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Abstract 

Background: Patients with "driver gene-negative" LUAD lack effective targeted therapies. This study 
aimed to elucidate the role of the glycolysis pathway in driver gene-negative LUAD to identify key genes 
and potential therapeutic targets. 
Methods: Bulk RNA sequencing data from 49 patients with driver gene-negative LUAD were analyzed. 
The driver gene-negative status of patients was confirmed by immunoblotting. Gene set enrichment 
analysis (GSEA) was conducted on six hallmark pathways related to glycolysis. Additionally, key genes 
were identified and a risk score model was constructed. Finally, single-cell RNA sequencing data were 
processed using the Seurat package for data cleaning, dimensionality reduction clustering, and cell type 
identification. 
Results: GSEA analysis revealed significant enrichment of the glycolysis pathway in driver gene-negative 
LUAD. Differential expression analysis identified 144 genes associated with the glycolysis pathway. Six 
glycolysis-related genes (ANKZF1, GPR87, KIF2A, LCT, MIF, SDHC) were identified associated with 
poor prognosis. Single-cell sequencing analysis validated the key role of MIF in the glycolysis process and 
revealed a positive feedback regulatory axis between MIF and HIF-1α, which may promoting glycolysis 
and malignant transformation. 
Conclusion: This study elucidated glucose metabolic reprogramming mechanisms and highlighted the 
MIF-HIF-1α axis as a promising therapeutic target in "driver gene-negative" LUAD, which may offer new 
avenues for improving outcomes, particularly those lacking conventional targeted therapy options. 
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Introduction 
As is well documented, lung cancer is one of the 

most prevalent cancers and the leading cause of 
cancer-related deaths worldwide[1]. Lung 
adenocarcinoma (LUAD) is the most common 
histological type of lung cancer, accounting for over 

40% of the total cases[2]. In recent years, the 
exploration of tumor driver genes and the rapid 
development of molecular detection technology has 
led to the identification of a series of driver genes in 
the field of LUAD, such as EGFR, KRAS, BRAF, 
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HER2, MET, RET, ROS1 and ALK[3]. Targeted drugs 
have been developed for some of these genes, 
significantly improving the survival rates of patients 
harboring driver gene mutations[4]. However, a subset 
of LUAD patients lacks detectably mutational sites 
corresponding to targeted drugs, referred to as "driver 
gene-negative" lung adenocarcinoma patients, which 
accounts for approximately 22%-55% of all LUAD 
cases[5]. These patients have relatively limited 
treatment options, highlighting the urgent need to 
explore new therapeutic methods to improve their 
prognosis. Therefore, a multi-omics cohort of patients 
with LUAD negative for major driver gene mutations 
(EGFR, KRAS, BRAF, HER2, MET, ALK, RET, and 
ROS1)[6] was established to comprehensively explore 
the pathogenic molecular mechanisms underlying 
this subtype and identifying effective therapeutic 
targets for this population.  

In 1923, Otto Warburg[7] described that tumor 
tissue slices consumed high levels of glucose and 
synthesized lactate under aerobic conditions, a 
phenomenon known as the "Warburg effect". Other 
forms of metabolic reprogramming have been 
discovered on this basis and have been hypothesized 
to play a vital role in tumor proliferation and 
metastasis[8, 9]. While many studies have reported 
the role of glycolysis in the occurrence and 
development of lung cancer[10], abnormalities in the 
glycolysis pathway seem to play a more critical role in 
driver gene negative LUAD. Our previous work 
demonstrated that glycolysis is the most 
discriminative metabolic features distinguishing 
driver gene-negative LUAD from adjacent tissues[11, 
12]. However, the mechanism underlying the role of 
glucose metabolism reprogramming in driver 
gene-negative lung adenocarcinoma remains elusive. 

Therefore, this study utilized bulk and single-cell 
RNA sequencing sequencing to further explore 
glycometabolism-related pathways to identify key 
genes and potential mechanisms that affect the 
development and progression of driver gene-negative 
lung adenocarcinoma, to determine cell types 
involved at the cellular level and to use cell line 
models to conduct preliminary validation. 

Methods 

Patient selection and data enrollment 
The bulk-RNA sequencing data of 49 patients 

with driver gene-negative LUAD was retrieved from 
a previously published cohort[11, 13, 14] comprising 
626 formalin-fixed, paraffin-embedded (FFPE) tumor 
and healthy tissue samples between September 2003 
and June 2015. No patients underwent antitumor 
therapy prior to biopsy sampling. 

Immunohistochemical staining and immunoblotting 
assays were performed on FFPE tissues to confirm 
driver gene-negative status. Driver gene-negative 
status was defined as the absence of mutations in 
ALK, EGFR, HER2, KRAS, MET, BRAF, ROS1, and 
RET, which precluded the use of current mainstream 
targeted therapies. 

Single-cell RNA sequencing data were acquired 
from GSE131907[15], which included tumors and 
adjacent tissues of four driver gene-negative patients. 
The workflow for sample collection, analysis, and 
processing is illustrated in Figure 1A. 

Gene set enrichment analysis (GSEA) of 
glucose metabolism-related pathways 

Six glucose metabolism-related hallmark 
pathways were identified in the Molecular Signatures 
Database (MSigDB)[16], namely glycolysis, oxidative 
phosphorylation, oxidative respiratory chain 
assembly, gluconeogenesis, pentose phosphate 
pathway, and glycogen synthesis and decomposition. 
Gene set enrichment analysis was conducted using 
GSEA software (v.4.3.2) to compare these pathways 
between tumor and normal groups. p<0.05 was 
considered statistically significant. 

