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Abstract

Distinct from apoptosis, ferroptosis is intricately associated with intracellular iron ions and oxidative
stress, representing a unique form of cell demise. In the treatment of ovarian cancer (OC), it assumes a
crucial role, as research suggests its association with patient prognosis. This investigation delves into the
correlation between genes associated with ferroptosis and the prognosis of OC, providing insights into
its pathogenesis. Through the examination of mRNA expression using TCGA, ICGC, and GTEx
databases, we identified a set of five pivotal genes (CD44, FTHI, ALOX12, SLC7Al1, CRYAB) forming a
prognostic model. Their regulation affects various aspects of OC, including the cell cycle, proliferation,
invasiveness, immune response, and drug tolerance. To summarize, ferroptosis significantly impacts the
prognosis of OC, and the targeting of relevant pathways holds potential for enhancing treatment
outcomes, thereby guiding future research and personalized therapeutic strategies.

Keywords: ovarian cancer, ferroptosis, overall survival prediction, prognostic signature.

Introduction

A prevalent and deadly form of cancer, ovarian
cancer (OC) impacts the female reproductive system,
accounting for approximately 4% of cancer-related
fatalities in women globally. By reason of the small
size of the ovary and its deep location within the
pelvic cavity, OC often lacks noticeable symptoms,
making it difficult to detect in its early stages. More
than 80% of OC cases are diagnosed when the cancer
has already advanced. Additionally, recurrence
happens in over 70% of patients after receiving
treatment [1, 2]. The main method for treating OC
involves a mix of surgery and chemotherapy.
Nonetheless, the effectiveness of chemotherapy

frequently encounters obstacles attributed to the
emergence of drug resistance and adverse reactions.
Therefore, identifying new biomarkers and treatment
targets for OC is pivotal.

Ferroptosis, a variant of programmed cell death,
entails the iron-dependent breakdown of lipids,
leading to the buildup of lipid reactive oxygen species
(L-ROS) [3-6]. Over the past few years, stimulating
ferroptosis to trigger cancer cell demise has surfaced
as a promising therapeutic strategy [7-9]. Previous
studies have indicated that prolonged iron exposure
constitutes a notable risk factor for the initiation and
advancement of OC, with ferroptosis serving as a
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critical element in this scenario [10]. Certain genes,
such as p53 [11], hTERT [12], TFR1, and FPN [13] are
involved in the process of ferroptosis. However, the
extent of the association between genes linked to
ferroptosis and the future outcome of individuals
with ovarian cancer remains largely uncertain.

For the present investigation, initially, we
obtained mRNA expression data and corresponding
clinical information of OC patients from publicly
available databases. Subsequently, we formulated a
multi-gene prognostic signature utilizing
differentially expressed genes (DEGs) associated with
ferroptosis in the TCGA cohort and validated its
reliability in the ICGC cohort [14]. In conclusion, we
carried out studies on the enrichment of functional

The Derivation cohort

annotations to investigate the fundamental
mechanisms. Our results revealed a new gene
signature linked to ferroptosis, providing predictive
significance for overall survival (OS) among OC
patients. Additionally, the findings imply that
addressing ferroptosis could present a potential
therapeutic approach for OC.

Results

The study’s flow chart is depicted in Figure 1. In
the analysis, we incorporated 379 patients with OC
from the TCGA cohort, 108 patients with OC from the
ICGC cohort, and 88 samples of normal ovarian tissue
from the GTEx dataset.
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Figure 1. Flowchart of data collection and analysis.
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Identification of prognostic ferroptosis-related
DEGs in the TCGA cohort

Fifty-six ferroptosis-related genes showed
significant differential expression between OC
patients and normal controls (Figure 2A). In the
univariate Cox regression analysis, five of them
exhibited an association with OS. These five
prognostics ferroptosis-related DEGs were kept (all
FDR < 0.05, Figure 2B and 2C). Subsequently, we
presented the distinct expression levels of the five
genes within two distinct groups (Figure 2D and 2G).
To understand the interactions among the five genes,
we examined their correlations (Figure 2E and 2F) and

