
Journal of Cancer 2026, Vol. 17 
 

 
https://www.jcancer.org 

32 

Journal of Cancer 
2026; 17(1): 32-48. doi: 10.7150/jca.114522 

Research Paper 

Identification of key ferroptosis-related targets in 
colorectal cancer: A transcriptomics-driven study via 
machine learning and AUcell analysis of single-cell 
RNA-sequencing 
Zhiqiang Liang1,†, Zehui Hou1,†, Zhuomin Yu1,†, Bing Zeng1, Fang Li2, Jingjing Wu2, Yingru Li1,, Zhipeng 
Jiang2, 

1. Department of General Surgery, Hernia and Abdominal Wall Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, 
Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou510655, Guangdong Province, China. 

2. Division of Gastrointestinal Surgery, Department of General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; 
The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China. 

† These authors have contributed equally to this work.  

 Corresponding authors: jzpsums@126.com (Z. Jiang); liyingru@mail.sysu.edu.cn (Y. LI). 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See https://ivyspring.com/terms for full terms and conditions. 

Received: 2025.03.26; Accepted: 2025.11.06; Published: 2026.01.01 

Abstract 

Background: Colorectal cancer (CRC) has emerged as the third most prevalent malignancy worldwide. 
The pursuit of dependable molecular signatures stands as a crucial endeavor for tailoring treatment 
approaches, refining prognostic assessments, and heightening therapeutic efficacy in CRC management. 
This investigation was conducted to elucidate essential genes and molecular mechanisms associated with 
ferroptosis in CRC through implementing machine-learning approaches and AUcell analysis. 
Methods: The GEO repository and FerrDb served as primary sources for extracting information of 
gene sets on colorectal cancer and iron-dependent cell death mechanisms. To determine potential 
therapeutic targets with biomarker significance, we implemented LASSO and SVM-RFE methodology. 
The immune infiltrates were characterized followed by a competing endogenous RNA network analysis. 
The AUCell R package was utilized to examine the targeted gene activity patterns within individual cell 
lines using single-cell transcriptome data. The qRT-PCR and Human Protein Atlas (THPA) database were 
used to validate the expression of target genes. Potential therapeutic were explored through the DGIdb 
database. 
Results: Through the application of machine learning methodologies, five genes were identified as pivotal 
biomarker candidates: AQP8, NOX4, NR5A2, SCD, and TIMP1. The result of AUcell algorithm showed 
that the distribution of AUC values exhibited a bimodal pattern, with 2733 cells demonstrating elevated 
AUC values above the threshold of 0.091. The result of qRT-PCR showed that NOX4, SCD, and TIMP1 
were significantly upregulated, while the expression of AQP8 and NR5A2 did not exhibit the expected 
differences. Both mRNA and IHC analyses from HPA database confirmed the abnormal expression of 
these pivotal candidate biomarkers. Algorithmic assessment via CIBERSORT methodology revealed 
notable shifts in immune cell composition within the tumor microenvironment of individuals diagnosed 
with CRC. Furthermore, A competing endogenous RNA network and 51 potential drug candidates were 
identified.  
Conclusion: A systematic framework implementing machine-learning approaches and AUcell analysis 
was established for identifying core ferroptosis genes and validating their functional link to ferroptosis. 
Meanwhile, a reliable ferroptosis-associated signature was established, which shed new light on the 
ferroptosis-mediated molecular mechanisms and therapeutic potential underlying CRC. 
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1. Introduction 
Colorectal cancer (CRC) has emerged as the third 

most prevalent malignancy worldwide and ranks 
second in cancer-related mortality, with statistics 
indicating approximately 1.9 million new diagnoses 
and 903,859 fatalities in 2022[1]. Despite recent 
improvements in mortality and morbidity rates 
through enhanced endoscopic screening protocols, 
recurrence and metastasis continue to pose significant 
clinical challenges[2]. The prognosis for metastatic 
CRC remains poor, with five-year survival rates 
hovering around 20%[3]. Contemporary therapeutic 
approaches for CRC encompass surgical intervention, 
chemotherapeutic regimens, and radiation therapy. 
The advent of immunotherapeutic strategies, 
including anti-PD-1, anti-PD-L1, and anti-CTLA4 
treatments, has revolutionized the treatment 
landscape for CRC, demonstrating remarkable 
therapeutic potential[4]. Novel combinations of 
radiotherapy and immunotherapy have been 
documented to elicit potent antitumor immune 
responses[5, 6]. However, chemoresistance persists as 
a fundamental obstacle in managing metastatic 
disease, ultimately contributing to treatment 
failure[7]. Furthermore, current methodologies are 
constrained by tumor heterogeneity, limited 
precision, and inadequate representation of diverse 
patient populations[8, 9]. The pursuit of dependable 
molecular signatures stands as a crucial endeavor for 
tailoring treatment approaches, refining prognostic 
assessments, and heightening therapeutic efficacy in 
CRC management. Identifying such specific 
biomarkers remains essential within the scope of 
precision medicine, particularly when developing 
customized intervention protocols for individual 
patients diagnosed with this digestive tract 
malignancy. 

Ferroptosis, a distinct form of programmed cell 
death, is notable for iron dependency and lipid 
peroxide accumulation in cellular membranes. This 
process is regulated by both biochemical and genetic 
factors. Its significance extends beyond cellular death, 
playing crucial roles in tumor progression and 
therapeutic responsiveness across diverse 
malignancies, often interacting with reactive oxygen 
species in cancer-related pathways[9]. The hallmarks 
of ferroptosis include mitochondrial morphological 
alterations, iron accumulation, reactive lipid oxygen 
species generation, and the activation of specific 
genetic pathways[10, 11]. Emerging evidence suggests 
that ferroptosis induction in CRC cells may represent 
a promising therapeutic strategy[12, 13]. 
Consequently, the identification and characterization 
of ferroptosis-related genes in CRC are essential for 

advancing our understanding of disease 
pathogenesis, improving therapeutic approaches, and 
enhancing prognostic accuracy. 