Identification and prediction model 
construction of key genes 

Differential expression analysis was performed 
between tumor and healthy tissues. Differentially 
expressed genes (DEGs) were identified based on the 
thresholds adj.p<0.05 and |log2 (fold-change)| > 0.5. 
Next, the least absolute shrinkage and selection 
operator (LASSO) regression analysis was performed 
on DEGs between the tumor and adjacent control 
groups to confirm the optimal lambda value and 
identify key genes. Utilizing these pivotal genes, a risk 
score model was constructed for patients with driver 
gene-negative lung adenocarcinoma. The risk score 
was calculated as follows: 

 
Model performance was assessed using the ROC 

curve. The median risk score was used to stratify 
patients into high-risk and low-risk groups and 
visualized using the "survival", "glmnet", "pbapply", 
and "survivalROC" R packages. 

Single-cell data processing and cell type 
determination 

The dataset was curated by excluding cells with 
nFeature_RNA counts greater than 200 or less than 
5000. Additionally, to ensure the integrity of the 
analysis, cells exhibiting mitochondrial gene 
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expression exceeding 15% were systematically 
excluded. Further analysis was performed using the R 
package "Seurat" after cleaning and quality control of 
raw data. The FindClusters function was used to 
identify functional characteristics of various cell 
clusters, with a resolution of 0.4 and PC=25 for cell 
clustering based on the expression profiles of each cell 
cluster.  

The marker genes for each cluster were 
identified using the "FindMarkers" function. The cell 
types in each cluster were annotated according to 
human lung cell marker genes established in previous 
studies[17]. Epithelial cells are recognized as cells of 
origin for lung adenocarcinoma. To further explore 
the roles of distinct epithelial cell subpopulations in 
the progression of driver gene-negative lung 
adenocarcinoma, EPCAM+ cells were categorized as 
epithelial, and subcluster analysis was performed. 

Copy number variation (CNV) analysis 
CNVs analysis was conducted to determine the 

malignancy of epithelial cells. To delineate cellular 
trajectories, high CNV-score epithelial cells were 
isolated from the squamous epithelium and classified 
as malignant epithelial cells. Following this, the 
Monocle2 algorithm was used, leveraging a gene-cell 
matrix derived from a scaled Unique Molecular 
Identifier (UMI) count dataset within the Seurat 
framework as the input. The analysis was conducted 
using default settings to predict cellular 
developmental paths using the R package 
"InferCNV". 

Gene set enrichment analysis with pathway 
activity estimation 

Gene set enrichment analysis (GSEA) was 
conducted using 50 hallmark pathways from the 
Molecular Signatures Database (MSigDB) to evaluate 
their activity levels across various cell types. 
Additionally, Gene Set Variation Analysis (GSVA) 
was performed on each cell to estimate the 
enrichment scores for each pathway within individual 
cells. Differences between activity scores were used to 
quantify differential pathway activity among distinct 
cell subtypes. 

Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway 
enrichment analysis 

Enrichment analysis, including Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses, were performed using 
R packages "edgeR", "org.Hs.eg.db", "enrichplot", and 
"ggplot2" to elucidate the different biological 
processes and pathways between the groups. p<0.05 

was considered statistically significant. 

Cell line and cell transfection 
Based on previous studies on "driver 

gene-negative" lung cancers[18], we selected two lung 
cancer cell lines (H1703 and Calu‐3 cells) as positive 
controls. The lung cancer cell lines and normal human 
alveolar epithelial type II (AT2) cells were sourced 
from the American Type Culture Collection and 
cultured in Dulbecco's Modified Eagle medium 
(DMEM; Thermo Fisher Scientific). MIF plasmids 
were purchased from Synechuang Bio. Briefly, AT2 
cells were transfected with 5 μg plasmid using 
lipofectamine 3000 and lipofectamine 2000 reagents 
(Invitrogen). ISO-1 is a known antagonist of MIF that 
exerts its effect by inhibiting the D-dopachrome 
tautomerase activity of MIF. In the present study, the 
activity of MIF was inhibited using 100 μM ISO-1. 
Dimethyloxalylglycine (DMOG) is a small molecule 
compound that stabilizes HIF-1α by inhibiting the 
activity of prolyl hydroxylase. Herein, the function of 
HIF-1α was stabilized by the addition of 100 μM 
DMOG. 

[3H]-2DG method for detecting glucose 
uptake 

The glucose uptake efficiency of cells can be 
assessed by measuring their uptake of [3H]-2DG. 
Cells were starved for 24 hours and then incubated in 
a DMEM culture medium supplemented with 37 
kBq/mL [3H]-2DG (containing 1 mg/mL glucose) for 
an additional 24 hours. Next, cells were digested with 
trypsin, a small portion was retained for counting, 
and the remaining cells were centrifuged and lysed 
with 0.5 mol/L NaOH for 15 minutes. The cell lysate 
was neutralized with an equal volume of 0.5 mol/L 
hydrochloric acid. Finally, a liquid scintillation 
counter (HIDEX300SL, Finland) was used to measure 
the disintegrations per minute (DPM) of the cell 
lysate, whilst [3H]-2DG uptake was calculated using 
the following formula: [3H]-2DG uptake = 
(Experimental group DPM - Blank control group 
DPM)/(Control group DPM - Blank control group 
DPM). 

