediction underscores the
translational value of the model in guiding
personalized therapy.

4. Discussion

This study provides novel insights into the
biological link between obstructive sleep apnea
(OSA), intermittent hypoxia (IH), and lung cancer
progression. By integrating single-cell RNA
sequencing, bulk transcriptomics, and computational
modeling, we demonstrate that IH is associated with
stemness like transcriptional plasticity, mitochondrial
dysfunction, and immune remodeling, ultimately
contributing to a tumor-promoting
microenvironment. These findings complement prior
epidemiological evidence linking OSA severity with
lung cancer risk and poor outcomes, while offering
molecular and cellular context for this association. At
the cellular level, our scRNA-seq analysis revealed
that IH is accompanied by marked reshaping of the
lung immune landscape. Expansion of effector T cells
and pro-inflammatory monocytes reflects an activated
immune state, whereas concomitant enrichment of
regulatory T cells and M2 macrophages suggests a
parallel immunosuppressive shift [62, 63]. This
duality reflects a well-recognized paradox in cancer
biology, wherein chronic inflammation activation
promotes tissue remodeling and genomic stress, while
immunosuppressive  cell populations dampen
effective antitumor immunity [64]. Importantly, our
CytoTRACE analysis highlighted that IH is associated
with stemness-like differentiation plasticity in
immune cell populations, sustaining progenitor-like
features in monocytes and dendritic cells while
epithelial-like  cells exhibited stress-associated
differentiated states [65]. These findings are consistent
with hypoxia-driven activation of HIF-1a and c-Myc

pathways, which are known to regulate both stemness
and immunometabolism [66]. Notably, as the
single-cell analyses were conducted in non-malignant
lung tissue, the stemness-associated features observed
here are best interpreted as hypoxia-induced cellular
plasticity rather than direct evidence of neoplastic

transformation. From a metabolic perspective,
stemness-high  tumors exhibited a  striking
mito-nuclear imbalance, characterized by

downregulation of mitochondrial transcripts and
compensatory upregulation of nuclear-encoded
oxidative phosphorylation genes [67]. This imbalance
may amplify reactive oxygen species (ROS)
production, DNA damage, and activation of
stress-responsive transcriptional programs, thereby
potentially facilitating tumor progression and
therapeutic resistance [68]. These results expand upon
prior reports linking intermittent hypoxia to
mitochondrial fragmentation and dysfunction,
suggesting that metabolic rewiring is a central axis by
which OSA promotes oncogenesis [69].

Clinically, the stemness-derived prognostic
model demonstrated robust and independent
predictive power across TCGA-LUAD and GSE31210
cohorts. Elevated stemness scores were associated
with advanced tumor stage, metastatic dissemination,
and inferior overall survival, consistent with the
established role of stemness in tumor aggressiveness
and therapy resistance. Beyond prognostication, our
analyses revealed that stemness stratification informs
therapeutic responsiveness. High-stemness tumors
consistently ~ exhibited = immune  checkpoint
upregulation, elevated TIDE scores, and reduced
responsiveness to checkpoint blockade, reflecting a
stemness-driven immune-evasive phenotype [70].
These findings resonate with emerging clinical data
showing that stemness signatures predict poor
response to immunotherapy across multiple cancer
types, including NSCLC and melanoma [24, 71]. Our
findings support a coherent data-informed
mechanistic model in which OSA-associated
intermittent hypoxia functions as an upstream
microenvironmental stressor that initiates immune
and epithelial plasticity. Hypoxia-induced metabolic
stress and mitochondrial dysfunction promote
inflammatory activation while simultaneously
favoring the expansion of immunosuppressive cell
populations and immune checkpoint expression. This
altered immune landscape creates permissive
conditions for stemness-associated tumor programs,
which in human LUAD cohorts manifest as immune
evasion, reduced immunotherapy responsiveness,
and adverse clinical outcomes. From a therapeutic
standpoint, our drug sensitivity analysis suggests
potential ~ vulnerabilities ~within  stemness-high
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tumors. Despite immune evasion, high-stemness
tumors exhibited heightened sensitivity to kinase
inhibitors (dasatinib, A-770041) and metabolic stress
modulators (phenformin, salubrinal) [72, 73]. This
pattern is consistent with the concept of collateral
vulnerabilities, whereby stemness-associated
programs impose exploitable metabolic and signaling
dependencies [74]. Combination strategies targeting
both stemness-associated pathways and immune
checkpoints may therefore offer synergistic benefits.
For example, dasatinib has been shown to modulate
T-cell signaling and suppress hypoxia-induced
oncogenic pathways, while Phenformin selectively
targets tumors with mitochondrial dysfunction. Such
approaches could be particularly valuable in OSA
patients, who may harbor biologically distinct tumors
with high stemness and poor immunotherapy
response [75].

Our findings also carry broader implications for
the field of sleep medicine and oncology. The
demonstration that IH imprints a durable stemness
and immune-escape phenotype in the lung suggests
that OSA should be considered not only a
comorbidity but also a cancer risk modifier [12]. This
raises the possibility that early diagnosis and
treatment of OSA, for example with continuous
positive airway pressure (CPAP), may attenuate
tumor-promoting pathways. Indeed, clinical studies
have shown that CPAP therapy reduces systemic
inflammation and oxidative stress, though its impact
on cancer incidence remains to be established. Future
prospective studies integrating sleep phenotyping
with molecular tumor profiling will be critical to
validate whether OSA treatment modifies cancer risk
and therapeutic response [76, 77].
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Several limitations warrant consideration. This
study primarily relies on computational analyses and
publicly available transcriptomic datasets, and
although findings were validated across independent
human cohorts, experimental validation will be
necessary to establish direct causal mechanisms. In
addition, the use of murine intermittent hypoxia
models and the absence of clinical OSA annotation in
LUAD datasets may limit direct translational
inference, underscoring the need for prospective,
mechanistic studies.

In summary, this study identifies stemness as a
key Dbiological and clinical bridge linking
OSA-associated intermittent hypoxia to lung cancer
progression, Immune evasion, and therapeutic
resistance. By integrating single-cell analysis,
prognostic modeling, immune landscape profiling,
and drug sensitivity prediction, we provide a
comprehensive framework that advances
understanding of OSA as an oncogenic risk factor.
More importantly, our findings highlight actionable
vulnerabilities and suggest that integrating
stemness-targeted interventions with immunotherapy
may improve outcomes in OSA-associated lung
cancer, paving the way for precision oncology
strategies tailored to patients with sleep-disordered
breathing.

5. Conclusions

In conclusion, (Figure 14) this integrative
single-cell and transcriptomic study provides
evidence that obstructive sleep apnea-associated
intermittent hypoxia is linked to lung cancer
progression through stemness -associated
transcriptional plasticity, metabolic dysregulation,
and immune remodeling. We demonstrate that
stemness-high  tumors are characterized by
mitochondrial stress-related transcriptional
programs, enrichment of developmental signaling
pathway, immune checkpoint upregulation, and
adverse clinical outcomes, while also exhibiting
predicted vulnerabilities to selected kinase inhibitors
and metabolic modulators. The stemness-based
prognostic model developed in this study was
validated across independent cohorts and identified
as an independent indicator of patient survival and
predicted immunotherapy responsiveness. These
findings support stemness as a mechanistic and
clinically relevant axis connecting OSA-associated
hypoxic stress with tumor aggressiveness, highlight
its potential utility as a prognostic biomarker and
stratification factor. Future prospective studies
integrating clinical OSA phenotyping, patient-derived
tumor models, and functional validation will be
essential to confirm these observations and refine

precision oncology strategies for patients with

OSA-related lung cancer.
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