This research employs sophisticated machine 
learning algorithms and AUcell analysis methods to 
identify and characterize ferroptosis-associated genes 
in CRC. These findings offer fresh insights into the 
ferroptosis-associated molecular mechanisms 
underlying CRC and potential therapeutic 
interventions targeting these genes. 

2. Materials and Methods 
2.1 Data collection and processing 

The experimental workflow is depicted in 
Supplementary Fig. S1. Expression profiles of CRC 
and normal tissue samples were acquired from the 
Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) databases 
[https://www.ncbi.nlm.nih.gov/geo/ (GEO); 
https://portal.gdc.cancer.gov/databases (TCGA)][14, 
15]. The dataset was partitioned into training and 
validation cohorts. The training set comprised 
GSE44861 (55 normal, 56 CRC samples), GSE110225 
(30 normal, 30 CRC samples), and GSE113513 (14 
normal, 14 CRC samples) (detailed in Supplementary 
Table S1). Batch effects were eliminated using the 
"sva" R package. For validation, GSE106582 (117 
normal, 77 CRC samples), GSE161277 single cell RNA 
Sequencing data (3 normal, 4 CRC samples), and the 
Cancer Genome Atlas Colon Adenocarcinoma data 
(TCGA-COAD) was employed. Clinical annotations 
were extracted from TCGA-COAD. A comprehensive 
set of ferroptosis-related genes (FRGs; n = 563) was 
retrieved from FerrDb (detailed in Table S2). Potential 
drug-gene interactions were systematically examined 
utilizing the Drug-Gene Interaction Database 
(DGIdb). 

2.2 Differential expression analysis 
Expression data for 363 FRGs was extracted from 

the training cohort (representing all expressed FRGs 
in the training set; Table S3). Differential expression 
between tumor and normal samples was determined 
using the “Limma” R package. Significance thresholds 
were set at fold change |logFC| > 0.5 and adjusted 
P-value < 0.05. 

2.3 Functional enrichment analysis 
The clusterProfiler R package was employed to 

conduct Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses on the identified differentially 
expressed FRGs, with statistical significance threshold 
established at P < 0.05 (as detailed in Table S4). For 
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graphical representation of these findings, the ggplot2 
package was utilized. To gain deeper insights into the 
biological relevance of the genes, we implemented 
Gene Set Enrichment Analysis (GSEA), a 
computational methodology that evaluates whether 
predefined gene collections exhibit statistically 
significant concordant differences between biological 
states. This analysis was executed using the official 
GSEA software platform 
(https://www.gsea-msigdb.org/gsea/index.jsp) 
maintaining a significance criterion of P < 0.05 
throughout the evaluation process (as detailed in 
Table S5). 

2.4 Identification and selection of 
characteristic biomarkers through machine 
learning approaches 

Two distinct machine learning methodologies 
were employed to identify ferroptosis-related genes 
(FRGs) linked to CRC: the Least Absolute Shrinkage 
and Selection Operator (LASSO), Support Vector 
Machine Recursive Feature Elimination (SVM-RFE). 
The LASSO algorithm was implemented via the 
glmnet package[16] to perform dimensionality 
reduction, whereby differentially expressed FRGs 
between CRC patients and normal samples were 
selected. Subsequently, the SVM-RFE model was was 
applied to identify optimal variables through the 
elimination of SVM-generated eigenvectors. 
Hyperparameter optimization was conducted using 
the 'Caret' package, employing a grid search method 
with 10-fold cross-validation on the training dataset. 
The diagnostic significance of biomarkers exhibiting 
enhanced discriminative capacity was determined 
using the ‘e1071’package[17]. The representative 
genes were determined through the intersection of 
genes identified by all two methodological 
approaches, resulting in the identification of five 
distinctive genes. 

The predictive capability of these optimal gene 
biomarkers was evaluated through generation of 
Receiver Operating Characteristic (ROC) curves and 
the evaluation of critical performance metrics, 
involvingarea under the curve (AUC), accuracy, 
sensitivity, and specificity. A logistic regression 
model was constructed using the glm function in R, 
based on the five identified marker genes, enabling 
sample type predictions in both the GSE106582 and 
TCGA-COAD datasets. The model's predictive 
performance was subsequently evaluated using ROC 
curve analysis. 

2.5 Single-cell transcriptome analysis pipeline 
The raw data from GSE161277 was retrieved 

from GEO databases. Single-cell transcriptome 

analysis was performed utilizing Seurat v4.1.0 
(http://satijalab.org/seurat/)[18] in R, encompassing 
normalization, scaling, and cell clustering procedures, 
which ultimately identified 8 distinct cell types. Cell 
filtration was implemented using stringent quality 
control parameters (nFeature_ 
RNA>200, percent.mt<10%, nCount_RNA>1000). 
Doublets and non-viable cells were eliminated 
through the application of DoubletFinder package 
(version 2.0.2)[19] and Scrublet v0.2.1[20]. The filtered 
gene-barcode matrices underwent normalization via 
the ‘LogNormalize’ method Following scaling, the 
'FindVariableFeatures' function employing the 'vst' 
method was utilized to identify 2000 highly variable 
genes. Dimensionality reduction was achieved 
through principal component analysis (PCA) on a 
basis of these variable genes, with batch effects being 
mitigated using the Harmony package[21]. The 
resulting dimensionality-reduced clusters were 
visualized on the 2D map generated through 
t-distributed Stochastic Neighbor Embedding (t-SNE) 
utilizing Seurat's ‘FindNeighbors’, ‘FindClusters’ and 
‘runTSNE’. Differential gene expression analysis was 
conducted using the Kruskal-Wallis test. 

