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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a 5-year survival rate of
below 8%. Standard chemotherapy regimens, including gemcitabine and FOLFIRINOX (fluorouracil,
leucovorin, irinotecan, and oxaliplatin), offer limited clinical benefits. Although immune checkpoint
inhibitors (ICls) have revolutionized cancer immunotherapy, PDAC remains largely unresponsive to ICl
monotherapy. In this study, we demonstrate that dasatinib, a multi-targeted tyrosine kinase inhibitor,
reduces programmed death ligand 1 (PD-L1) expression in PDAC cells via a proteasome-dependent
degradation pathway. Moreover, PD-L1 levels were correlated with dasatinib sensitivity, suggesting its
utility as a predictive biomarker. These findings not only elucidate a novel mechanism of dasatinib’s action
but also provide a strong rationale for combining dasatinib with ICls to overcome immune resistance and

enhance therapeutic efficacy against PDAC.
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Introduction

Pancreatic cancer (PC) is among the deadliest
malignancies, with a 5-year survival rate of below 5%
and a median survival of just 6 months when surgical
resection is not feasible [1]. Approximately 80%-90%
of cases arise as pancreatic ductal adenocarcinoma
(PDAC) from the exocrine pancreas, and its
nonspecific early symptoms make timely diagnosis
difficult with current screening methods [2,3].
PDAC’s intrinsic resistance to both radiotherapy and
standard chemotherapies, including gemcitabine,
nanoparticle albumin-bound paclitaxel, and the
FOLFIRINOX (fluorouracil, leucovorin, irinotecan,
and oxaliplatin) regimen, yields only modest

extensions in survival [4-9]. Immune checkpoint
inhibitors (ICIs) targeting cytotoxic T
lymphocyte-associated ~ antigen 4  (CTLA-4),
programmed death 1 (PD-1), and PD ligand 1 (PD-L1)
have revolutionized many cancers but have largely
failed in PDAC, which exhibits primary resistance to
monotherapy [10,11]. Only the rare 1%-2% of PDAC
cases with a mismatched repair deficiency (AMMR) or
high microsatellite instability (MSI-H), which
correlates with a higher tumor mutation burden and a
more-inflamed  microenvironment, respond to
pembrolizumab as a second-line treatment [12-16].
Unraveling the molecular drivers of lesion
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development, carcinogenesis, and treatment
resistance, and finding ways to reprogram the tumor
microenvironment toward a T-cell-inflamed state are
critical for devising novel, more-effective therapies.

SRC, a non-receptor protein tyrosine kinase,
plays a critical role in cellular signaling pathways,
regulating key biological functions such as cell
growth, differentiation, adhesion, and migration. In
PDAC, aberrant SRC activation significantly
contributes to disease progression [17]. Dasatinib, an
ATP-competitive tyrosine kinase inhibitor (TKI)
originally developed to target both SRC and ABL
kinases, also inhibits KIT, ephrin receptors, and
various other kinases [18,19]. Although dasatinib is
approved by the US Food and Drug Administration
(FDA) for treating Philadelphia chromosome-positive
(Ph+) chronic myeloid leukemia (CML) and acute
lymphoblastic leukemia (ALL) [20], phase II clinical
trials have demonstrated that dasatinib, whether used
alone or in combination with gemcitabine or FOLFOX
(fluorouracil, leucovorin, and oxaliplatin), does not
provide significant clinical benefits for advanced
PDAC patients [21-23]. Nevertheless, its tolerability in
patients suggests potential for further investigation.
Identifying predictive biomarkers and exploring
combination therapies could improve the efficacy of
dasatinib in PDAC treatment.

In this study, we identified a significant
correlation between dasatinib sensitivity and PD-L1
expression in PDAC cells, with higher PD-L1 levels
associated with increased sensitivity to the drug. In
contrast, dasatinib sensitivity was not correlated with
SRC expression in these cells. Furthermore, our
results indicate that dasatinib inhibits PD-L1
expression via a proteasome-dependent pathway.
These findings provide novel insights into the
mechanisms underlying dasatinib’s action in PDAC
and could inform future therapeutic strategies.