Microplate assay for lactate dehydrogenase 
(LDH) activity 

The LDH activity was determined following the 
Lactate Dehydrogenase Activity Assay Kit 
(Sigma-Aldrich, MAK066). A total of 1×106 cells was 
collected from each group, following which 100 μL of 
cell lysis solution was added. Next, the mixture was 
incubated on ice for 10 minutes, then centrifuged at 
13,000g for 10 minutes to discard debris. The 
supernatant was collected thereafter. Then, lactate 
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solution, 1× INT solution, and enzyme solution were 
mixed in equal volumes to prepare the working 
solution. Subsequently, 50 μL of the working solution 
was added to a 96-well plate and incubated at room 
temperature in the dark for 30 minutes. Absorbance 
was measured at 490 nm using a microplate reader. 
Relative LDH activity was calculated as follows: 
Relative LDH activity = (absorbance of the sample 
well - absorbance of the background blank control 
well)/(absorbance of the control group well - 
absorbance of the standard blank well). 

Microplate assay for lactate levels 
Lactate levels were determined following the 

Lactate Assay Kit (Sigma-Aldrich, MAK064). Cells 
from each group were seeded at a density of 1×105 
cells per well in a 6-well plate and cultured for 12 
hours, following which the medium was replaced 
with 1 mL of serum-free medium per well and 
incubated for an additional 24 hours. The cell culture 
medium was then collected and centrifuged at 13,000g 
for 10 minutes to remove impurities. A mixture of 20 
μL of the sample, 26 μL of lactate assay buffer, 2 μL of 
lactate enzyme mixture, and 2 μL of lactate probe was 
prepared and incubated at room temperature for 30 
minutes. Lastly, the absorbance of the sample was 
measured at 570 nm using a microplate reader. 

Assessment of cellular proliferation 
To evaluate cell proliferation, Cell Counting 

Kit-8 (CCK-8) was used following the protocols 
provided by the manufacturer. An aliquot of 
approximately 100 μL of the cell suspension was 
carefully pipetted into each well of a 96-well 
microplate. Subsequently, the CCK-8 reagent and 10 
μL of a detection reagent were introduced into each 
well. Following this, the optical density (OD) of each 
well was determined at a wavelength of 450 nm using 
a microplate spectrophotometer. 

Statistical analysis 
Statistical analyses were conducted using R 

software (version 4.3.1, sourced from 
https://www.r-project.org). Depending on the 
distribution of the metric data, values were expressed 
as mean ± standard deviation for continuous variables 
and as frequencies (percentages) for categorical data. 
Kaplan-Meier survival curves were plotted to 
evaluate differences in survival outcomes between the 
groups. Wilcoxon rank-sum test and one-way 
ANOVA were used to compare differences between 
groups. All tests were two-sided, and p<0.05 was 
considered statistically significant. 

Results 
The glycolysis pathway is highly enriched in 
driver gene-negative LUAD 

GSEA enrichment analysis on six glucose 
metabolism-related pathways from MSigDB in driver 
gene-negative lung adenocarcinoma identified 
glycolysis as the only pathway with a significant 
difference between tumor and healthy tissues, with 
the highest enrichment in driver gene-negative LUAD 
(Figure 1B). The results of other pathways are 
illustrated in Supplementary Figure 1. Differential 
expression analysis of glycolysis-related genes 
between the tumor and adjacent control groups 
yielded 144 DEGs (Supplementary Table 1), as 
displayed in Figure 1B, indicating that differences in 
glycolysis processes may be associated with the 
development of driver gene-negative lung 
adenocarcinoma.  

The model established based on the glycolysis 
pathway can effectively predict patient 
prognosis  

After performing a differential analysis of 
glycolysis gene expression levels between the tumor 
and adjacent control groups, LASSO regression 
analysis was used to further screen potential feature 
genes from DEGs. By determining the optimal λ value 
using glmnet (Figure 1C, D), six glycolysis-related 
genes (ANKZF1, GPR87, KIF2A, LCT, MIF, SDHC) 
were identified that are associated with poor 
prognosis in patients with driver gene-negative 
LUAD. The regression coefficients for each gene are 
listed in Supplementary Table 2. To further validate 
the significance of key genes, a survival prognostic 
model was established (Figure 1E), and a ROC curve 
was generated to validate the effectiveness of the 
prognostic model (Figure 1F). 

Single-cell sequencing confirmed that MIF is a 
key gene involved in the glycolysis of driver 
gene-negative lung adenocarcinoma 

Single-cell sequencing data from driver 
gene-negative lung adenocarcinoma were used to 
further investigate the mechanisms underlying 
glycolysis-related genes. The results of data cleaning 
and identification of highly variable genes are 
depicted in Supplementary Figures 2A and B. After 
dimension reduction clustering of single-cell data 
derived from tumor and adjacent tissues from three 
patients, all cells were subdivided into 19 clusters, and 
the dimension reduction results were stratified by 
tissue origin, as shown in Figure 2A and 
Supplementary Figure 2C. Subsequently, cell 
annotation was performed using classic marker genes, 
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namely EPCAM (epithelial cell), PECAM1 
(endothelial cell), FABP4 (alveolar macrophages), 
CD3D (T cell), SFTPB (AT2 cell), and S100A8 (myeloid 
cell), with gene expressions levels delineated in Figure 
2B and marker genes in each cluster shown in Figure 
2C. Clusters 6/8/11 were identified as epithelial cells 
containing 717 marker genes. Previous studies have 
demonstrated that alveolar epithelial cells are the 
origin cells of lung adenocarcinoma[34]. Interestingly, 
intersecting the previously identified 
glycolysis-related genes with the marker genes of 
alveolar epithelial cells revealed that MIF can 
simultaneously serve as a differential gene in the 
glycolysis pathway and a marker gene for alveolar 
epithelial cells (Figure 2D), indicating that MIF is a 
key gene involved in regulating glycolysis in driver 
gene-negative lung adenocarcinoma. Its expression at 
the single-cell level is presented in Figure 2E. 