2.6 Differential expression analysis and 
ferroptosis-related gene scoring 

Differentially expressed genes (DEGs) within 
each cluster were examined to identify DE-FRGs 
based on the previously established characteristic 
biomarkers. Five DE-FRGs within the DEGs were 
selected from the DEG pool for scoring using AUCell 
(Version 1.12.0)[22]. The AUCell R package 
implemented pathway scoring for individual cells 
based on gene set enrichment analysis principles. 
Cell-specific gene expression rankings were generated 
according to the AUC values of the selected DE-FRGs, 
quantifying the proportion of highly expressed genes 
within each cell. Higher AUC values were indicative 
of increased gene set expression. The 
"AUCell_exploreThresholds" function was employed 
to establish thresholds for identifying cells with active 
gene sets. Subsequently, cellular AUC scores were 
projected onto the UMAP embedding and visualized 
using the ggplot2 R package to highlight active 
clusters. 

2.7 Cell lines 
CRC cell line (HCT116) and normal colorectal 

epithelial cell line (NCM460) were purchased from 
Guangzhou Cellcook Biotech Co., Ltd (Guangzhou, 
China). These cells were cultured in RPMI-1640 or 
DMEM medium supplemented with 10% FBS, 
maintained at 37 °C in a humidified incubator with 
5% CO₂, and subcultured when reaching 70–90% 
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confluency according to the supplier’s instructions. 

2.8 RNA extraction and PCR 
Total RNA was extracted using Trizol (servicebio 

technology CO., LTD., Wuhan, China) and 
reverse-transcribed into cDNA using the PrimeScript 
RT reagent Kit (TaKaRa Biotechnology). The Applied 
Biosystems 7500 Sequence Detection system was used 
to perform quantitative real-time reverse transcription 
PCR (qRT-PCR) with SYBR Green PCR Master Mix 
(Applied Biosystems, Foster City, CA, USA). Each 
experiment was repeated independently at least 
thrice. The relative mRNA expression levels of the 
target genes were calculated using the 2-∆∆Cq method 
and normalized to that of GAPDH. All the primer 
sequences are listed in Table S11. Statistical analyses 
were performed by two-tailed Student's t-test using 
Graphpad Prism (version 10.1.2). 

2.9 The Human Protein Atlas (HPA) database 
The Human Protein Atlas (HPA; 

https://www.proteinatlas.org) is a public database 
that enables validation of target gene expression. It 
characterizes protein expression in 44 major human 
tissues and several cancer types via 
immunohistochemistry[23], with all images and 
annotations available for download. In the present 
study, we compared the mRNA expression levels 
(Table S12) and immunohistochemical (IHC) staining 
patterns of five pivotal ferroptosis-associated genes 
between human normal colorectal tissues and 
colorectal cancer tissues. Statistical analyses were 
performed using GraphPad Prism (version 10.1.2), 
with p-values determined via the Mann–Whitney 
U-test. 

2.10 Analysis of immune cell infiltration 
CIBERSORT methodology was implemented to 

characterize tissue cellular composition based on gene 
expression profiles[24]. Utilizing the Training dataset, 
predictive analysis was conducted to estimate the 
relative abundance of 22 distinct infiltrating immune 
cell populations within each tissue specimen (Table 
S6). Cumulative scores for all evaluated immune cell 
types were calculated per sample[25]. This analysis 
was executed using CIBERSORT package in R Studio, 
with only samples yielding CIBERSORT outputs of P 
< 0.05 being selected for further investigation. The 
statistical relationship between candidate biomarkers 
and immune cells exhibiting significant alterations 
was assessed by calculating Spearman correlation 
coefficients. This non-parametric analysis was 
executed through computational implementation 

utilizing the 'reshape2' and 'ggExtra' packages within 
the R programming environment. 

2.11 CeRNA network 
The construction of mRNA-miRNA interaction 

pairs was accomplished through the integration of 
three databases: miRanda, RNAhybrid, and PITA, 
utilizing the five identified marker genes. Interactions 
consistently predicted across all three databases were 
selected for subsequent analysis. The predicted 
miRNAs were then cross-referenced with the Ensembl 
database, and miRNA-lncRNA pairs were filtered to 
establish a comprehensive ceRNA network 
encompassingmRNA-miRNA-lncRNA interactions. 

3. Results 
3.1 Screening of DE-FRGs betwween the CRC 
and normal samples 

Differential expression analysis was conducted 
on 100 CRC samples and 99 normal samples within 
the merged dataset (comprising GSE44861, 
GSE110225, and GSE113513) utilizing the ‘sva’ R 
package. From the 363 ferroptosis-related genes 
(FRGs) examined, 217 exhibited significant expression 
disparities between CRC and normal samples, 
consisting of 121 upregulated and 96 downregulated 
genes (Fig. 1B), as identified from the merged data 
cohort (Table S7). The distribution and visualization 
of these differentially expressed genes are depicted in 
the heatmap and volcano plot presented in Fig. 1. 