Materials and Methods

Bioinformatics analyses of published data

Drug sensitivity and gene expression data from
cancer cell lines, obtained from the Cancer
Therapeutics Response Portal (CTRP [24-26]) project,
were retrieved from the DepMap database
(https:/ /depmap.org/portal/) [27].  Correlations
between drug sensitivity and gene expressions were
analyzed using Pearson’s correlation.

Materials

Dulbecco's modified Eagle medium (DMEM;
#11965084), Roswell Park Memorial Institute
(RPMI)-1640 (#22400071), L-glutamine (#25030081),
non-essential amino acids (NEAA; #11140050),

4409
sodium pyruvate (#11360070), and an
antibiotic-antimycotic solution (#15240062) were

obtained from Gibco (Grand Island, NY, USA). Fetal
bovine serum (FBS; #35-010-CV) was obtained from
Corning (Tewksbury, MA, USA). A GENEzol TriRNA
Pure Kit (#GZX100) was obtained from Geneaid (New
Taipei City, Taiwan). 1Q2 SYBR Green Fast qPCR
System Master Mix (#DBU-006) was obtained from
Bio-Genesis Technologies (Taipei, Taiwan). An iScript
cDNA Synthesis Kit (#1708891) was obtained from
Bio-Rad Laboratories (Hercules, CA, USA). Dasatinib
(#D-3307) was purchased from LC Laboratories
(Woburn, MA, USA). Dimethyl sulfoxide (DMSO;
#D5879), chloroquine (#C6628), phosphatase inhibitor
cocktail tablets (#04906837001), and protease inhibitor
cocktail tablets (#11873580001) were obtained from
Sigma-Aldrich (St. Louis, MO, USA). MG132
(#A11043) was purchased from Adooq BioScience
(Irvine, CA, USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT; #AF-L11939)
was obtained from Alfa Aesar (Ward Hill, MA, USA).
Radioimmunoprecipitation assay (RIPA) lysis and
extraction buffer (#89901) was purchased from
Thermo Fisher Scientific (Waltham, MA, USA).
Bradford protein assay (#5000006), dual-color protein
marker (#1610374), 10x sodium dodecyl sulfate
(SDS)-glycine running buffer (#1610772), Trans-Blot
Turbo RTA mini 0.2-um nitrocellulose transfer kit
(#1704270), and other reagents for the Western blot
analysis were purchased from Bio-Rad Laboratories.
PD-L1 (#GTX104763), SRC (#GTX50504),
phospho-Tyr416-SRC (#GTX134837), and GAPDH
(#GTX100118) antibodies were obtained from
GeneTex (Hsinchu, Taiwan). Interferon regulatory
factor 1 (IRF1) (#8478) and phospho-Tyr705-signal
transduction and activator of transcription 3 (STAT3)
(#9145) antibodies were obtained from Cell Signaling
Technology (Beverly, MA, USA). The STAT3 (#sc-482)
antibody was obtained from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). The LC3B
(#18725-1-AP) antibody was obtained from
Proteintech Group (Rosemont, IL, USA). Horseradish
peroxidase (HRP)-conjugated anti-mouse
(#115-035-003) and  anti-rabbit  (#111-035-003)
secondary antibodies were purchased from Jackson
Laboratory (Bar Harbor, MA, USA). An enhanced
chemiluminescence (ECL) reagent (#NEL105001EA)
was purchased from PerkinElmer (Waltham, MA,
USA).