MIF+AT2 cells have higher glycolysis levels and 
a higher degree of malignancy 

Annotation of single-cell data based on the 
expression of marker genes yielded 14 cell types 
(Figure 3A). Among them, AT2 cells were further 
subclassified into MIF+AT2 cell subsets based on the 
expression level of MIF. GSEA comparing MIF+AT2 
cell subsets with other AT2 cell subsets revealed that 
the glycolysis pathway was significantly more active 
in MIF+AT2 cell subsets (Figure 3B and 

Supplementary Figure 2D). To further explore the 
expression of MIF in various epithelial cell subsets, a 
re-clustering analysis of epithelial cell subsets was 
performed (Supplementary Figure 2E), and the 
expression of EPCAM and MIF in epithelial cell 
subpopulations is delineated in Figures 3C and D. 
Meanwhile, comparison with the results of cell 
malignancy inferred based on chromosome ploidy 
revealed a high degree of consistency between the 
distribution of epithelial cells with high MIF 
expression and aneuploid nuclear type, suggesting a 
correlation between MIF expression and cell 
malignancy (Figure 3E). Furthermore, We evaluated 
the correlation between MIF expression and various 
metabolic pathways and found that oxidative 
phosphorylation, glycolysis, and other O-glycan 
biosynthesis were more than 0.3 correlated with MIF 
expression, suggesting a close relationship between 
MIF and glucose metabolism (Supplementary Figure 
2F). The results of glycolysis pathway scoring, based 
on the AUcell algorithm, uncovered a significant 
positive correlation between the glycolysis activity of 
epithelial cells and their MIF expression levels 
(Figures 3F and G). At the overall level, driver gene 
negative LUAD also showed higher levels of 
glycolysis compared to adjacent tissues 
(Supplementary Figure 2G). 

 

 
Figure 1. Construction of a Glycolysis-Related Prognostic Model for Patients with "Driver Gene-Negative" Lung Adenocarcinoma. (A) Sample type and main analysis process. 
(B) Glycolysis pathways are significantly enriched in tumor tissues of "driver gene-negative" lung adenocarcinoma. (C) Differential gene expression between "driver gene-negative" 
lung adenocarcinoma tumor tissues and adjacent normal tissues. (D) LASSO coefficient pathway diagram for differentially expressed glycolysis-related genes. (E) LASSO 
regression cross-validation curve. (F) Survival analysis of high and low-risk groups in the glycolysis-related prognostic model. (G) ROC curve for the glycolysis-related predictive 
model. 
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Figure 2. Single-Cell Sequencing Dimensionality Reduction and Clustering of "Driver Gene-Negative" Lung Adenocarcinoma. (A) Single-cell data from "driver gene-negative" 
lung adenocarcinoma, grouped by tumor and normal tissues after dimensionality reduction. (B) Expression of marker genes for various cell types; (C) Identification and 
expression of marker genes in each cluster. (D) MIF is the only gene intersecting between epithelial cell marker genes and glycolysis-related genes in "driver gene-negative" lung 
adenocarcinoma. (E) Expression of MIF at the single-cell level. 

 
Figure 3. Analysis of Epithelial Cells in "Driver Gene-Negative" Lung Adenocarcinoma. (A) Cell annotation from single-cell sequencing data of "driver gene-negative" lung 
adenocarcinoma patients; (B) Expression of marker genes in the re-clustering analysis of epithelial cells; (C) Expression of MIF in epithelial cells; (D) Single cell GSEA analysis 
reveals significant enrichment of glycolytic pathways in MIF+AT2 cells; (E) CopyKAT analysis in epithelial cells; (F) Distribution of glycolytic active cells among epithelial cells; (G) 
Relationship between MIF expression and glycolytic levels. 
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Figure 4. Correlation Analysis of MIF with Clinical Characteristics in "Driver Gene-Negative" Lung Adenocarcinoma. (A) Comparison of MIF expression in tumor and adjacent 
tissues; (B) Survival analysis of high and low MIF expression groups; (C) Expression of MIF in different tumor stages; (D) Differential expression analysis of tumors in high and low 
MIF expression groups; (E) Protein-protein interaction network of MIF co-expressed proteins in tumor tissues; (F) KEGG pathway enrichment analysis of MIF differential 
co-expressed genes. 

 
HIF-1α pathway is a key regulatory pathway 
for MIF 

Our previous studies established that MIF 
overexpression can facilitate the malignant 
transformation of AT2 cells[19]. As anticipated, the 
expression level of MIF in tumor tissues was 
significantly upregulated compared to healthy tissues 
(Figure 4A). Patients with driver gene-negative lung 
adenocarcinoma with high MIF expression had a 
poorer prognosis, and MIF expression levels were 
higher in patients with advanced disease (Figure 4B, 

C). To investigate the specific mechanisms underlying 
the influence of MIF on the development of driver 
gene-negative lung adenocarcinoma, differential 
expression analysis was carried out based on MIF 
expression levels in patients, leading to the 
identification of 906 differentially expressed genes, 
with the top 50 genes shown in Figure 4D. 
Additionally, 294 co-expressed genes of MIF were 
identified in the tumor tissues of driver gene-negative 
lung adenocarcinoma, and genes with high 
correlation were utilized to construct a co-expression 
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network (Figure 4E). Intersecting the aforementioned 
differentially expressed genes with the co-expressed 
genes yielded 128 co-expressed genes with differential 
expression. KEGG enrichment analysis revealed that 
these genes were primarily enriched in signaling 
pathways such as Glycolysis/Gluconeogenesis, HIF-1 
signaling pathway, Cell cycle, and Carbon 
metabolism (Figure 4F), implying that MIF primarily 
functions by influencing the glycolytic process in 
tumors, while the HIF-1α pathway is a key regulatory 
pathway. 

