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Abstract 

Distinct from apoptosis, ferroptosis is intricately associated with intracellular iron ions and oxidative 
stress, representing a unique form of cell demise. In the treatment of ovarian cancer (OC), it assumes a 
crucial role, as research suggests its association with patient prognosis. This investigation delves into the 
correlation between genes associated with ferroptosis and the prognosis of OC, providing insights into 
its pathogenesis. Through the examination of mRNA expression using TCGA, ICGC, and GTEx 
databases, we identified a set of five pivotal genes (CD44, FTH1, ALOX12, SLC7A11, CRYAB) forming a 
prognostic model. Their regulation affects various aspects of OC, including the cell cycle, proliferation, 
invasiveness, immune response, and drug tolerance. To summarize, ferroptosis significantly impacts the 
prognosis of OC, and the targeting of relevant pathways holds potential for enhancing treatment 
outcomes, thereby guiding future research and personalized therapeutic strategies. 
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Introduction 
A prevalent and deadly form of cancer, ovarian 

cancer (OC) impacts the female reproductive system, 
accounting for approximately 4% of cancer-related 
fatalities in women globally. By reason of the small 
size of the ovary and its deep location within the 
pelvic cavity, OC often lacks noticeable symptoms, 
making it difficult to detect in its early stages. More 
than 80% of OC cases are diagnosed when the cancer 
has already advanced. Additionally, recurrence 
happens in over 70% of patients after receiving 
treatment [1, 2]. The main method for treating OC 
involves a mix of surgery and chemotherapy. 
Nonetheless, the effectiveness of chemotherapy 

frequently encounters obstacles attributed to the 
emergence of drug resistance and adverse reactions. 
Therefore, identifying new biomarkers and treatment 
targets for OC is pivotal. 

Ferroptosis, a variant of programmed cell death, 
entails the iron-dependent breakdown of lipids, 
leading to the buildup of lipid reactive oxygen species 
(L-ROS) [3-6]. Over the past few years, stimulating 
ferroptosis to trigger cancer cell demise has surfaced 
as a promising therapeutic strategy [7-9]. Previous 
studies have indicated that prolonged iron exposure 
constitutes a notable risk factor for the initiation and 
advancement of OC, with ferroptosis serving as a 
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critical element in this scenario [10]. Certain genes, 
such as p53 [11], hTERT [12], TFR1, and FPN [13] are 
involved in the process of ferroptosis. However, the 
extent of the association between genes linked to 
ferroptosis and the future outcome of individuals 
with ovarian cancer remains largely uncertain. 

For the present investigation, initially, we 
obtained mRNA expression data and corresponding 
clinical information of OC patients from publicly 
available databases. Subsequently, we formulated a 
multi-gene prognostic signature utilizing 
differentially expressed genes (DEGs) associated with 
ferroptosis in the TCGA cohort and validated its 
reliability in the ICGC cohort [14]. In conclusion, we 
carried out studies on the enrichment of functional 

annotations to investigate the fundamental 
mechanisms. Our results revealed a new gene 
signature linked to ferroptosis, providing predictive 
significance for overall survival (OS) among OC 
patients. Additionally, the findings imply that 
addressing ferroptosis could present a potential 
therapeutic approach for OC. 

Results 
The study’s flow chart is depicted in Figure 1. In 

the analysis, we incorporated 379 patients with OC 
from the TCGA cohort, 108 patients with OC from the 
ICGC cohort, and 88 samples of normal ovarian tissue 
from the GTEx dataset. 

 
 

 
Figure 1. Flowchart of data collection and analysis. 
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Identification of prognostic ferroptosis-related 
DEGs in the TCGA cohort 

Fifty-six ferroptosis-related genes showed 
significant differential expression between OC 
patients and normal controls (Figure 2A). In the 
univariate Cox regression analysis, five of them 
exhibited an association with OS. These five 
prognostics ferroptosis-related DEGs were kept (all 
FDR < 0.05, Figure 2B and 2C). Subsequently, we 
presented the distinct expression levels of the five 
genes within two distinct groups (Figure 2D and 2G). 
To understand the interactions among the five genes, 
we examined their correlations (Figure 2E and 2F) and 

interactions (Figure 2H and 2I). FTH1 expression was 
positively correlated with CD44, CRYAB, and 
SLC7A11 in OC, but not with ALOX12 (Figure 2E and 
2F). Interestingly, CD44 was predicted to interact with 
SLC7A11 (Figure 2H), but there was no correlation 
between their expression levels in OC (Figure 2E). 
Protein-protein interaction network analysis showed 
that CD44 and FTH1 had more connections with other 
regulators, while ALOX12, SLC7A11, and CRYAB had 
fewer interactions with others (Figures 2H and 2I). 
FTH1 and CD44 were the hub genes in the interaction 
network. 