Cell culture

AsPC-1 (#60494). BxPC-3 (#60283), HPAC
(#60495), and PANC-1 (#60284) cells were obtained
from the Bioresource Collection and Research Center
(BCRC; Hsinchu, Taiwan). These cells were cultured
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in DMEM (HPAC and PANC-1) or RPMI-1640
(AsPC-1 and BxPC-3) supplemented with 10% FBS, 1
mM sodium pyruvate, a 1% NEAAs, 2 mM
L-glutamine, and 1% antibiotic-antimycotic solution.
They were grown in a humidified 37°C, 5% CO»
incubator.

Cell-viability assay

Cells were plated in a 96-well plate and allowed
to adhere overnight. The following day, the medium
was replaced with 200 pL of drug-containing medium
in each well. After 72 h of incubation, 50 pL of an MTT
solution (2 mg/mL) was directly added to the wells,
and cells were incubated for an additional 4 h.
Subsequently, the medium was removed, and the
resulting MTT formazan crystals were dissolved in
200 pL of DMSO. Absorbance was measured at 570
and 650 nm on a microplate reader (Bio-Tek
Instruments, Winooski, VT, USA). Cell viability was
determined by subtracting the absorbance at 650 nm
from that at 570 nm and normalizing the values to
untreated control cells.

Real-time quantitative polymerase chain
reaction (qPCR)

Total RNA was extracted using the GENEzol
TriRNA Pure Kit. First-strand cDNA was synthesized
with the iScript cDNA Synthesis Kit. PCR
amplification was performed using 1Q2 SYBR Green
Fast qPCR System Master Mix on a QuantStudiol
Real-Time PCR System (Thermo Fisher Scientific).
Primer sequences used were as follows: PD-L1:
forward 5-TATGGTGGTGCCGACTACAA-3'" and

A B

reverse 5'-TGCTTGTCCAGATGACTTCG-3'; and
B-actin: forward 5-GTTGCTATCCAGGCTGTGCT-3'
and reverse 5'-AGGGCATACCCCTCGTAGAT-3'".

Western blot analysis

Cells were rinsed twice with ice-cold
phosphate-buffered saline (PBS) and centrifuged at
1,500 rpm for 5 min. The cell pellet was then
resuspended in RIPA lysis buffer and incubated on ice
for 30 min, with vortexing every 5 to 10 min. The
lysate was subsequently centrifuged at 16,000 xg and
4 °C for 20 min, and the supernatant was collected.
The protein concentration was measured using the
Bradford protein assay. Equal amounts of protein
were mixed with loading buffer and subjected to
SDS-polyacrylamide gel electrophoresis (SDS-PAGE).
Following electrophoretic separation, proteins were
transferred onto a nitrocellulose membrane. The
membrane was blocked with 5% non-fat milk for 30
min and incubated overnight at 4°C with primary
antibodies. The next day, the membrane was treated
with an HRP-conjugated anti-rabbit or anti-mouse
secondary antibody for 2 h. Proteins were detected
using an ECL reagent, and signals were visualized
with the GE Amersham Imager 600 (GE Healthcare
Life Sciences, Marlborough, MA, USA).

Results and Discussion

Correlation of dasatinib sensitivity with PD-L1
expression in PDAC cells

Using the Cancer Therapeutics Response Portal
(CTRP) database [24-26] via the CellMinerCDB

All CCLs Dasatinib activity (AUC) vs. PD-L1 expression
° Cancer cell lines(CCLs) Pearson’s r pvalue
° uterus (n = 25) -0.346 0.090
= 44 og® urinary_tracat»(n = _24)( 31) -g?g; gl;g
= L upper_aerodigestive (n = -0. '
g’ : thyroid (n = 10) 0.122 0.737
@ o H soft_tissue (n = 15) -0.158 0.574
= skin (n = 43) -0.195 0.210
n prostate (n = 4) -0.847 0.153
c plasma_cell (n = 24) 0.191 0.371
.‘g 0 - peripheral_nervous_system (n =12) -0.201 0.531
© : pancreas (n = 37) -0.461 0.004
° : ovary (n = 37) 0.027 0.874
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Q- T o lung (n = 139) -0.376 <0.001
° '5. liver (n =21) -0.369 0.100
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oA ° fibroblast (n = 1) nd nd
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I E— blood (n = 69) 0.111 0.364
PD-L1 bile_duct (n =7) -0.073 0.876