3.2 Functional enrichment analysis of 
DE-FRGs’ signaling pathways 

In our investigation into the underlying 
molecular mechanisms of colorectal carcinoma, a 
thorough analytical investigation was conducted on 
the identified ferroptosis-related genes showing 
differential expression patterns, including GO 
analysis, KEGG analysis and GSEA analysis. The 
outcomes of the GO functional enrichment analysis 
are demonstrated in Fig. 1C. Regarding biological 
processes, DE-FRGs were determined to be implicated 
in cellular response to nutrient levels, oxidative stress 
responses, chemical stress, metal ion, reactive oxygen 
species metabolic process, starvation, external 
stimulus, and fatty acid metabolism. Alterations in 
cellular components were predominantly correlated 
with apical part of cells, apical plasma membrane, 
organelle outer membrane, outer membrane, 
mitochondrial outer membrane, lipid droplet, 
mitochondrial matrix, and NADPH oxidase complex.  
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Fig. 1. The expression levels and functional analysis results of ferroptosis-related genes in CRC: (A) A heatmap illustrating the expression patterns of DE-FRGs across the 
samples (Heatmap displaying the top fifty DEGs.); (B) Volcano plot of DEGs constructed using the fold change values and P-adjust; (C) Gene Ontology (GO) enrichment analysis 
reveals significant associations of DE-FRGs with functions such as “nutrient levels,” “ oxidative stress responses,” “ chemical stress,” and “ metal ion, ”; (D) Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis highlights significant associations between DE-FRGs and pathways related to “autophagy,” “ferroptosis,” “Central carbon 
metabolism,” and “FoxO signaling pathway,”; (E) GSEA-KEGG pathway analysis significant associations between DE-FRGs and pathways related to “Cytokine-cytokine receptor 
interaction,” “Phenylalanine metabolism,” “NOD-like receptor signaling pathway,” “Cytosolic DNA-sensing pathway,” and “Amoebiasis”. 
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Concerning molecular functions, DE-FRGs were 
characterized by activities related to ubiquitin protein 
ligase binding, ubiquitin-like protein ligase binding, 
NAD+ ADP-ribosyltransferase activity, 
superoxide-generating NAD(P)H oxidase activity, 
oxidoreductase activity, protein ADP-ribosylase 
activity and cytokine receptor binding. The results of 
the KEGG pathway enrichment analysis are 
illustrated in Fig. 1D, revealing that DE-FRGs are 
linked to autophagy, ferroptosis, Central carbon 
metabolism, FoxO signaling pathway, and Lipid 
metabolism and atherosclerosis. Furthermore, 
significant enrichment of these differentially 
expressed ferroptosis-related genes was observed 
across diverse immune-associated characteristics. To 
elucidate the function of these genes in distinguishing 
CRC samples from normal tissues, GSEA-KEGG 
pathway analysis was performed. Fig. 1E depict the 
five most enriched pathways for DE-FRGs, 
highlighting Cytokine-cytokine receptor interaction, 
Phenylalanine metabolism, NOD-like receptor 
signaling pathway, Cytosolic DNA-sensing pathway, 
and Amoebiasis. These observations suggest that 
DE-FRGs may be instrumental in CRC pathogenesis 
through their participation in energy metabolism 
regulation, immune cell activity modulation, and 
diverse enzymatic activity alterations. 

3.3 Construction and validation of the machine 
learning model 

Based on the observed disparities between CRC 
patients and healthy individuals, this investigation 
aimed to evaluate ferroptosis-related potential targets 
for inhibiting colorectal cancer progression. Two 
distinct machine learning algorithms—LASSO and 
SVM-RFE methodologies—were applied to the 
merged dataset to identify critical DE-FRGs capable of 
distinguishing CRC patients from normal controls 
(Table S8). The LASSO logistic regression algorithm 
with 10-fold cross-validation was employed, resulting 
in the identification of five candidate genes associated 
with CRC (Fig. 2A and B). Subsequently, the 
SVM-RFE algorithm was utilized to further refine the 
19 DE-FRGs, thereby identifying the optimal feature 
combination. Eventually, five genes were established 
as the most promising potential markers (Fig. 2C). 
Cross-examination of marker genes selected through 
two machine learning algorithms highlighted AQP8, 
NOX4, NR5A2, SCD, and TIMP1 as the principal 
candidates for succeeding investigation (Fig. 2D). 
Furthermore, a logistic regression model was 
constructed using these five potential genes via the R 
package glm. ROC curve analysis demonstrated that 
the model effectively discriminated between CRC 
patients andhealthy individuals, yielding an AUC of 

0.865 (Fig. 2E). The logistic regression model exhibited 
exceptional accuracy and specificity in discriminating 
ferroptosis-related potential targets for preventing 
colorectal cancer progression. Following the 
identification of these five genes, their expression 
levels were initially analyzed in the merged dataset 
(Fig. 2F) which demonstrated significantly differential 
expression patterns between the CRC and normal 
samples.  

3.4 External validation of machine learning 
model 

To further evaluate the potential efficacy of the 
five DE-FRGs, external validation was performed 
using both GSE106582 and TCGA-COAD datasets 
through ROC analyses. The AUC value for five 
DE-FRGs in the GSE106582 cohort was determined to 
be 0.971 (Fig.3A). Furthermore, the AUC value in the 
TCGA-COAD dataset was calculated at 0.865 (Fig.3C), 
indicating that these five DE-FRGs possess definite 
potential values for impeding colorectal cancer 
progression. The expression levels of these genes were 
also examined in both GSE106582 (Fig.3B)and 
TCGA-COAD datasets (Fig.3D), revealing 
significantly differential expression patterns between 
CRC and normal samples, consistent with 
observations in the training dataset. 

The prognostic significance of the five signature 
genes in CRC was assessed using the TCGA-COAD 
dataset for survival analysis, and Kaplan-Meier 
curves were constructed. As shownin Fig. 3, patients 
exhibiting elevated expression levels of NOX4 (p < 
0.028; Fig. 3E), NR5A2 (p < 0.026; Fig. 3F), and SCD (p 
< 0.0015; Fig. 3G) demonstrated significantly 
diminished overall survival compared to those with 
reduced expression. However, it was observed that 
NR5A2 expression was higher in normal samples than 
in CRC samples, with longer overall survival, 
suggesting that this gene may be susceptible to other 
influencing factors. No significant associations were 
detected between the expression of TIMP1 (p = 0.15; 
Fig. 3H), AQP8 (p = 0.08; Fig. 3I), and overall survival. 
In conclusion, the analysis identified SCD, and NOX4 
as prospective molecular targets with significant 
potential for CRC prognostication. 