 

 
Figure 2. Identification of the candidate ferroptosis-related genes in the TCGA cohort. A. The heatmap of 56 ferroptosis-related genes were differentially 
expressed in the normal and tumor groups. B. Forest plots showing the results of the univariate Cox regression analysis between gene expression and OS. C. Venn diagram to 
identify differentially expressed genes between tumor and adjacent normal tissue that were correlated with OS. D. The heatmap of 5 ferroptosis-related genes were correlated 
with OS. E. The correction between hub-genes. F. The co-expression network between hub-genes. G. The violin plot of differently expressed genes in the normal and tumor 
groups. H. The network of hub-genes related genes with the function enrichment. I. The hub-genes related genes number. 
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Figure 3. The consensus clustering of the tumor classification and based on the 5-genes tumor were divided into high-risk and low-risk groups. A-B. The 
corresponding relative change in area under the cumulative distribution function (CDF) curves when the cluster number changes from k to k+1. The range of k changed from 1 
to 8, and the optimal k = 2. C. The consensus matrices are represented as heat map for the chosen optimal cluster number (k = 2) for the TCGA cohort. D. PCA plot of the 
TCGA cohort. E-F. The nomograph of TCGA and ICGC. The expression levels of 5 genes were detected, the scores were calculated, and then the total scores were calculated 
to predict the 1-3-year survival rate. 

 

Classification of tumors was conducted based 
on the five ferroptosis-related genes 

Based on their expression patterns, the five genes 
could be divided into two groups. One group 
(including CD44, FTH1, ALOX12, and SLC7A11) 
showed high expression in tumors, while the other 
gene (CRYAB) was abundant in normal tissues. 

To explore the correlation between the 
expression patterns of ferroptosis-related genes and 
the prognosis of OC, we conducted consensus 
clustering on all 379 OC cases using the impartial 
expression data of all ferroptosis-related genes. As the 
stability of clustering increased from k = 1 to 8 in the 
TCGA database, k = 2 appeared as the optimal choice, 
considering the expression similarity of ferroptosis- 
related genes (Figure 3A-C). Subsequently, PCA was 
utilized to compare the transcriptional profiles 
between cluster 1 and cluster 2 groups, thereby 
confirming the rationale behind this grouping (Figure 
3D). Moreover, a nomogram was constructed to 
forecast the survival probability of OC patients at 1-3 
years, derived from the outcomes of the multivariate 
Cox regression analysis (Figure 3E-F). 

Development of a prognostic model was 
undertaken in both the TCGA and ICGC 
cohorts 

In OC, we identified a total of 56 
ferroptosis-related genes, of which five genes (CD44, 
FTH1, ALOX12, SLC7A11, and CRYAB) were 

significantly associated with the prognosis of OC. 
LASSO Cox regression analysis was employed to 
construct a prognostic model incorporating the five 
genes, aiming to enhance the prediction of clinical 
outcomes in OC characterized by abnormal 
expression of ferroptosis-related genes. Subsequently, 
a five-gene signature was formulated based on the 
optimal λ value. The risk score for the signature was 
computed using the following formula: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  � 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑋𝑋𝑋𝑋
𝑛𝑛

𝑖𝑖=1
 

Where “Coefi” represents the coefficient, and 
“Xi” signifies the z-score transformed relative 
expression value of each selected gene. OC patients 
were stratified into a high-risk group (comprising 
samples with a risk score exceeding the median value) 
and a low-risk group (comprising samples with a risk 
score below the median value) based on their tumor 
sample’s risk score. The comparison of OS between 
the two groups in the TCGA and ICGC cohorts 
revealed that patients in the high-risk group exhibited 
a significantly worse OS than their low-risk 
counterparts in the TCGA cohort (P < 0.0001, Figure 
4A). However, no significant difference was observed 
in the ICGC cohort (P = 0.7552, Figure 4B). ROC 
analysis was conducted to evaluate the sensitivity and 
specificity of survival prediction according to the risk 
score, and the AUC values were derived from the 
ROC curves (Figure 4C and 4D). In the TCGA cohort, 
the AUC of the five-gene signature stood at 0.689 at 
one year, 0.709 at two years, and 0.683 at three years 
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(Figure 4C). The AUC of the five-gene signature in the 
ICGC cohort was 0.592 at one year, 0.697 at two years, 
and 0.619 at three years (Figure 4D), signifying an 
acceptable predictive performance of the signature. 

Although the predictive performance declined 
somewhat in the ICGC cohort, the results maintain 
biological plausibility and show consistent trends 
with the TCGA cohort [15, 16]. 