Figure 1. Dasatinib drug sensitivity correlates with PD-L1 expression. (A) Drug response profiles correlated with PD-L] mRNA expression in cancer cell lines (CCLs)
were analyzed using the CTRP database. (B) The correlation between dasatinib drug activity (area under curve, AUC) and PD-L] mRNA expression in each CCL type is shown.
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website (https:/ /discover.nci.nih.gov/rsconnect/
cellminercdb/) [28], we found that cancer cells with
higher PD-L1 messenger (m)RNA expression were
more responsive to dasatinib (Fig. 1A), especially in
pancreatic, lung, and breast cancers (Fig. 1B). To
validate this correlation, four PDAC cell lines (HPAC,
BxPC-3, AsPC-1, and PANC-1) were examined.
HPAC and BxPC-3 cells, which have higher PD-L1
expression, demonstrated greater sensitivity to
dasatinib compared to PD-L1-negative AsPC-1 and
PANC-1 cells (Fig. 2A,B). While PD-L1 expression is
known to be regulated by STAT3/IRF1 signaling [29],
no correlation was found of STAT3 or IRF1 protein
levels with PD-L1 expression in the four PDAC cell
lines (Fig. 2A). Additionally, STAT3 and IRFI mRNA
levels were not linked to dasatinib sensitivity (Fig.
2C). These findings suggest that PD-L1 may serve as a
biomarker for dasatinib's effectiveness in treating

A
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PDAC.

Dasatinib sensitivity was not correlated with
SRC in PDAC cells

The CTRP data analysis revealed that unlike
dasatinib, activity of other related TKIs were not
associated with PD-L1 mRNA expression (Table 1).
Representative scatter plots for SRC inhibitors,
including dasatinib, saracatinib, KX2-391, and
bosutinib, are presented in Fig. 3A. Additionally,
neither the active (Tyr416-phosphorylated) nor total
SRC protein levels (Fig. 3B) were correlated with
dasatinib sensitivity in the four PDAC cell lines tested
(Fig. 2B). Moreover, dasatinib effectively inhibited
SRC activity in these cells (Fig. 3C), from which we
concluded that dasatinib sensitivity in PDAC cells is
not linked to SRC inhibition.

PD-L1-high PD-L1-low
m HPAC &1 BxPC-3 m AsPC-1 = PANC-1

005 01 0.25
Dasatinib (pM)

0.5 1

Dasatinib vs. STAT3
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Figure 2. Dasatinib exhibits higher anticancer activity in PDAC cells that highly express PD-L1. (A) Protein expressions of PD-LI, IRFI, p-STAT3, and STAT3 in
HPAC, BxPC-3, AsPC-1, and PANC-1 cells were compared using a Western blot analysis. (B) HPAC, BxPC-3, AsPC-1, and PANC-1 cells were treated with various
concentrations of dasatinib for 72 h. Cell viability was determined by an MTT assay. (C) Scatter plots show correlations of dasatinib drug activity with PD-LI, IRFI, and STAT3
mRNA expressions in PDAC cell lines.
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Figure 3. Dasatinib drug sensitivity was not correlated with SRC expression. (A) Scatter plots show correlations between drug activity of SRC inhibitors (dasatinib,
saracatinib, KX2-391, and bosutinib) and PD-LI mRNA expression in PDAC cell lines. (B) Protein expressions of p-Y416-SRC and SRC in HPAC, BxPC-3, AsPC-1, and PANC-1
cells were compared using a Western blot analysis. (C) HPAC, BxPC-3, AsPC-1, and PANC-1 cells were treated with the indicated concentrations of dasatinib for 24 h. A
Western blot analysis was performed to determine expressions of the p-Y416-SRC and SRC proteins.