3.5 GSEA-KEGG pathway analysis of potential 
targets 

To elucidate the functional implications of these 
potential targets in CRC samples, GSEA-KEGG 
pathway analysis was conducted. The five most 
significantly enriched pathways for each potential 
target have been depicted in Supplementary File 2 Fig. 
S2-S6. The analytical results revealed that the enriched 
pathways were associated with diverse biological 
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processes, which include Amino acid metabolism, 
oxidative phosphorylation, cell cycle regulation and 
immune response (such as innate immune responses, 

antigen processing and presentation, Allograft 
rejection). 

 

 
Fig. 2. Five DE-FRGs were identified as signature genes for CRC. The specific methodology employed is as follows: (A and B) The LASSO logistic regression algorithm was 
utilized, with penalty parameter tuning performed through 10-fold cross-validation, leading to the selection of 5 genes associated with CRC characteristics; (C) The SVW-RFE 
algorithm was applied to filter the 217 DE-FRGs, determining the optimal combination of feature genes and ultimately identifying 19 genes as the optimal feature set; (D) The 
marker genes obtained from the LASSO and SVW-RFE models are presented; (E) The area under the curve (AUC) of the logistic regression model for identifying CRC samples 
is shown; (F) Expression of marker genes in the training cohort. 
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Fig. 3. External validation of machine learning model. The specific methodology employed is as follows: (A) The area under the curve (AUC) of the logistic regression model for 
validation cohort (GSE106582); (B) Expression of marker genes in the validation cohort (GSE106582); (C) The AUC of the logistic regression model for TCGA-COAD cohort; 
(D) Expression of marker genes in the TCGA-COAD cohor; (F-I) A study on the effect of five signature genes on patient survival in CRC. 
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3.6 DE-FRGs expression profiles in single-cell 
transcriptome data  

Upon completion of normalization, scaling, 
clustering, and variable gene filtration processes, 
dimensionality-reduced clusters from GSE161277 
dataset were displayed in a two-dimensional 
projection. This visualization was achieved by 
implementing t-distributed Stochastic Neighbor 
Embedding (t-SNE) techniques subsequent to 
Principal Component Analysis (PCA), as illustrated in 
Fig. 4A. Four of the targeted genes were visually 
represented in cell cluster expression diagrams (Fig. 
4B). Notably, NOX4 expression was not detected 
following data processing procedures. Elevated SCD 
expression levels were predominantly observed in 
epithelial cells and macrophages, while TIMP1 
expression was detected across all eight identified 
main cell types within the single-cell transcriptome 
dataset (Fig. 4C-D). 

To characterize the expression patterns of the 
five targeted genes in CRC, the AUCell R package was 
employed to determine the five gene activity profile in 
each cell line (Fig. 4). The AUC values exhibited a 
bimodal distribution, with 2733 cells demonstrating 
comparatively higher AUC values above the 
threshold of 0.091 (Fig. 4E). Cells exhibiting elevated 
scores were primarily identified as macrophages, 
epithelial cells, monocyte, fibroblasts, and B cells (Fig. 
4F), indicating enhanced activity of the targeted genes 
in these cellular populations.  

3.7 The expression of five pivotal 
ferroptosis-associated gene 

We quantified the mRNA expression levels of 
five key ferroptosis-associated genes in both CRC and 
normal colorectal epithelial cell lines using qRT-PCR 
to validate the bioinformatic analysis results. Our data 
showed that the mRNA expression levels of NOX4, 
SCD, and TIMP1 were significantly higher in CRC cell 
lines compared with normal colorectal epithelial cell 
lines (Fig. 5A). However, no significant difference was 
observed in the relative mRNA expression levels of 
AQP8 and NR5A2 between the two groups (Fig. 5A). 
These results indicated that the qRT-PCR validation 
findings were not entirely consistent with the dataset 
analysis results, likely due to the use of only a few cell 
lines (thereby limiting sample representativeness). 

To further validate the bioinformatic analysis 
results, we compared the mRNA expression levels 
and immunohistochemical (IHC) staining patterns of 
five key ferroptosis-associated genes between human 
normal colorectal tissues and colorectal cancer tissues 
using the HPA database, with an expanded sample 
size for the comparison. Compared with normal 

controls, the relative mRNA expression levels of 
NOX4, SCD, and TIMP1 were significantly higher in 
tumor tissues, while those of AQP8 and NR5A2 were 
significantly lower (Fig. 5B). Additionally, we 
retrieved representative IHC staining images from the 
HPA database. These images showed that AQP8 and 
NR5A2 exhibited low staining intensity in colorectal 
cancer tissues, whereas SCD and TIMP1 showed high 
staining intensity (Fig. 5C). Unfortunately, no IHC 
staining data for NOX4 were available in the HPA 
database. Collectively, these results indicated that the 
validation findings from the HPA database were 
consistent with the bioinformatic analysis results. 