 

 
Figure 4. Prognostic analysis of the 5-genes signature model in the TCGA and ICGC cohorts. A-B. Kaplan-Meier curves for the OS of patients in high-risk and 
low-risk groups in TCGA and ICGC cohorts. C-D. AUC of time-dependent ROC curves verified the prognostic performance of the risk score in TCGA and ICGC cohorts. E-F. 
The distribution and median value of the risk scores in TCGA and ICGC cohorts. G-H. Survival status of patients in TCGA and ICGC cohorts. I. KM survival curves for OS in 
OC patients according to the tumor expression of key genes. 
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Furthermore, an investigation was conducted 
into the distribution patterns of risk scores and 
survival statuses within the TCGA and ICGC cohorts 
(Figure 4E-F). Next, survival plots were produced for 
the TCGA and ICGC cohorts (Figure 4G-H). Then, to 
further validate the prognostic significance of the 
candidate genes, we performed survival analysis 
using the Kaplan-Meier Plotter database. The results 
demonstrated that high expression of CD44 (P = 
0.0089) and SLC7A11 (P = 3.3×10-5) was significantly 
associated with better OS, whereas high expression of 
ALOX12 (P = 0.0025) and CRYAB (P = 2.7×10-8) 
correlated with poorer prognosis (Figure 4I). For 
further investigation, we conducted principal 
component analysis (PCA) and t-SNE analyses to 
compare the transcriptional profiles between cohorts 
categorized into elevated-risk and diminished-risk 
clusters in both the TCGA and ICGC datasets. The 
results demonstrated notable separation in opposite 
directions (Figure 5A-D). 

Analyses of functionality within the TCGA and 
ICGC cohorts 

To unravel pathways and biological functions 

linked with the risk score, we conducted GO and 
KEGG analyses utilizing the DEGs identified between 
cohorts stratified into heightened-risk and 
lowered-risk categories. Within the ICGC cohort, the 
GO analysis revealed that the DEGs predominantly 
correlated with immune-related biological processes, 
including “humoral immune response” and “antigen 
binding” (P.adjust < 0.05, Figure 6A). These processes 
may indicate the immune status and response of OC 
patients. Within the TCGA cohort, the GO analysis 
unveiled a notable enrichment of DEGs in various 
DNA replication processes, notably including “DNA 
replication-dependent nucleosome assembly” and 
“DNA replication-dependent nucleosome 
organization” (P.adjust < 0.05, Figure 6B). These 
mechanisms may contribute to regulating cellular 
division and proliferation in OC contexts. KEGG 
analysis of ICGC indicates that the enrichment is 
related to “neuroactive ligand-receptor interaction” 
and so on (P.adjust < 0.05, Figure 6C). Likewise, 
KEGG analysis of TCGA suggests that the enrichment 
is related to “transcriptional misregulation in cancer” 
(P.adjust < 0.05, Figure 6D). 

 

 
Figure 5. The PCA plot and t-SNE analysis of TCGA and ICGC cohorts. A. PCA plot of the TCGA cohort. B. PCA plot of the ICGC cohort. C. t-SNE analysis of the 
TCGA cohort. D. t-SNE analysis of the ICGC cohort. 
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Figure 6. Representative results of GO and KEGG analyses. A-D. The most significant or shared GO enrichment and KEGG pathways in the TCGA cohort (B, D) and 
ICGC cohort (A, C) are displayed. 

 

Analysis of the expression, grade, and stage of 
five prognostic ferroptosis-related DEGs in OC 

Based on the five key genes (CD44, FTH1, 
ALOX12, SLC7A11, and CRYAB) identified through 
our prognostic modeling, we subsequently analyzed 
their expression profiles between OC tissues and 
normal tissues across multiple GEO datasets. As 
illustrated in Figure 7A-B, compared with normal 
controls, CD44 and FTH1 exhibited significant 
downregulation in OC tissues, while ALOX12, 
SLC7A11, and CRYAB demonstrated marked 
upregulation patterns. Moreover, the results from 
protein expression data in the UALCAN database [17] 
showed that, compared to normal individuals (n=25), 
the expression levels of CD44 and FTH1 were 
also significantly reduced in primary OC patients 
(n=100) (Figure 7C-D). Similarly, compared with 
normal tissues, CD44 and FTH1 expression were 
significantly downregulated in advanced-stage (FIGO 
III/IV) and high-grade (G3) ovarian cancer tissues 
(Figure 7C-D). 

These results were consistent with our 
predictions using bioinformatics tools, demonstrating 
the reliability of the risk model constructed based on 
the five-gene signature. 