HIF-1α and MIF form a positive feedback 
regulatory axis to promote glycolysis and 
induce cellular malignant transformation 

The correlation between the expression of MIF 
and HIF-1α was validated in driver gene-negative 

lung adenocarcinoma patients, and the result revealed 
a significant positive correlation between the 
expression levels of MIF and HIF-1α in tumor tissues 
(Figure 5A). Moreover, high expression of HIF-1α was 
associated with poor prognosis in patients with driver 
gene-negative LUAD (Figure 5B). To further 
corroborate the interaction between the two proteins, 
cell-based experiments were conducted, and the 
finding uncovered that MIF overexpression and 
HIF-1α activation (DMOG) both increased L-lactate 
levels in AT2 cells, whereas MIF inhibition (ISO-1) 
reversed the increase in L-lactate production in AT2 
cells induced by HIF-1α activation (DMOG) (Figure 
5C). Similar trends were observed in glucose uptake 
and LDH activity (Figures 5D and E), signaling that 
both MIF and HIF-1α significantly enhanced the 
glycolysis of AT2 cells, which was reversed by MIF 

 

 
Figure 5. Correlation Analysis of MIF with HIF-1α and Cellular Experiments for Validation. (A) Correlation analysis of MIF and HIF-1α expression; (B) Survival analysis of high 
and low MIF expression groups; (C) Changes in L-Lactate production in AT2, DMOG, MIF-AT2 and DMOG+ISO-1; (D) Changes in glucose uptake rate in AT2, DMOG, MIF-AT2 
and DMOG+ISO-1; (E) Changes in LDH activity in AT2, DMOG, MIF-AT2 and DMOG+ISO-1; (F) Cell proliferation in AT2, DMOG, MIF-AT2 and DMOG+ISO-1 calculated by 
OD490; (G) Cell proliferation curves of AT2, DMOG, MIF-AT2 and DMOG+ISO-1. 
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inhibitors. However, regardless of MIF 
overexpression and HIF-1α activation, the glucose 
metabolism index levels of AT2 cells after treatment 
were still significantly lower than those of H1703 and 
Calu-3 lung cancer cell lines (Supplementary Figure 
3A-C). Treatment of AT2 cells with the HIF-1α agonist 
DMOG significantly enhanced their proliferative 
capacity and this effect was also reversed by ISO-1 
(Figures 5F and G). It was found that their 
proliferation rate was still significantly lower than 
that of lung cancer cell lines after 48 hours of 
upregulation of MIF or HIF-1α, and the proliferation 
rate of MIF+AT2 was higher than that of DMOG and 
closer to tumor cells (Supplementary Figure 3D). 
Overall, these results suggest that HIF-1α and MIF 
form a positive feedback regulatory axis that 
promotes glycolysis and drives cellular malignant 
transformation. 

Discussion 
Driver gene-negative lung adenocarcinoma 

accounts for approximately 22%-55% of all lung 
adenocarcinoma cases and lacks effective treatment 
modalities[5]. Currently, targeted research on driver 
gene-negative lung adenocarcinoma is scarce, with 
the majority of studies investigating clinical and 
pathological characteristics and biomarkers for 
immunotherapy. Previous studies have reported that, 
in addition to PD-L1 and the tumor 
microenvironment, systemic inflammatory factors[20, 
21] and metabolic indicators[22] can also predict the 
efficacy of immunotherapy in patients with driver 
gene-negative lung cancer. 

Notably, metabolic reprogramming is a hallmark 
of malignant tumors. Previous studies have 
established that reprogramming of glucose 
metabolism is closely related to the development and 
progression of lung cancer[11, 13]. Our previous 
research revealed significant differential expression of 
glycolysis-related pathways in driver gene-negative 
lung adenocarcinoma tumors and adjacent tissues and 
that high-risk patients identified by radiomics 
likewise exhibited a significant increase in glucose 
metabolism[12]. Herein, bioinformatics analysis and 
statistical methods were performed to explore the 
gene expression profiles of 49 patients with driver 
gene-negative lung adenocarcinoma. Furthermore, 
GSEA enrichment analysis and LASSO regression 
were used to identify six characteristic genes 
(ANKZF1, GPR87, KIF2A, LCT, MIF, SDHC). These 
six characteristic genes have been proven in previous 
studies to promote the occurrence and development 
of various tumors by affecting glucose metabolism 
processes. ANKZF1, an ankyrin repeat and zinc finger 
domain-containing protein, is implicated in tumor 

progression and glycolysis across cancers. In 
colorectal cancer[23] and hepatocellular 
carcinoma[24], it was identified as an independent 
prognostic biomarker. GPR87 exhibits dual roles in 
tumor progression and glycolysis: it acts as an 
oncogene in melanoma by promoting glycolysis and 
suppressing immune responses through AKT/LDHA 
pathway activation[25], while functioning as a tumor 
suppressor in prostate cancer by inhibiting 
glycolysis[26]. KIF2A is implicated in tumor 
progression and glycolysis, WAC-AS1 promotes 
glycolysis and proliferation by sponging miR-320d to 
upregulate KIF2A expression in hepatocellular 
carcinoma[27]. LCT is implicated in endometrial 
cancer progression through its association with 
glycolysis. High LCT expression correlates with 
aggressive tumor features and poorer survival[28]. 
SDHC, a subunit of succinate dehydrogenase (SDH), 
plays a dual role in tumorigenesis and glycolysis. Its 
dysfunction, such as epigenetic inactivation, drives 
metabolic reprogramming by suppressing 
mitochondrial respiration and enhancing glycolysis, 
thereby promoting tumor progression and metastasis 
in cancers[29, 30]. Meanwhile, single-cell sequencing 
was employed to conduct subpopulation analysis at 
the single-cell level in driver gene-negative lung 
adenocarcinoma, ultimately identifying MIF as a key 
gene involved in regulating glycolysis and playing a 
crucial role in regulating malignant cell 
transformation. Of note, the results of preliminary 
experiments validated our findings. 