3.8 Immune landscape analysis 
The aforementioned findings suggest a strong 

association between the identified target genes and 
immune responses. Moreover, substantial evidence 
has established an intricate relationship between the 
immune microenvironment and CRC[26, 27]. To 
examine the immunological differences between CRC 
and normal samples, the CIBERSORT algorithm was 
implemented. As presented in Fig. 6A, significantly 
reduced proportions of memory B cell, M2 
Macrophages, resting natural killer NK cells, resting 
CD4+ memory T lymphocytes, CD8+ T lymphocytes 
and Follicular helper T cell were observed in CRC 
patients compared to healthy controls. Conversely, 
elevated levels of M1 Macrophages, activated mast 
Cell, activated CD4+ memory T lymphocytes, and 
gamma delta T cell were detected in CRC samples. 
Pearson correlation analysis demonstrated that M1 
Macrophages exhibited negative correlations with 
AQP8 and NR5A2, while displaying positive 
correlations with SCD, NOX4 and TIMP1. Analysis of 
gamma delta T cells revealed a significant positive 
association with SCD, NOX4, and TIMP1 expression 
levels, while simultaneously demonstrating an 
inverse relationship with AQP8 and NR5A2 
expression patterns. CD8+ T lymphocytes positively 
correlated with AQP8 and NR5A2 (Fig. 6B. These 
observations suggest that alterations in the immune 
microenvironment of CRC may be intricately linked 
to the five identified target genes. 

3.9 A ceRNA network based on potential 
targets 

A competing endogenous RNA (ceRNA) 
network was subsequently constructed based on the 
five identified potential targets, utilizing the 
miRanda, miRanda, RNAhybrid, and PITA databases. 
This comprehensive network encompasses 571 nodes 
(comprising 5 potential targets, 20 miRNAs, and 546 
lncRNAs) interconnected by 1513 edges (Fig. 6C).  
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Fig. 4. Expression analysis of five signature genes in the single-cell transcriptome dataset GSE161277. (A) The t-distributed stochastic neighbor embedding (t-SNE) plot of the 
eight identified main cell types among single-cell transcriptome dataset GSE161277. (B) t-SNE map highlighting the expression of signature genes. (C) Bubble plot showing the 
expression of the signature genes related different cell types. The size of each dot represents the percent expressed; average expression is shown by color. (D) Expression of 
signature genes with eight types of main cell types in single cell transcriptome data. (E) Activity profile of the five signature gene (Using the AUCell R package). The threshold 
value of AUC was 0.091, and 2733 cells exceeded it. (F) The tSNE plot of each cell based on the AUcell score. High-scoring cells are highlighted with red color. 

 
Analysis of the network architecture revealed 

that 206 distinct lncRNAs canmodulate AQP8 expres-
sion through competitive binding with 4 miRNAs, 
specifically hsa-miR-330-5p, hsa-miR-4640-5p, 
hsa-miR-4726-5p and hsa-miR-6722-3p. Additionally, 
173 lncRNAs were identified to regulate NOX4 

expression via competitive binding with 3 miRNAs, 
including hsa-miR-10400-5p, hsa-miR-1226-5p, and 
hsa-miR-3960; NR5A2 expression was found to be 
regulated by 127 lncRNAs through targeting of 2 
miRNAs: hsa-miR-663a and hsa-miR-6785-5p. 
Furthermore, TIMP1 expression appears to be 
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modulated by 372 lncRNAs through competitive 
binding with 6 miRNAs, such as hsa-miR-330-5p, 
hsa-miR-4707-5p, and hsa-miR-4787-5p. The most 
extensively regulated target was SCD, with 635 

lncRNAs influencing its expression through 
interactions with 10 miRNAs, including hsa-miR- 
1207-5p and hsa-miR-1249-5p. Comprehensive details 
regarding the ceRNA network are shown in Table S9. 

 

 
Fig. 5. The expression of five pivotal ferroptosis-associated gene. (A) The mRNA level of AQP8 was determined by qPCR inCRC and normal colorectal epithelial cell lines. (B) 
The mRNA expression levelsof five key ferroptosis-associated genes from HPA database. (C) Immunohistochemistry images of pivotal ferroptosis-associated gene in colorectal 
cancer and normal tissues detected in the HPA database. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001. 
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Fig. 6. Immune Infiltration Analysis, ceRNA network, and drug network of five signature genes. (A)The CIBERSORT algorithm was employed to investigate the differences in the 
immune microenvironment between CRC patients and normal samples. (B) A heatmap illustrating the expression patterns of five signature genes across immune 
microenvironment. (C) The ceRNA network, constructed based on the five marker genes, comprises 571 nodes, which include five marker genes, 20 miRNAs, and 540 lncRNAs, 
interconnected by 1513 edges (CeRNA network displaying the top five lncRNAs). (D) Prediction of targeted drugs for marker genes. 

 
3.10 Prediction of potential gene-targeted 
drugs 

Potential therapeutic compounds targeting the 
five identified genes were investigated utilizing the 
Drug-Gene Interaction Database (DGIdb) with default 
parameter settings. The interactions between genes 
and potential drugs were visualized using Cytoscape 
software (Fig. 6D). A comprehensive screening 
revealed 51 compounds that specifically target the 
potential genes of interest, as detailed in Table S10. 
Among these, 41 compounds were found to target 
AQP8, seven compounds targeted SCD, two 
compounds targeted NR5A2, and one compound 
targeted NOX4. No targeted therapeutic agents were 
identified for TIMP1. Furthermore, among the 
identified compounds, only 11 drugs targeting SCD 
and AQP8 have received regulatory approval, while 
no approved drugs currently target TIMP1, NR5A2, 

or NOX4. 

4. Discussion 
The management of CRC is currently dominated 

by surgical resection, chemotherapy, targeted 
therapies, and immunotherapeutic approaches[28, 
29]. Treatment selection is governed by individual 
patient's medical condition, tumor characteristics, and 
American Joint Committee on Cancer staging. Despite 
standardized staging, CRC exhibits remarkable 
heterogeneity in prognostic outcomes and therapeutic 
responses among patients with identical stage 
classifications[30]. The administration of uniform 
adjuvant therapies without consideration of genetic 
and molecular tumor heterogeneity represents a 
contentious clinical practice. Optimization of 
therapeutic regimens necessitates the identification of 
more efficacious prognostic biomarkers and 
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therapeutic targets founded on molecular biology and 
immunological principles. Ferroptosis, a recently 
discovered form of regulated cell death, has been 
documented in large number of malignancies and 
holds considerable promise for anti-neoplastic 
therapeutic development[31, 32]. This cell death 
modality may be selectively directed against invasive 
and aggressive cancer stem cell populations, thereby 
potentially enhancing immunotherapeutic efficacy 
and mitigating immunotherapeutic resistance[33, 34]. 
Consequently, ferroptosis-related differentially 
expressed genes and their encoded proteins may 
constitute viable anti-cancer interventions for CRC 
management.  