Correlation between gene expression and 
immune cell infiltration levels 

First, the associations between these five genes 
and common immune cell types were visualized via 
heatmap analysis, and the results showed significant 
correlations between the five genes and key immune 
cell types (Figure 8A). Subsequently, we employed 
TIMER (Tumor Immune Estimation Resource, 
https://cistrome.shinyapps.io/timer/) to 
systematically evaluate correlations between key 
genes and immune cell infiltration levels in tumor 
tissues based on available RNA-seq data. The results 
demonstrated that CD44 and SLC7A11 expression in 
OC showed significant positive correlations with 
infiltration levels of CD8+ T cells, CD4+ T cells, 
neutrophils, and dendritic cells (all P<0.05) (Figure 
8B-C). 
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Figure 7. Analysis of the expression, grade, and stage of five prognostic ferroptosis-related DEGs in OC. A-B. Violin plots display the differential expression 
distribution of five key genes between normal and ovarian cancer tissues across multiple GEO datasets. C. Expression of CD44 in OC based on the tissue sample, tumor grade, 
and cancer stages. D. Expression of FTH1 in OC based on the tissue sample, tumor grade, and cancer stages. 

 

Discussion 
In this investigation, we performed a 

comprehensive analysis of the expression and 
predictive significance of 56 genes connected to 
ferroptosis in OC tumor samples and neighboring 
normal tissues. We developed and confirmed a 
forecasting model based on five genes implicated in 
ferroptosis in two independent cohorts. Functional 
analyses showed enrichment of DNA replication 
pathways and immune-related biological processes in 

the high-risk group. Preliminary research suggest that 
some genes may modulate ferroptosis in OC, but their 
association with OC prognosis is poorly understood. 
Here, we first explored the manifestation of 
ferroptosis-associated genes within OC and 
surrounding normal healthy tissues, finding 
differential expression in many genes (56 in total). 
Next, we selected five ferroptosis-related genes linked 
to OS by LASSO Cox regression analyses and 
univariate Cox regression. We assessed the 
correlation between their expression and survival, 
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building a risk signature with the five chosen 
ferroptosis-related genes: CD44, FTH1, ALOX12, 
SLC7A11, and CRYAB. Then, consensus clustering 
was utilized to classify all OC samples into two 
clusters based on the expression patterns of all genes 
associated with ferroptosis. Using this signature, we 
constructed a nomogram integrating the prognostic 
data from the five genes linked with ferroptosis in 
OC. Univariate and multivariate statistical analyses 
were used to assess the prognostic significance of 
these five genes. Lastly, we performed OS analysis 
and Gene Set Enrichment Analysis (GSEA) using data 
from an independent OC cohort to confirm the 
predictive significance of the five selected 
ferroptosis-related genes. These results strongly 
highlight the potential therapeutic intervention 
targeting ferroptosis in OC and demonstrate the 
feasibility of constructing a forecasting algorithm 
using these five genes. The OC forecasting algorithm 

proposed in this research consists of five 
ferroptosis-linked genes: CD44, FTH1, ALOX12, 
SLC7A11, and CRYAB, as shown in Figure 9. The 
onset of ferroptosis is triggered by lipid peroxidation 
and tightly controlled by SLC7A11, a pivotal 
component of the cystine-glutamate antiporter. 
SLC7A11 is involved in various ferroptosis-related 
pathways. Moreover, research has suggested that 
BAP1 can induce ferroptosis by inhibiting SLC7A11 
expression [18]. Liu et al. reported that inactivation of 
the ubiquitin hydrolase OTUB1 destabilized 
SLC7A11, decreasing ferroptosis activation and 
leading to growth inhibition of tumor xenografts in 
mice [19]. Hence, SLC7A11 is found to be upregulated 
in different types of human cancer, and its elevated 
expression can inhibit cellular ferroptosis, 
consequently leading to unfavorable prognostic 
outcomes for patients [19]. 

 

 
Figure 8. Correlation between gene expression and immune cell infiltration levels. A. Heatmap visualization of associations between the five genes and common 
immune cell types. B-C. The scatter plot shows the correlation between the expression of CD44, SLC7A11, and the immune infiltration in OC samples from the TIMER website. 
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Figure 9. The association between these five genes and ferroptosis in health or ovarian cancer. 

 
CD44 functions as an indicator of cancer stem 

cells and governs epigenetic plasticity by facilitating 
iron endocytosis [20]. It also plays a role in 
chemotherapeutic drug resistance through 
ferroptosis, crosstalk, and regulatory pathways that 
selectively induce cancer stem cell death, exemplified 
by CD44, leading to improved therapeutic outcomes 
with certain chemotherapeutic agents. Specifically, 
CD44v, a variant of CD44, has the capability to 
stabilize the protein xCT and promote glutathione 
synthesis. Thus, additionally decreases ROS-triggered 
stress signaling, a distinguishing feature of ferroptosis 
[21]. Moreover, Tong et al. demonstrated that 
heightened levels of CD44, a marker indicative of 
cancer stem cells, bolstered the durability of SLC7A11 
by fostering the interplay between SLC7A11 and 
OTUB1, and mediated ferroptosis [19]. 