Table 1. Correlations between the drug activity of selected TKls
and PD-LI mRNA expression in PDAC cell lines. Raw data were
obtained from the CellMinerCDB website.

Drug name Targets Pearson's correlation P
coefficient Value
Dasatinib SRC, ABL1, KIT 0.584 0.00549
Masitinib KIT, PDGFRA/B 0.461 0.0406
OSI-930 KIT, VEGFR2 0.31 0.226
Tandutinib KIT, VEGFR3 0.292 0.199
Saracatinib SRC, ABL1 0.268 0.253
Ki8751 KIT, VEGFR2, PDGFRA  0.207 0.382
Lenvatinib KIT, VEGFR, 0.15 0.518
PDGFRA/B
Imatinib BCR-ABL1, KIT 0.04 0.858
Bosutinib SRC, ABL1 -0.098 0.672
KX2-391 SRC -0.134 0.586
Sunitinib KIT, VEGFR, -0.154 0.504
PDGFRA/B
Nilotinib ABL1, BCR, KIT -0.154 0.505
Axitinib KIT, VEGEFR, -0.175 0.46
PDGFRA/B

Dasatinib inhibited PD-L1 expression via a
proteasome-dependent pathway

Since dasatinib effectively reduced cell
viability in PD-L1-positive/high HPAC and BxPC-3
cells (Fig. 2B), we investigated whether dasatinib also
affects PD-L1 expression. Notably, dasatinib inhibited
PD-L1 protein expression, and this effect was
diminished by the proteasome inhibitor, MG-132 (Fig.
4A), but not by the lysosome inhibitor chloroquine
(Fig. 4B). Additionally, dasatinib did not significantly
alter PD-L1 mRNA levels (Fig. 4C). These results
suggest that dasatinib reduces PD-L1 expression by
promoting its proteasomal degradation. Given that
cancer cells use PD-L1 to evade the immune system,
drugs that downregulate PD-L1 expression are
believed to enhance the effectiveness of cancer
immunotherapy [30-32]. Furthermore, PD-L1-positive
PDAC patients have significantly worse prognoses
compared to PD-L1-negative patients [33]. Therefore,
we propose that dasatinib could be a promising
treatment for PD-Ll-high PDAC patients when
combined with ICIs.
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Figure 4. Dasatinib promotes the proteasomal degradation of the PD-L1 protein. (A) HPAC and BxPC-3 cells were treated with the indicated concentrations of
dasatinib with or without | pM MG132 for 24 h. A Western blot analysis was performed to determine PD-L1 protein expression. Data from three independent experiments were
quantified and plotted, and *p < 0.05 indicates statistical significance between treatments with and without MG132. (B) HPAC and BxPC-3 cells were treated with the indicated
concentrations of dasatinib with or without 15 uM chloroquine (CQ) for 24 h. A Western blot analysis was performed to determine PD-LI protein expression. Data from three
independent experiments were quantified and plotted. (C) HPAC and BxPC-3 cells were treated with the indicated concentrations of dasatinib for 24 h. A real-time qPCR was

performed to determine PD-LI mRNA expression.

Conclusions

Our study reveals a novel mechanism by which
dasatinib downregulates PD-L1 expression in PDAC
cells via a proteasome-dependent pathway. The
correlation between PD-L1 expression and dasatinib
sensitivity suggests that PD-L1 could serve as a
biomarker for predicting the response to dasatinib
treatment. While previous clinical trials showed
limited efficacy of dasatinib in PDAC, its ability to
modulate PD-L1 expression opens new avenues for
combination therapies, particularly with ICls. Future
studies should focus on validating these findings in in
vivo models and clinical settings to assess the potential
of dasatinib in overcoming PDAC resistance to
immunotherapy.
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