Machine learning, a branch of artificial 
intelligence that employs statistical algorithms to 
analyze computational data, is widely applied for 
selecting features in high-throughput datasets. The 
combination of bioinformatics and machine learning 
techniques improves the accuracy and effectiveness of 
identifying genes associated with diseases, making it 
a key focus in omics studies. AUCell represents a 
novel methodological approach enabling the 
identification of cells with active gene regulatory 
networks in single-cell RNA-sequencing data, 
facilitating evaluation of both the proportion of 
expressed signature genes and their relative 
expression values compared to the other genes within 
individual cells[22]. A systematic framework 
implementing machine learning approaches and 
AUCell analysis was established in this study to 
identify core ferroptosis genes and validate their 
functional association with ferroptosis. Unlike 
previous studies, which primarily relied on 
differential expression analysis or single-algorithm 
screening to identify ferroptosis-related genes in 
CRC[35, 36], our study applied a combination of 
machine learning algorithms to screen core genes 
from differentially expressed genes, followed by 
cross-validation across multiple datasets. This 
approach minimizes bias from single-algorithm 
analysis. More importantly, our study quantified 
ferroptosis pathway activity at the single-cell level 
using AUCell, ensuring that the candidate genes are 
not merely differentially expressed but also closely 
associated with the functional activity of the 
ferroptosis pathway. This systematic framework 
addresses a key limitation of previous studies, which 
often prioritize genes based solely on expression 
differences without validating their functional link to 
ferroptosis.  

Meanwhile, bioinformatics and machine 
learning techniques were employed in the present 
investigation to elucidate ferroptosis mechanisms in 
CRC. A robust ferroptosis-related gene signature 

comprising five genes was established through the 
combinatorial application of Lasso and SVM-RFE 
methodologies. The identified signature encompasses 
several ferroptosis-related genes associated with 
diverse aspects of cancer development. TIMP1’s 
functionality extends beyond modulation of 
intracellular oxidative stress levels to potentially 
influence immune responses, angiogenesis, and 
tumor cell migration within the tumor 
microenvironment[37, 38]. NOX4 was observed to be 
significantly enriched in oncogenic-related pathways 
and demonstrated clear correlations with immune 
cellular subtypes[39]. SCD functions as a principal 
enzyme catalyzing the conversion of saturated fatty 
acidsinto monounsaturated fatty acids. The resultant 
accumulation of unsaturated fatty acids not only 
accelerates tumor proliferation and metastasis but 
also suppresses cell apoptosis and ferroptosis[40]. 
AQP8, a member of the cell membrane channel 
protein family, has been demonstrated to influence 
cellular migration, proliferation, and differentiation 
processes[41]. Additionally, studies have 
demonstrated that AQP8 reduces CRC cell 
proliferation, migration, and invasiveness through the 
downregulation of PI3K/AKT signaling[42, 43]. 
NR5A2, a transcription factor, regulates the 
expression of genes specific to certain cell types and 
tissues. It facilitates tumor growth and metastasis by 
activating the Wnt/β-catenin signaling pathway[44]. 
Collectively, these findings illuminate the complex 
interrelationships between the identified 
ferroptosis-related genes and their encoded proteins 
in cancer progression, underscoring their potential 
utility as therapeutic targets and prognostic indicators 
in CRC management. Subsequently, cells with active 
expression of this five-gene ferroptosis-related 
signature were validated to characterize the 
expression patterns of the five targeted genes in CRC, 
using AUCell algorithms. We found that 
macrophages, epithelial cells, monocyte, fibroblasts, 
and B cells were most active in activities of five genes. 
Additionally, the qRT-PCR and THPA database were 
used to validate the expression of target genes. The 
result of qRT-PCR showed that NOX4, SCD, and 
TIMP1 were significantly upregulated, while the 
expression of AQP8 and NR5A2 did not exhibit the 
expected differences. The qRT-PCR validation 
findings were not entirely consistent with the dataset 
analysis results, likely due to the use of only a few cell 
lines (thereby limiting sample representativeness). 
Leveraging the HPA database, we analyzed both IHC 
staining and mRNA expression in a large number of 
samples. Both mRNA and IHC analyses from HPA 
database confirmed the abnormal expression of these 
pivotal candidate biomarkers. From this, our findings 
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warrant further validation in future studies through 
the inclusion of large-scale clinical samples and 
prospective research designs, which will help verify 
the universality of the identified core ferroptosis 
genes across different subgroups of CRC. 

Our analysis revealed that DE-FRGs play pivotal 
roles in biological processes including innate immune 
responses, antigen processing and presentation, and 
immune response regulation. These findings suggest 
that these genes might serve as crucial contributors to 
the pathogenesis and Immune escape mechanisms of 
colorectal cancer. The results of Gene Set Enrichment 
Analysis (GSEA) suggested that pathways related to 
amino acid metabolism and oxidative 
phosphorylation potentially exert considerable impact 
on the immune microenvironment surrounding CRC, 
offering crucial understanding regarding immune cell 
functions within tumoral contexts. Implementation of 
the CIBERSORT algorithmic approach revealed 
notable distinctions in immune microenvironment 
composition when comparing samples from CRC 
patients with those from healthy individuals. Several 
immune cell populations, including CD8+ T 
lymphocytes, gamma delta T cells, M1 macrophages, 
and M2 macrophages, demonstrated associations 
with the five identified ferroptosis-related genes. 
These observations indicate that changes in the CRC 
immune microenvironment might be intricately 
linked to the expression of these target genes. 
Additionally, utilizing the Drug-Gene Interaction 
Database (DGIdb), potential therapeutic compounds 
targeting the signature genes were identified. 
Notably, only 11 approved drugs were found to target 
SCD and AQP8, while no approved therapeutic 
agents currently exist for TIMP1, NR5A2, and NOX4, 
potentially reflecting limitations in their clinical 
applicability. Future investigative efforts focused on 
drug development for these underrepresented genes 
may establish foundations for novel therapeutic 
strategies. 