interactions (Figure 2H and 2I). FTH1 expression was
positively correlated with CD44, CRYAB, and
SLC7A11 in OC, but not with ALOX12 (Figure 2E and
2F). Interestingly, CD44 was predicted to interact with
SLC7A11 (Figure 2H), but there was no correlation
between their expression levels in OC (Figure 2E).
Protein-protein interaction network analysis showed
that CD44 and FTH1 had more connections with other
regulators, while ALOX12, SLC7A11, and CRYAB had
fewer interactions with others (Figures 2H and 2I).
FTH1 and CD44 were the hub genes in the interaction
network.
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Figure 2. Identification of the candidate ferroptosis-related genes in the TCGA cohort. A. The heatmap of 56 ferroptosis-related genes were differentially
expressed in the normal and tumor groups. B. Forest plots showing the results of the univariate Cox regression analysis between gene expression and OS. C. Venn diagram to
identify differentially expressed genes between tumor and adjacent normal tissue that were correlated with OS. D. The heatmap of 5 ferroptosis-related genes were correlated
with OS. E. The correction between hub-genes. F. The co-expression network between hub-genes. G. The violin plot of differently expressed genes in the normal and tumor
groups. H. The network of hub-genes related genes with the function enrichment. I. The hub-genes related genes number.
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Figure 3. The consensus clustering of the tumor classification and based on the 5-genes tumor were divided into high-risk and low-risk groups. A-B. The
corresponding relative change in area under the cumulative distribution function (CDF) curves when the cluster number changes from k to k+1. The range of k changed from 1|
to 8, and the optimal k = 2. C. The consensus matrices are represented as heat map for the chosen optimal cluster number (k = 2) for the TCGA cohort. D. PCA plot of the
TCGA cohort. E-F. The nomograph of TCGA and ICGC. The expression levels of 5 genes were detected, the scores were calculated, and then the total scores were calculated

to predict the 1-3-year survival rate.

Classification of tumors was conducted based
on the five ferroptosis-related genes

Based on their expression patterns, the five genes
could be divided into two groups. One group
(including CD44, FTH1, ALOX12, and SLC7A11)
showed high expression in tumors, while the other
gene (CRYAB) was abundant in normal tissues.

To explore the correlation between the
expression patterns of ferroptosis-related genes and
the prognosis of OC, we conducted consensus
clustering on all 379 OC cases using the impartial
expression data of all ferroptosis-related genes. As the
stability of clustering increased from k =1 to 8 in the
TCGA database, k = 2 appeared as the optimal choice,
considering the expression similarity of ferroptosis-
related genes (Figure 3A-C). Subsequently, PCA was
utilized to compare the transcriptional profiles
between cluster 1 and cluster 2 groups, thereby
confirming the rationale behind this grouping (Figure
3D). Moreover, a nomogram was constructed to
forecast the survival probability of OC patients at 1-3
years, derived from the outcomes of the multivariate
Cox regression analysis (Figure 3E-F).

Development of a prognostic model was
undertaken in both the TCGA and ICGC
cohorts

In OC, we identified a total of 56
ferroptosis-related genes, of which five genes (CD44,
FTH1, ALOX12, SLC7A1l, and CRYAB) were

significantly associated with the prognosis of OC.
LASSO Cox regression analysis was employed to
construct a prognostic model incorporating the five
genes, aiming to enhance the prediction of clinical
outcomes in OC characterized by abnormal
expression of ferroptosis-related genes. Subsequently,
a five-gene signature was formulated based on the
optimal A value. The risk score for the signature was
computed using the following formula:
n
Risk score = Coefi * Xi
i=1

Where “Coefi” represents the coefficient, and
“Xi” signifies the z-score transformed relative
expression value of each selected gene. OC patients
were stratified into a high-risk group (comprising
samples with a risk score exceeding the median value)
and a low-risk group (comprising samples with a risk
score below the median value) based on their tumor
sample’s risk score. The comparison of OS between
the two groups in the TCGA and ICGC cohorts
revealed that patients in the high-risk group exhibited
a significantly worse OS than their low-risk
counterparts in the TCGA cohort (P < 0.0001, Figure
4A). However, no significant difference was observed
in the ICGC cohort (P = 0.7552, Figure 4B). ROC
analysis was conducted to evaluate the sensitivity and
specificity of survival prediction according to the risk
score, and the AUC values were derived from the
ROC curves (Figure 4C and 4D). In the TCGA cohort,
the AUC of the five-gene signature stood at 0.689 at
one year, 0.709 at two years, and 0.683 at three years
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(Figure 4C). The AUC of the five-gene signature in the
ICGC cohort was 0.592 at one year, 0.697 at two years,
and 0.619 at three years (Figure 4D), signifying an
acceptable predictive performance of the signature.