FTH1 is essential for maintaining cellular iron 
homeostasis during ferroptosis. FTH1 is also engaged 
in ferritinophagy, a specific type of autophagy [22]. In 
the 6-OHDA model of Parkinson’s disease, FTH1 
induces ferroptosis via ferritinophagy [3]. In 
agreement, FTH1 silencing in mouse intestines can 
lead to iron overload and facilitate ferroptosis [23, 24]. 

The ALOX12 gene is a frequent target of 
monoallelic deletion in human malignancies. Chu et 
al. demonstrated that ALOX12 plays a crucial role in 
p53-mediated tumor suppression via a distinct 
ferroptosis pathway, and the absence of ALOX12 can 
eliminate ferroptosis [25]. By inactivating ALOX12, 
cancer cells can escape ROS-mediated ferroptosis. 

In contrast to these genes, there have been fewer 
investigations on the signaling pathways mediated by 
CRYAB. CRYAB regulates multiple signaling 

cascades in cancer, including the PI3K/AKT and ERK 
pathways [26, 27]. Moreover, it is linked with the 
initiation and progression of various malignant 
tumors, including gastric cancer, nasopharyngeal 
carcinoma, and bladder cancer, among others [28, 29]. 
Recent studies found that CRYAB could boost FTH1 
degradation and increase the Fe level, and then the 
ROS level, and finally improve the ferroptosis of 
BMSCs, with less osteogenic differentiation [30]. 

CD44 is linked to the mobility of tumor cells as 
well as the reinforcement of the interplay between 
OTUB1 and SLC7A11, thereby regulating the stability 
of SLC7A11 [19]. In turn, SLC7A11 inhibits ferroptosis 
by stimulating the synthesis of glutathione and 
preventing the accumulation of lipid peroxides. 
Furthermore, SLC7A11 directly interacts with 
ALOX12, suppressing the lipoxygenase activity of 
ALOX12 and consequently hindering ferroptosis by 
impeding the peroxidation pathway of unsaturated 
lipids. ALOX12 deficiency is commonly observed in 
cancer patients, and missense mutations in ALOX12 
can result in the loss of its ability to oxidize 
polyunsaturated fatty acids, thereby enhancing 
p53-induced ferroptosis [31]. Furthermore, ALOX12 
expression restrains the growth, infiltration, and 
movement of cancerous cells, and additionally 
impedes tumor expansion in living organisms. 
Moreover, the expression of ALOX12 also heightens 
the responsiveness of tumor cells to ferroptosis 
initiators, consequently enhancing the frequency of 
tumor cell demise. The activation of signaling 
pathways such as p53 by ALOX12 can induce 
ferroptosis [32]. 
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FTH1 is indeed regarded as a suppressor of 
ferroptosis. It functions by decreasing intracellular 
levels of free iron ions through iron ion sequestration. 
FTH1 also prevents lipid peroxidation, thereby 
effectively inhibiting the occurrence of ferroptosis 
[33]. 

In summary, our novel five-gene model not only 
elucidates the complex molecular mechanisms of 
ferroptosis in the development of OC but also serves 
as a useful tool for predicting patient survival. Despite 
the promising insights provided by our model, it is 
important to acknowledge the limitations associated 
with using public databases, emphasizing the need 
for future studies to explore the intricate interplay 
between OC and ferroptosis. By tackling these 
obstacles, we can lay the groundwork for more 
accurate and individualized treatment approaches, 
ultimately enhancing the quality of life and 
prolonging the survival of individuals grappling with 
OC. Our research marks a significant step forward in 
the ongoing efforts to unravel the complexities of OC 
and underscores the potential of our model in shaping 
the future landscape of clinical decision-making. 

Materials and Methods 
Datasets 

In March 2019, we acquired RNA-seq 
transcriptome data from the TCGA database for 379 
ovarian cancer (OC) patients along with their 
respective clinicopathological information 
(http://cancergenome.nih.gov/). Furthermore, we 
acquired RNA-seq transcriptome data for 88 healthy 
human ovarian tissues from the GTEx database [34] 
(https://www.gtexportal.org/home/datasets). 
Concerning the RNA-seq data, normalization of 
TCGA samples (n=379) was carried out using the 
fragment per kilobase of exon model per million 
(FPKM) method, as previously defined [35]. We also 
applied ComBat (from the sva R package) to correct 
for potential batch effects. This study also utilized the 
UALCAN database (https://ualcan.path.uab.edu/) 
[17, 36], which contains protein-level data from 25 
normal individuals and 100 patients diagnosed with 
primary ovarian cancer. 