Macrophage migration inhibitory factor (MIF) is 
a multifunctional cytokine that plays a pivotal role in 
tumorigenesis, cancer progression, and inflammatory 
responses[31, 32]. It exerts various biological effects 
through various intracellular and extracellular 
signaling pathways[32], including binding to 
receptors such as CD74 and CXCR, as well as the 
activation of Akt and NF-kB pathways[33]. In patients 
with lung cancer, MIF overexpression is associated 
with poor prognosis and is regarded as a candidate 
biomarker for non-small cell lung cancer[34-36]. 
Specifically, MIF overexpression directly enhances the 
growth and metastasis of lung cancer[20], whereas its 
inhibition attenuates tumor progression by 
suppressing angiogenesis and metastasis[33, 37]. 
Importantly, MIF also plays a vital role in glucose 
metabolism. Indeed, it can influence glucose 
homeostasis by promoting insulin release while 
concurrently regulating glucose uptake, glycolysis, 
and insulin resistance in target cells. According to 
earlier studies, MIF overexpression significantly 
promotes the Warburg effect in H524 cells[38, 39]. 
This study aimed to explore the upstream and 
downstream pathways of the key gene MIF and 
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identify potential regulatory mechanisms. By 
constructing a PPI co-expression network and 
performing KEGG pathway enrichment analysis, we 
discovered that the HIF-1α pathway is linked to the 
function of MIF.  

The HIF-1α pathway modulates key biological 
processes such as glycolysis, cell proliferation, 
migration, and angiogenesis, which are essential for 
tumor survival and progression[20]. Noteworthily, 
HIF-1α is a known transcription factor for MIF[40]. 
The hypoxia-responsive element SNP rs17004038 in 
the MIF promoter region binds to HIF-1α, leading to 
the upregulation of MIF expression. Additionally, 
MIF can also affect HIF-1α activity. Earlier studies 
concluded that MIF can influence HIF-1α expression 
through the NF-κB pathway[41] or regulate HIF-1 
stability in a p53-dependent manner[42]. Besides, 
previous research indicated that MIF may promote 
the development of pancreatic cancer by forming a 
positive feedback loop with HIF-1α[42]. In pancreatic 
cancer cell lines, MIF stabilizes the structure of HIF-1α 
through CSN5, which in turn further up-regulates the 
expression of MIF. In the present study, the 
correlation between MIF and HIF-1α expression was 
validated, and cellular experiments were conducted 
to validate our hypothesis[43]. We observed that the 
upregulation of MIF or HIF-1α can promote the 
glycolysis level and cell proliferation ability of AT2 
cells, but still lower than that of lung cancer cell lines. 
It is worth noting that the enhanced glucose 
metabolism and proliferation ability caused by the 
upregulation of HIF-1α can be reversed by MIF 
inhibitors. But currently, there is a lack of clear 
evidence of the interaction between these two 
molecules in lung cancer. We speculate that the 
presence of a MIF/HIF-1α positive feedback 
regulatory loop impacts the development of driver 
gene-negative lung adenocarcinoma through 
glycolysis mechanisms. We observed their co 
expression and cross-talk between pathways in tumor 
tissues, but lacked direct evidence on how they 
interact with each other. This inference warrants 
further experimental confirmation. 

Nevertheless, some limitations of this study 
cannot be overlooked. This study is limited by 
reliance on bulk RNA-seq, which may mask 
cell-type-specific contributions to the MIF-HIF-1α 
axis. While single-cell analysis identified AT2 cells as 
key drivers, the sample size restricts broader 
conclusions. Future work will integrate spatial 
transcriptomics and expand single-cell profiling to 
validate cell-state dynamics. Mechanistically, this 
study exclusively explored the selected key genes at 
the cellular level, direct interactions between MIF and 
HIF-1α remain unproven. We are addressing this gap 

through Co-IP/mass spectrometry and HIF-1α 
ChIP-seq to define their molecular interplay. These 
limitations underscore the need for deeper 
mechanistic interrogation and multi-omics integration 
to fully harness the therapeutic potential of the 
MIF-HIF-1α axis. Notably, our team has recently 
completed relatively in-depth experiments and more 
comprehensive methylation omics analysis for a 
subset of driver gene-negative LUAD samples[44]. 
We plan to perform integrative analyses of bulk 
RNA-seq, single-cell transcriptomics, and DNA 
methylation data to identify epigenetic regulators of 
the MIF-HIF-1α axis and their clinical implications. 

Conclusion 
This study investigated patients with driver 

gene-negative LUAD, and multi-omics analysis 
revealed the instrumental role of the glycolysis 
pathway in tumorigenesis. Moreover, MIF was 
identified as a key gene affecting glycolysis and the 
malignant transformation of tumors. These findings 
collectively suggest that MIF may form a positive 
feedback regulatory axis with HIF-1α, promoting 
glycolysis and the malignant phenotype in tumor 
cells. These insights provide potential targets for the 
treatment of driver gene-negative LUAD. Despite 
limitations in sample size and study scope, the results 
offer valuable directions for future research and the 
development of effective treatment strategies. 