Although the predictive performance declined
somewhat in the ICGC cohort, the results maintain
biological plausibility and show consistent trends
with the TCGA cohort [15, 16].
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Figure 4. Prognostic analysis of the 5-genes signature model in the TCGA and ICGC cohorts. A-B. Kaplan-Meier curves for the OS of patients in high-risk and
low-risk groups in TCGA and ICGC cohorts. C-D. AUC of time-dependent ROC curves verified the prognostic performance of the risk score in TCGA and ICGC cohorts. E-F.
The distribution and median value of the risk scores in TCGA and ICGC cohorts. G-H. Survival status of patients in TCGA and ICGC cohorts. I. KM survival curves for OS in

OC patients according to the tumor expression of key genes.
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Furthermore, an investigation was conducted
into the distribution patterns of risk scores and
survival statuses within the TCGA and ICGC cohorts
(Figure 4E-F). Next, survival plots were produced for
the TCGA and ICGC cohorts (Figure 4G-H). Then, to
further validate the prognostic significance of the
candidate genes, we performed survival analysis
using the Kaplan-Meier Plotter database. The results
demonstrated that high expression of CD44 (P =
0.0089) and SLC7A11 (P = 3.3x10%) was significantly
associated with better OS, whereas high expression of
ALOX12 (P = 0.0025) and CRYAB (P = 2.7x10%)
correlated with poorer prognosis (Figure 4I). For
further investigation, we conducted principal
component analysis (PCA) and t-SNE analyses to
compare the transcriptional profiles between cohorts
categorized into elevated-risk and diminished-risk
clusters in both the TCGA and ICGC datasets. The
results demonstrated notable separation in opposite
directions (Figure 5A-D).

Analyses of functionality within the TCGA and
ICGC cohorts

To unravel pathways and biological functions
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linked with the risk score, we conducted GO and
KEGG analyses utilizing the DEGs identified between
cohorts  stratified into  heightened-risk and
lowered-risk categories. Within the ICGC cohort, the
GO analysis revealed that the DEGs predominantly
correlated with immune-related biological processes,
including “humoral immune response” and “antigen
binding” (P.adjust < 0.05, Figure 6A). These processes
may indicate the immune status and response of OC
patients. Within the TCGA cohort, the GO analysis
unveiled a notable enrichment of DEGs in various
DNA replication processes, notably including “DNA
replication-dependent nucleosome assembly” and
“DNA replication-dependent nucleosome
organization” (P.adjust < 0.05, Figure 6B). These
mechanisms may contribute to regulating cellular
division and proliferation in OC contexts. KEGG
analysis of ICGC indicates that the enrichment is
related to “neuroactive ligand-receptor interaction”
and so on (P.adjust < 0.05, Figure 6C). Likewise,
KEGG analysis of TCGA suggests that the enrichment
is related to “transcriptional misregulation in cancer”
(P.adjust < 0.05, Figure 6D).
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Figure 5. The PCA plot and t-SNE analysis of TCGA and ICGC cohorts. A. PCA plot of the TCGA cohort. B. PCA plot of the ICGC cohort. C. t-SNE analysis of the

TCGA cohort. D. t-SNE analysis of the ICGC cohort.
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ICGC cohort (A, C) are displayed.

Analysis of the expression, grade, and stage of
five prognostic ferroptosis-related DEGs in OC

Based on the five key genes (CD44, FIHI,
ALOX12, SLC7A11, and CRYAB) identified through
our prognostic modeling, we subsequently analyzed
their expression profiles between OC tissues and
normal tissues across multiple GEO datasets. As
illustrated in Figure 7A-B, compared with normal
controls, CD44 and FTH1 exhibited significant
downregulation in OC tissues, while ALOX12,
SLC7A11, and CRYAB demonstrated marked
upregulation patterns. Moreover, the results from
protein expression data in the UALCAN database [17]
showed that, compared to normal individuals (n=25),
the expression levels of CD44 and FTH1 were
also significantly reduced in primary OC patients
(n=100) (Figure 7C-D). Similarly, compared with
normal tissues, CD44 and FTH1 expression were
significantly downregulated in advanced-stage (FIGO
III/IV) and high-grade (G3) ovarian cancer tissues
(Figure 7C-D).