TCGA, GTEx, UALCAN, and ICGC cohort 
We retrieved RNA-seq data and clinical data of 

379 OC patients from the TCGA database 
(http://cancergenome.nih.gov/) on September 23, 
2019. We normalized gene expression profiles using 
the Wilcoxon test, implemented in the “limma” R 
package. We also obtained RNA-seq data and clinical 
data of 88 normal ovarian samples from the GTEx 
website (https://gtexportal.org/). All data from 

TCGA, GTEx, UALCAN, and ICGC are publicly 
available; thus, this study did not require local ethics 
committee approval. The research followed the data 
access policies and publication guidelines established 
by TCGA, GTEx, UALCAN, and ICGC. The primary 
focus of this study revolves around conducting a 
comprehensive analysis of these five genes. The 
accessibility of these four databases contributes to the 
reproducibility and verification of the research 
findings. 

Establishing and validating a prognostic gene 
signature associated with ferroptosis 
mechanisms 

We used the Wilcoxon test to identify DEGs 
between OC tumor tissues and normal ovarian 
tissues, with a false discovery rate (FDR) < 0.05 in the 
TCGA cohort. 

We performed univariate Cox analysis for 
overall survival to select ferroptosis-related genes 
with prognostic value. We adjusted P values using the 
Benjamini & Hochberg (BH) method. We built a 
network of interactive overlapping predictive DEGs 
using the STRING database (version 11.0) [37]. To 
avoid overfitting in the gene signature, we developed 
a prognostic model [38, 39] using the DEGs with 
LASSO-penalized Cox regression analysis, conducted 
using the “glmnet” R package. We applied the LASSO 
algorithm to the DEGs using variable selection and 
shrinkage techniques provided by the “glmnet” R 
package. The regression model used the normalized 
expression matrix of candidate prognostic DEGs as 
the independent variable, and OS and patients’ status 
in the TCGA cohort as the response variables. We 
determined the penalty parameter (λ) for the model 
through tenfold cross-validation, selecting the λ value 
corresponding to the lowest partial likelihood 
deviance as the minimum criterion. 

We calculated patients’ risk scores based on the 
normalized expression level of each gene and its 
corresponding regression coefficients. The formula is 
defined as follows:  

score=e sum (univariateCoxanalysis*correspondingcoefficient)  

We stratified patients into high-risk and low-risk 
groups based on the median value of the risk score. 
We used T-distributed stochastic neighbor 
embedding (t-SNE) to examine the distribution of 
different groups using the “Rtsne” R package. Then, 
for each gene’s survival analysis, we determined the 
optimal cut-off expression value using the 
“surv_cutpoint” function from the “survminer” R 
package. To evaluate the predictive power of the gene 
signature, we conducted time-dependent ROC curve 
analyses, using the “survivalROC” R package. 
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Functional enrichment analysis 
We performed Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 
analyses on the DEGs (|log2FC|≥ 1, FDR <0.05) 
between the high-risk and low-risk groups using the 
“clusterProfiler” R package [40, 41]. The Benjamini & 
Hochberg (BH) method was used to adjust P values. 
We computed the infiltration scores of 16 immune 
cells and 13 immune-related pathways by 
Single-sample Gene Set Enrichment Analysis 
(ssGSEA) [42] implemented in the “GSVA” R package 
[43]. We explored the potential pathways related to 
ferroptosis-related genes in OC development by 
pathway enrichment analysis. 

Statistical analysis 
We compared the gene expression between 

tumor tissues and normal ovarian tissues using the 
Student’s t-test. The Chi-squared test was used to 
compare the proportions. The Mann-Whitney test was 
applied to compare the ssGSEA scores of immune 
cells or pathways between the high-risk and low-risk 
groups, with P-values adjusted by the 
Benjamini-Hochberg (BH) method. We compared the 
OS between different groups by Kaplan-Meier 
analysis and the log-rank test. We identified 
independent predictors of OS by univariate and 
multivariate Cox regression analyses. All the analyses 
were performed by R software (Version 3.5.3) or SPSS 
(Version 23.0). A p-value < 0.05 was considered 
statistically significant. 

Acknowledgments 
We also acknowledge TCGA, GTEx, UALCAN, 

and ICGC databases for providing their platforms and 
contributors for uploading their meaningful datasets. 

Funding 
This study was supported by National Natural 

Science Foundation of China (No. 82304746, 82104898, 
82474550, and 82274410); the Guangdong Basic and 
Applied Basic Research Foundation 
(2025B1515020011, 2025A04J3706, 2022A1515110827, 
2021A1515111056, and 202201010961); China 
Postdoctoral Science Foundation (No. 2021M701443 
and 2021M701442); Research Fund for Qingmiao 
Talents of Guangdong Provincial Hospital of Chinese 
Medicine (SZ2022QN04), Guangzhou Basic and 
Applied Basic Research Program (202201011552); 
Guangzhou Science and technology planning project 
(2024A03J0921);Guangdong Provincial Bureau of 
Traditional Chinese Medicine research project 
(20221180 and 20241065); Science and Technology 

Projects in Guangzhou (202201010132), and K. C. 
Wong Education Foundation.  