Supplementary Material 
Supplementary figures and tables.  
https://www.jcancer.org/v16p4233s1.pdf 

Acknowledgments 
The authors wish to acknowledge patients 

participating in the study. 

Funding 
This work was supported by the Elite Medical 

Professionals Project of China-Japan Friendship 
Hospital (No. ZRJY2024-QMPY15), National Natural 
Science Foundation of China (No. 82403323), and 
National Key Clinical Specialty Construction Project 
(2024-QTL-001). 

Ethics approval  
This study was approved by the institutional 

ethics committee of the First Afliated Hospital of Sun 
Yat-sen University [No. 2019—232] and ethics 
committee of the China-Japan Friendship Hospital 
[No. 2022-KY-127]. Informed consent was waived. 
The authors are accountable for all aspects of the work 
in ensuring that questions related to the accuracy or 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

4243 

integrity of any part of the work are appropriately 
investigated and resolved. 

Consent for publication 
Consent for publication has been received from 

all participants. 

Data availability statement 
The datasets generated during and analyzed 

during the current study are available from the 
corresponding author on reasonable request. 

Author contributions 
Hao-Shuai Yang, Data curation; formal analysis; 

investigation; writing - original draft; funding;writing 
review & editing; visualization.  

Yuan-Hao Li, writing - original draft; formal 
analysis; Investigation; writing review & editing; 
visualization.  

Qi Chen, Data curation; formal analysis; 
Investigation; writing-review & editing.  

Hong-He Luo, Data curation; formal analysis; 
Investigation; writing-review & editing.  

Zi-Han Wang, Data curation; formal analysis; 
Investigation; writing-review & editing.  

Qi-Duo Yu, Data curation; formal analysis; 
Investigation. 

Yu Han, Data curation; formal analysis; 
Investigation.  

Weijie Zhu, Data curation; formal analysis; 
Investigation. 

Jin Zhang, Data curation; formal analysis; 
Investigation; funding;project administration.  

Chao-Yang Liang, Conceptualization; 
methodology; Investigation; project administration; 
supervision; writing-review & editing; validation. 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J 

Clin. 2023; 73: 17-48. 
2. Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, 

et al. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 
2015. J Thorac Oncol. 2022; 17: 362-87. 

3. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Jr., Wu YL, et al. 
Lung cancer: current therapies and new targeted treatments. Lancet. 2017; 389: 
299-311. 

4. Tan AC, Tan DSW. Targeted Therapies for Lung Cancer Patients With 
Oncogenic Driver Molecular Alterations. J Clin Oncol. 2022; 40: 611-25. 

5. Rosell R, Bivona TG, Karachaliou N. Genetics and biomarkers in 
personalisation of lung cancer treatment. Lancet. 2013; 382: 720-31. 

6. Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. 
Cell Metab. 2016; 23: 27-47. 

7. Warburg O, Minami S. Versuche an Überlebendem Carcinom-gewebe. 
Klinische Wochenschrift. 1923; 2: 776-7. 

8. Phan LM, Yeung SC, Lee MH. Cancer metabolic reprogramming: importance, 
main features, and potentials for precise targeted anti-cancer therapies. Cancer 
Biol Med. 2014; 11: 1-19. 

9. Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer 
Cells? Trends Biochem Sci. 2016; 41: 211-8. 

10. Chen HH, Chiu NT, Su WC, Guo HR, Lee BF. Prognostic value of whole-body 
total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung 
cancer. Radiology. 2012; 264: 559-66. 

11. Cui Y, Fang W, Li C, Tang K, Zhang J, Lei Y, et al. Development and 
Validation of a Novel Signature to Predict Overall Survival in "Driver 
Gene-negative" Lung Adenocarcinoma (LUAD): Results of a Multicenter 
Study. Clin Cancer Res. 2019; 25: 1546-56. 

12. Guo QK, Yang HS, Shan SC, Chang DD, Qiu LJ, Luo HH, et al. A radiomics 
nomogram prediction for survival of patients with "driver gene-negative" lung 
adenocarcinomas (LUAD). Radiol Med. 2023; 128: 714-25. 

13. Cai HY, Yang HS, Shan SC, Lei YY, Zou JY, Zhu Y, et al. A novel signature 
based on immune-related gene pairs and clinical features to predict prognosis 
and treatment effect in "driver gene negative" lung adenocarcinoma. Cancer 
Med. 2022; 11: 2259-70. 

14. Yang HS, Liu W, Zheng SY, Cai HY, Luo HH, Feng YF, et al. A Novel 
Ras--Related Signature Improves Prognostic Capacity in Oesophageal 
Squamous Cell Carcinoma. Front Genet. 2022; 13: 822966. 

15. Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, et al. Single-cell RNA 
sequencing demonstrates the molecular and cellular reprogramming of 
metastatic lung adenocarcinoma. Nat Commun. 2020; 11: 2285. 

16. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. 
The Molecular Signatures Database (MSigDB) hallmark gene set collection. 
Cell Syst. 2015; 1: 417-25. 

17. Wu FY, Fan J, He YY, Xiong AW, Yu J, Li YX, et al. Single-cell profiling of 
tumor heterogeneity and the microenvironment in advanced non-small cell 
lung cancer. Nature Communications. 2021; 12. 

18. de Semir D, Bezrookove V, Nosrati M, Dar AA, Wu C, Shen J, et al. PHIP as a 
therapeutic target for driver-negative subtypes of melanoma, breast, and lung 
cancer. Proc Natl Acad Sci U S A. 2018; 115: E5766-E75. 

19. Liu W, Yang HS, Zhi FH, Feng YF, Luo HH, Zhu Y, et al. Macrophage 
migration inhibitory factor may contribute to the occurrence of multiple 
primary lung adenocarcinomas. Clin Transl Med. 2023; 13: e1368. 