These results were consistent with our
predictions using bioinformatics tools, demonstrating
the reliability of the risk model constructed based on
the five-gene signature.

Correlation between gene expression and
immune cell infiltration levels

First, the associations between these five genes
and common immune cell types were visualized via
heatmap analysis, and the results showed significant
correlations between the five genes and key immune
cell types (Figure 8A). Subsequently, we employed
TIMER (Tumor Immune Estimation Resource,
https:/ /cistrome.shinyapps.io/ timer/) to
systematically evaluate correlations between key
genes and immune cell infiltration levels in tumor
tissues based on available RNA-seq data. The results
demonstrated that CD44 and SLC7A11 expression in
OC showed significant positive correlations with
infiltration levels of CD8* T cells, CD4+ T cells,
neutrophils, and dendritic cells (all P<0.05) (Figure
8B-C).
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Discussion

In this investigation, we performed a
comprehensive analysis of the expression and
predictive significance of 56 genes connected to
ferroptosis in OC tumor samples and neighboring
normal tissues. We developed and confirmed a
forecasting model based on five genes implicated in
ferroptosis in two independent cohorts. Functional
analyses showed enrichment of DNA replication
pathways and immune-related biological processes in

the high-risk group. Preliminary research suggest that
some genes may modulate ferroptosis in OC, but their
association with OC prognosis is poorly understood.
Here, we first explored the manifestation of
ferroptosis-associated  genes within OC and
surrounding normal healthy tissues, finding
differential expression in many genes (56 in total).
Next, we selected five ferroptosis-related genes linked
to OS by LASSO Cox regression analyses and
univariate Cox regression. We assessed the
correlation between their expression and survival,
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building a risk signature with the five chosen
ferroptosis-related genes: CD44, FTH1, ALOX12,
SLC7A11, and CRYAB. Then, consensus clustering
was utilized to classify all OC samples into two
clusters based on the expression patterns of all genes
associated with ferroptosis. Using this signature, we
constructed a nomogram integrating the prognostic
data from the five genes linked with ferroptosis in
OC. Univariate and multivariate statistical analyses
were used to assess the prognostic significance of
these five genes. Lastly, we performed OS analysis
and Gene Set Enrichment Analysis (GSEA) using data
from an independent OC cohort to confirm the

predictive  significance of the five selected
ferroptosis-related genes. These results strongly
highlight the potential therapeutic intervention

targeting ferroptosis in OC and demonstrate the
feasibility of constructing a forecasting algorithm
using these five genes. The OC forecasting algorithm

proposed in this research consists of five
ferroptosis-linked genes: CD44, FTH1, ALOX12,
SLC7A11, and CRYAB, as shown in Figure 9. The
onset of ferroptosis is triggered by lipid peroxidation
and tightly controlled by SLC7Al1l, a pivotal
component of the cystine-glutamate antiporter.
SLC7A11 is involved in various ferroptosis-related
pathways. Moreover, research has suggested that
BAP1 can induce ferroptosis by inhibiting SLC7A11
expression [18]. Liu et al. reported that inactivation of
the wubiquitin hydrolase OTUB1 destabilized
SLC7A11, decreasing ferroptosis activation and
leading to growth inhibition of tumor xenografts in
mice [19]. Hence, SLC7A11 is found to be upregulated
in different types of human cancer, and its elevated
expression can inhibit cellular ferroptosis,
consequently leading to unfavorable prognostic
outcomes for patients [19].
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CD44 functions as an indicator of cancer stem
cells and governs epigenetic plasticity by facilitating
iron endocytosis [20]. It also plays a role in
chemotherapeutic drug  resistance through
ferroptosis, crosstalk, and regulatory pathways that
selectively induce cancer stem cell death, exemplified
by CD44, leading to improved therapeutic outcomes
with certain chemotherapeutic agents. Specifically,
CD44v, a variant of CD44, has the capability to
stabilize the protein xCT and promote glutathione
synthesis. Thus, additionally decreases ROS-triggered
stress signaling, a distinguishing feature of ferroptosis
[21]. Moreover, Tong et al. demonstrated that
heightened levels of CD44, a marker indicative of
cancer stem cells, bolstered the durability of SLC7A11
by fostering the interplay between SLC7A1l and
OTUB1, and mediated ferroptosis [19].