Availability of data and material 
In March 2019, we acquired RNA-seq 

transcriptome data from the TCGA database for 379 
ovarian cancer (OC) patients along with their 
respective clinicopathological information 
(http://cancergenome.nih.gov/). Furthermore, we 
acquired RNA-seq transcriptome data for 88 healthy 
human ovarian tissues from the GTEx database [34] 
(https://www.gtexportal.org/home/datasets). This 
study utilized the UALCAN database 
(https://ualcan.path.uab.edu/), which contains 
protein-level data from 25 normal individuals and 100 
patients diagnosed with primary ovarian cancer. 

Consent for publication 
We hereby declare that all authors have read and 

approved the final version of the manuscript, and this 
manuscript has not been published and is not under 
consideration for publication elsewhere. 

Author contributions 
Yanling Li: Conceptualization, Methodology, 

Software, Data curation, Investigation, Validation, 
Writing - original draft, Visualization, Writing - 
review & editing. 

Yidi Wang: Validation, Writing - original draft. 
Han Lei: Validation, Writing - review & editing. 
Kaiwai Li: Project administration, Writing - 

original draft. 
Jingman Tang: Supervision, Formal analysis. 
Lu Xu: Project administration. 
Yan Liu: Project administration, Supervision, 

Formal analysis.  
Jianhong Lu: Project administration, 

Supervision, Formal analysis. 
Yulong Peng: Writing - review & editing, Project 

administration, Resources. 
Lili Fan: Funding acquisition, Writing - review & 

editing, Project administration, Resources, 
Supervision, Validation. 

Xiaojuan Li: Funding acquisition, Writing - 
review & editing, Project administration, Resources, 
Supervision. 

Jianbo He: Writing - review & editing, 
Validation, Formal analysis, Supervision, Resources, 
Funding acquisition. 

Competing Interests 
The authors declare that they have no conflicts of 

interest related to this research. 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

4269 

References 
1. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. 

Ovarian cancer. Nat Rev Dis Primers. 2016; 2: 16061. 
2. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. 

Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018; 68: 284-96. 
3. Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of 

ferroptosis in cancer. Nat Rev Clin Oncol. 2021; 18: 280-96. 
4. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et 

al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 
149: 1060-72. 

5. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role 
in disease. Nat Rev Mol Cell Biol. 2021; 22: 266-82. 

6. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et 
al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox 
Biology, and Disease. Cell. 2017; 171: 273-85. 

7. Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron 
Out Cancer. Cancer Cell. 2019; 35: 830-49. 

8. Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat 
Rev Cancer. 2022; 22: 381-96. 

9. Liang C, Zhang X, Yang M, Dong X. Recent Progress in Ferroptosis Inducers 
for Cancer Therapy. Adv Mater. 2019; 31: e1904197. 

10. Lattuada D, Uberti F, Colciaghi B, Morsanuto V, Maldi E, Squarzanti DF, et al. 
Fimbrial cells exposure to catalytic iron mimics carcinogenic changes. Int J 
Gynecol Cancer. 2015; 25: 389-98. 

11. Jiang L, Hickman JH, Wang SJ, Gu W. Dynamic roles of p53-mediated 
metabolic activities in ROS-induced stress responses. Cell Cycle. 2015; 14: 
2881-5. 

12. Yamada Y, Shigetomi H, Onogi A, Haruta S, Kawaguchi R, Yoshida S, et al. 
Redox-active iron-induced oxidative stress in the pathogenesis of clear cell 
carcinoma of the ovary. Int J Gynecol Cancer. 2011; 21: 1200-7. 

13. Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y, Ning G, et al. Iron addiction: 
A novel therapeutic target in ovarian cancer. Oncogene. 2017; 36: 4089-99. 

14. Zhang J, Bajari R, Andric D, Gerthoffert F, Lepsa A, Nahal-Bose H, et al. The 
International Cancer Genome Consortium Data Portal. Nat Biotechnol. 2019; 
37: 367-9. 

15. Whiteaker JR, Halusa GN, Hoofnagle AN, Sharma V, MacLean B, Yan P, et al. 
CPTAC Assay Portal: a repository of targeted proteomic assays. Nat Methods. 
2014; 11: 703-4. 

16. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver 
operating characteristic (ROC) curve. Radiology. 1982; 143: 29-36. 

17. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, 
et al. UALCAN: An update to the integrated cancer data analysis platform. 
Neoplasia. 2022; 25: 18-27. 

18. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, et al. BAP1 links metabolic 
regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018; 20: 
1181-92. 