While this investigation underscores the pivotal 
contribution of FRGs in CRC and establishes a novel 
methodological framework integrating the AUCell 
algorithm with computational learning techniques, 
certain constraints warrant recognition. First, the 
majority of the data analyzed in this study were 
derived from publicly available databases. Although 
qRT-PCR validation in cell lines and HPA database 
analysis partially supported our findings, these 
results were limited by the small number of cell lines 
used and the indirect nature of public database 
validation. Specifically, the lack of large-scale, 
prospectively collected clinical samples with matched 
molecular and clinical data restricts the direct 
generalization of our conclusions to diverse patient 

populations. Furthermore, while public databases 
provide valuable resources for large-scale exploratory 
analyses, they may lack detailed clinical annotations 
and fail to fully control or explicitly report the 
detailed inclusion/exclusion criteria of patient 
cohorts—factors that are critical for deeper 
translational insights. This limitation restricted our 
ability to perform stratified analyses on the 
association between core ferroptosis genes and 
specific clinical parameters (e.g., tumor stage, 
differentiation grade, or response to chemotherapy), 
thereby hindering a comprehensive understanding of 
their clinical relevance across diverse CRC subgroups. 
To overcome these limitations, subsequent 
investigations should be directed toward several 
critical domains. Initially, original clinical specimens 
need to be collected for prospective validation. A 
large cohort of surgically resected CRC tissues 
(including adjacent normal tissues) with detailed 
clinical annotations (e.g., patient demographics, 
treatment history, and survival outcomes) is planned 
to be collected through collaboration with 
multi-center clinical institutions. With 
well-characterized clinical specimens, strict 
inclusion/exclusion criteria (e.g., no prior anticancer 
treatment, and complete follow-up data) will be 
established to ensure cohort homogeneity. This will 
enable the association between core gene expression 
and specific clinical subgroups (e.g., early vs. 
advanced CRC, microsatellite stable vs. unstable 
tumors) to be explored, and their context-dependent 
roles in disease progression to be clarified. 
Subsequently, functional experiments with clinical 
data were integrated. Future work will combine in 
vitro functional assays (e.g., gene 
knockout/overexpression in CRC cell lines, 
ferroptosis induction assays) with in vivo animal 
models to validate the mechanistic roles of core genes 
in regulating ferroptosis. These functional data will be 
integrated with clinical sample analysis to determine 
whether these genes can serve as predictive 
biomarkers for ferroptosis-targeted therapies or 
prognostic indicators in CRC. 

Distinct from previous prognostic models[35, 
45], Our investigation has employed a novel 
methodological framework that integrates the AUCell 
algorithm with computational learning techniques, 
thereby characterizing five prospective targets among 
ferroptosis-related genes in CRC patients. This 
framework prioritizes genes based on expression 
differences with validating their functional link to 
ferroptosis. By integrating AUCell-based functional 
validation with machine learning algorithms and 
leveraging multiple databases, including GEO, HPA, 
and TCGA, we not only expanded the sample size for 
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analyzing ferroptosis-related core genes in CRC but 
also rigorously validated the universality of these 
ferroptosis-related core genes across CRC contexts. 
This approach establishes opportunities for the 
advancement of innovative therapeutic interventions. 
The modulation or inhibition of ferroptosis may be 
achieved through targeting these genes or biological 
pathways within the FRG signature, potentially 
leading to enhanced treatment strategies for CRC. 
Such approaches could encompass the development 
of pharmaceutical interventions that combine 
conventional chemotherapy with small-molecule 
inhibitors or selective agents that target 
ferroptosis-related pathways. Furthermore, the 
integration of these FRGs and associated pathways 
with additional omics data, including epigenomics 
and metabolomics, could potentially unveil novel 
biomarkers and therapeutic targets. Through the 
amalgamation of multiple strata of molecular data, a 
comprehensive understanding of the intricate 
interactions between various biological processes can 
be gained, enabling the identification of key molecular 
entities suitable for therapeutic intervention. 

5. Conclusion 
In summary, A systematic framework 

implementing machine-learning approaches and 
AUcell analysis was established in this study to 
identify core ferroptosis genes and validate their 
functional link to ferroptosis. Meanwhile, a robust 
and reliable ferroptosis-related signature comprising 
AQP8, NOX4, NR5A2, SCD, and TIMP1 was 
established by analyzing the sequencing data of 
ferroptosis-related differentially expressed genes in 
CRC. The efficacy of this signature has been 
substantiated across multiple independent datasets, 
with further validation of its relationship to immune 
cell infiltration. These findings offer fresh insights into 
the ferroptosis-associated molecular mechanisms 
underlying CRC, with particular emphasis on the 
importance of this ferroptosis-related signature 
within the immune microenvironment and potential 
therapeutic interventions targeting these 
genes—aspects that merit additional exploration. 
Future research efforts should prioritize validating 
the functional characteristics of this 
ferroptosis-related signature and clarifying its 
interactions with immune cell components, thereby 
unveiling innovative approaches for managing CRC. 
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