FTH1 is essential for maintaining cellular iron
homeostasis during ferroptosis. FTH1 is also engaged
in ferritinophagy, a specific type of autophagy [22]. In
the 6-OHDA model of Parkinson’s disease, FTH1
induces ferroptosis via ferritinophagy [3]. In
agreement, FTH1 silencing in mouse intestines can
lead to iron overload and facilitate ferroptosis [23, 24].

The ALOX12 gene is a frequent target of
monoallelic deletion in human malignancies. Chu et
al. demonstrated that ALOX12 plays a crucial role in
p53-mediated tumor suppression via a distinct
ferroptosis pathway, and the absence of ALOX12 can
eliminate ferroptosis [25]. By inactivating ALOX12,
cancer cells can escape ROS-mediated ferroptosis.

In contrast to these genes, there have been fewer
investigations on the signaling pathways mediated by
CRYAB. CRYAB regulates multiple signaling

cascades in cancer, including the PI3K/AKT and ERK
pathways [26, 27]. Moreover, it is linked with the
initiation and progression of various malignant
tumors, including gastric cancer, nasopharyngeal
carcinoma, and bladder cancer, among others [28, 29].
Recent studies found that CRYAB could boost FTH1
degradation and increase the Fe level, and then the
ROS level, and finally improve the ferroptosis of
BMSCs, with less osteogenic differentiation [30].

CD44 is linked to the mobility of tumor cells as
well as the reinforcement of the interplay between
OTUBI1 and SLC7A11, thereby regulating the stability
of SLC7A11 [19]. In turn, SLC7A11 inhibits ferroptosis
by stimulating the synthesis of glutathione and
preventing the accumulation of lipid peroxides.
Furthermore, SLC7A11 directly interacts with
ALOX12, suppressing the lipoxygenase activity of
ALOX12 and consequently hindering ferroptosis by
impeding the peroxidation pathway of unsaturated
lipids. ALOX12 deficiency is commonly observed in
cancer patients, and missense mutations in ALOX12
can result in the loss of its ability to oxidize
polyunsaturated fatty acids, thereby enhancing
p53-induced ferroptosis [31]. Furthermore, ALOX12
expression restrains the growth, infiltration, and
movement of cancerous cells, and additionally
impedes tumor expansion in living organisms.
Moreover, the expression of ALOX12 also heightens
the responsiveness of tumor cells to ferroptosis
initiators, consequently enhancing the frequency of
tumor cell demise. The activation of signaling
pathways such as p53 by ALOX12 can induce
ferroptosis [32].
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FTH1 is indeed regarded as a suppressor of
ferroptosis. It functions by decreasing intracellular
levels of free iron ions through iron ion sequestration.
FTH1 also prevents lipid peroxidation, thereby
effectively inhibiting the occurrence of ferroptosis
[33].

In summary, our novel five-gene model not only
elucidates the complex molecular mechanisms of
ferroptosis in the development of OC but also serves
as a useful tool for predicting patient survival. Despite
the promising insights provided by our model, it is
important to acknowledge the limitations associated
with using public databases, emphasizing the need
for future studies to explore the intricate interplay
between OC and ferroptosis. By tackling these
obstacles, we can lay the groundwork for more
accurate and individualized treatment approaches,
ultimately enhancing the quality of life and
prolonging the survival of individuals grappling with
OC. Our research marks a significant step forward in
the ongoing efforts to unravel the complexities of OC
and underscores the potential of our model in shaping
the future landscape of clinical decision-making.

Materials and Methods

Datasets

In March 2019, we acquired RNA-seq
transcriptome data from the TCGA database for 379
ovarian cancer (OC) patients along with their
respective clinicopathological information
(http:/ /cancergenome.nih.gov/). Furthermore, we
acquired RNA-seq transcriptome data for 88 healthy
human ovarian tissues from the GTEx database [34]
(https:/ /www.gtexportal.org/home/ datasets).
Concerning the RNA-seq data, normalization of
TCGA samples (n=379) was carried out using the
fragment per kilobase of exon model per million
(FPKM) method, as previously defined [35]. We also
applied ComBat (from the sva R package) to correct
for potential batch effects. This study also utilized the
UALCAN database (https://ualcan.path.uab.edu/)
[17, 36], which contains protein-level data from 25
normal individuals and 100 patients diagnosed with
primary ovarian cancer.