19. Liu T, Jiang L, Tavana O, Gu W. The Deubiquitylase OTUB1 Mediates 
Ferroptosis via Stabilization of SLC7A11. Cancer Res. 2019; 79: 1913-24. 

20. Muller S, Sindikubwabo F, Caneque T, Lafon A, Versini A, Lombard B, et al. 
CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nat 
Chem. 2020; 12: 929-38. 

21. Elgendy SM, Alyammahi SK, Alhamad DW, Abdin SM, Omar HA. 
Ferroptosis: An emerging approach for targeting cancer stem cells and drug 
resistance. Crit Rev Oncol Hematol. 2020; 155: 103095. 

22. Lin PL, Tang HH, Wu SY, Shaw NS, Su CL. Saponin Formosanin C-induced 
Ferritinophagy and Ferroptosis in Human Hepatocellular Carcinoma Cells. 
Antioxidants (Basel). 2020; 9: 682. 

23. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the 
p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular 
carcinoma cells. Hepatology. 2016; 63: 173-84. 

24. Tao Y, Wu Q, Guo X, Zhang Z, Shen Y, Wang F. MBD5 regulates iron 
metabolism via methylation-independent genomic targeting of Fth1 through 
KAT2A in mice. Br J Haematol. 2014; 166: 279-91. 

25. Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, et al. ALOX12 is required for 
p53-mediated tumour suppression through a distinct ferroptosis pathway. 
Nat Cell Biol. 2019; 21: 579-91. 

26. Ruan H, Li Y, Wang X, Sun B, Fang W, Jiang S, et al. CRYAB inhibits migration 
and invasion of bladder cancer cells through the PI3K/AKT and ERK 
pathways. Jpn J Clin Oncol. 2020; 50: 254-60. 

27. Zhang J, Liu J, Wu J, Li W, Chen Z, Yang L. Progression of the role of CRYAB 
in signaling pathways and cancers. Onco Targets Ther. 2019; 12: 4129-39. 

28. Huang Z, Cheng Y, Chiu PM, Cheung FM, Nicholls JM, Kwong DL, et al. 
Tumor suppressor Alpha B-crystallin (CRYAB) associates with the 
cadherin/catenin adherens junction and impairs NPC progression-associated 
properties. Oncogene. 2012; 31: 3709-20. 

29. Liang YC, Ye FD, Xu CY, Zou LJ, Hu Y, Hu JM, et al. A novel survival model 
based on a Ferroptosis-related gene signature for predicting overall survival in 
bladder cancer. BMC Cancer. 2021; 21: 943. 

30. Tian B, Li X, Li W, Shi Z, He X, Wang S, et al. CRYAB suppresses ferroptosis 
and promotes osteogenic differentiation of human bone marrow stem cells via 
binding and stabilizing FTH1. Aging (Albany NY). 2024; 16: 8965-79. 

31. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: 
ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021; 12: 
599-620. 

32. Liu Y, Gu W. p53 in ferroptosis regulation: the new weapon for the old 
guardian. Cell Death Differ. 2022; 29: 895-910. 

33. Fang Y, Chen X, Tan Q, Zhou H, Xu J, Gu Q. Inhibiting Ferroptosis through 
Disrupting the NCOA4-FTH1 Interaction: A New Mechanism of Action. ACS 
Cent Sci. 2021; 7: 980-9. 

34. Consortium GT. The GTEx Consortium atlas of genetic regulatory effects 
across human tissues. Science. 2020; 369: 1318-30. 

35. Shahriyari L. Effect of normalization methods on the performance of 
supervised learning algorithms applied to HTSeq-FPKM-UQ data sets: 7SK 
RNA expression as a predictor of survival in patients with colon 
adenocarcinoma. Brief Bioinform. 2019; 20: 985-94. 

36. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, 
Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: A Portal for Facilitating 
Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia. 2017; 19: 
649-58. 

37. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. 
STRING v11: protein-protein association networks with increased coverage, 
supporting functional discovery in genome-wide experimental datasets. 
Nucleic Acids Res. 2019; 47: D607-D13. 

38. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization Paths for Cox’s 
Proportional Hazards Model via Coordinate Descent. J Stat Softw. 2011; 39: 
1-13. 

39. Tibshirani R. The lasso method for variable selection in the Cox model. Stat 
Med. 1997; 16: 385-95. 

40. Kanehisa M. Toward understanding the origin and evolution of cellular 
organisms. Protein Sci. 2019; 28: 1947-51. 

41. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: 
integrating viruses and cellular organisms. Nucleic Acids Res. 2021; 49: 
D545-D51. 

42. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic 
properties of tumors associated with local immune cytolytic activity. Cell. 
2015; 160: 48-61. 

43. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinf. 2013; 14: 7. 