TCGA, GTEx, UALCAN, and ICGC cohort

We retrieved RNA-seq data and clinical data of
379 OC patients from the TCGA database
(http:/ /cancergenome.nih.gov/) on September 23,
2019. We normalized gene expression profiles using
the Wilcoxon test, implemented in the “limma” R
package. We also obtained RNA-seq data and clinical
data of 88 normal ovarian samples from the GTEx
website (https://gtexportal.org/). All data from

TCGA, GTEx, UALCAN, and ICGC are publicly
available; thus, this study did not require local ethics
committee approval. The research followed the data
access policies and publication guidelines established
by TCGA, GTEx, UALCAN, and ICGC. The primary
focus of this study revolves around conducting a
comprehensive analysis of these five genes. The
accessibility of these four databases contributes to the
reproducibility and verification of the research
findings.

Establishing and validating a prognostic gene
signature associated with ferroptosis
mechanisms

We used the Wilcoxon test to identify DEGs
between OC tumor tissues and normal ovarian
tissues, with a false discovery rate (FDR) < 0.05 in the
TCGA cohort.

We performed univariate Cox analysis for
overall survival to select ferroptosis-related genes
with prognostic value. We adjusted P values using the
Benjamini & Hochberg (BH) method. We built a
network of interactive overlapping predictive DEGs
using the STRING database (version 11.0) [37]. To
avoid overfitting in the gene signature, we developed
a prognostic model [38, 39] using the DEGs with
LASSO-penalized Cox regression analysis, conducted
using the “glmnet” R package. We applied the LASSO
algorithm to the DEGs using variable selection and
shrinkage techniques provided by the “glmnet” R
package. The regression model used the normalized
expression matrix of candidate prognostic DEGs as
the independent variable, and OS and patients” status
in the TCGA cohort as the response variables. We
determined the penalty parameter (A) for the model
through tenfold cross-validation, selecting the A value
corresponding to the lowest partial likelihood
deviance as the minimum criterion.

We calculated patients’” risk scores based on the
normalized expression level of each gene and its
corresponding regression coefficients. The formula is
defined as follows:

score=e sum (univariateCoxanalysis*correspondingcoefficient)

We stratified patients into high-risk and low-risk
groups based on the median value of the risk score.
We used T-distributed stochastic neighbor
embedding (t-SNE) to examine the distribution of
different groups using the “Rtsne” R package. Then,
for each gene’s survival analysis, we determined the
optimal cut-off expression value using the
“surv_cutpoint” function from the “survminer” R
package. To evaluate the predictive power of the gene
signature, we conducted time-dependent ROC curve
analyses, using the “survivalROC” R package.
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Functional enrichment analysis

We performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)
analyses on the DEGs (|logFC|= 1, FDR <0.05)
between the high-risk and low-risk groups using the
“clusterProfiler” R package [40, 41]. The Benjamini &
Hochberg (BH) method was used to adjust P values.
We computed the infiltration scores of 16 immune
cells and 13 immune-related pathways by
Single-sample Gene Set Enrichment Analysis
(ssGSEA) [42] implemented in the “GSVA” R package
[43]. We explored the potential pathways related to
ferroptosis-related genes in OC development by
pathway enrichment analysis.

Statistical analysis

We compared the gene expression between
tumor tissues and normal ovarian tissues using the
Student’s t-test. The Chi-squared test was used to
compare the proportions. The Mann-Whitney test was
applied to compare the ssGSEA scores of immune
cells or pathways between the high-risk and low-risk
groups, with  P-values adjusted by the
Benjamini-Hochberg (BH) method. We compared the
OS Dbetween different groups by Kaplan-Meier
analysis and the log-rank test. We identified
independent predictors of OS by univariate and
multivariate Cox regression analyses. All the analyses
were performed by R software (Version 3.5.3) or SPSS
(Version 23.0). A p-value < 0.05 was considered
statistically significant.
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