20. Stares M, Ding TE, Stratton C, Thomson F, Baxter M, Cagney H, et al. 
Biomarkers of systemic inflammation predict survival with first-line immune 
checkpoint inhibitors in non-small-cell lung cancer. ESMO Open. 2022; 7: 
100445. 

21. Xie H, Ruan G, Wei L, Deng L, Zhang Q, Ge Y, et al. The inflammatory burden 
index is a superior systemic inflammation biomarker for the prognosis of 
non-small cell lung cancer. J Cachexia Sarcopenia Muscle. 2023; 14: 869-78. 

22. Liu W, Zhi FH, Zheng SY, Yang HS, Geng XJ, Luo HH, et al. Hypothyroidism 
reduces the risk of lung cancer through oxidative stress response and the 
PI3K/Akt signaling pathway: An RNA-seq and Mendelian randomization 
study. Heliyon. 2023; 9: e22661. 

23. Liu Z, Liu Z, Zhou X, Lu Y, Yao Y, Wang W, et al. A glycolysis-related 
two-gene risk model that can effectively predict the prognosis of patients with 
rectal cancer. Hum Genomics. 2022; 16: 5. 

24. Kong J, Yu G, Si W, Li G, Chai J, Liu Y, et al. Identification of a 
glycolysis-related gene signature for predicting prognosis in patients with 
hepatocellular carcinoma. BMC Cancer. 2022; 22: 142. 

25. Yang Y, Li Y, Qi R, Zhang L. Development and Validation of a Combined 
Glycolysis and Immune Prognostic Model for Melanoma. Front Immunol. 
2021; 12: 711145. 

26. Guo K, Lai C, Shi J, Tang Z, Liu C, Li K, et al. A Novel Risk Factor Model Based 
on Glycolysis-Associated Genes for Predicting the Prognosis of Patients With 
Prostate Cancer. Front Oncol. 2021; 11: 605810. 

27. Xia X, Zhang H, Xia P, Zhu Y, Liu J, Xu K, et al. Identification of 
Glycolysis-Related lncRNAs and the Novel lncRNA WAC-AS1 Promotes 
Glycolysis and Tumor Progression in Hepatocellular Carcinoma. Front Oncol. 
2021; 11: 733595. 

28. Liu J, Li S, Feng G, Meng H, Nie S, Sun R, et al. Nine glycolysis-related gene 
signature predicting the survival of patients with endometrial 
adenocarcinoma. Cancer Cell Int. 2020; 20: 183. 

29. Thomas LW, Esposito C, Morgan RE, Price S, Young J, Williams SP, et al. 
Genome-wide CRISPR/Cas9 deletion screen defines mitochondrial gene 
essentiality and identifies routes for tumour cell viability in hypoxia. Commun 
Biol. 2021; 4: 615. 

30. Zhang X, Wang J, Zhuang J, Liu C, Gao C, Li H, et al. A Novel 
Glycolysis-Related Four-mRNA Signature for Predicting the Survival of 
Patients With Breast Cancer. Front Genet. 2021; 12: 606937. 

31. Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with 
delayed-type hypersensitivity. Science. 1966; 153: 80-2. 

32. Penticuff JC, Woolbright BL, Sielecki TM, Weir SJ, Taylor JA, 3rd. MIF family 
proteins in genitourinary cancer: tumorigenic roles and therapeutic potential. 
Nat Rev Urol. 2019; 16: 318-28. 

33. Mawhinney L, Armstrong ME, C OR, Bucala R, Leng L, Fingerle-Rowson G, et 
al. Macrophage migration inhibitory factor (MIF) enzymatic activity and lung 
cancer. Mol Med. 2015; 20: 729-35. 

34. Tomiyasu M, Yoshino I, Suemitsu R, Okamoto T, Sugimachi K. Quantification 
of macrophage migration inhibitory factor mRNA expression in non-small cell 
lung cancer tissues and its clinical significance. Clin Cancer Res. 2002; 8: 
3755-60. 

35. White ES, Flaherty KR, Carskadon S, Brant A, Iannettoni MD, Yee J, et al. 
Macrophage migration inhibitory factor and CXC chemokine expression in 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

4244 

non-small cell lung cancer: role in angiogenesis and prognosis. Clin Cancer 
Res. 2003; 9: 853-60. 

36. Rendon BE, Roger T, Teneng I, Zhao M, Al-Abed Y, Calandra T, et al. 
Regulation of human lung adenocarcinoma cell migration and invasion by 
macrophage migration inhibitory factor. J Biol Chem. 2007; 282: 29910-8. 

37. Gordon-Weeks AN, Lim SY, Yuzhalin AE, Jones K, Muschel R. Macrophage 
migration inhibitory factor: a key cytokine and therapeutic target in colon 
cancer. Cytokine Growth Factor Rev. 2015; 26: 451-61. 

38. Waeber G, Calandra T, Roduit R, Haefliger JA, Bonny C, Thompson N, et al. 
Insulin secretion is regulated by the glucose-dependent production of islet 
beta cell macrophage migration inhibitory factor. Proc Natl Acad Sci U S A. 
1997; 94: 4782-7. 

39. Benigni F, Atsumi T, Calandra T, Metz C, Echtenacher B, Peng T, et al. The 
proinflammatory mediator macrophage migration inhibitory factor induces 
glucose catabolism in muscle. J Clin Invest. 2000; 106: 1291-300. 

40. Sumaiya K, Langford D, Natarajaseenivasan K, Shanmughapriya S. 
Macrophage migration inhibitory factor (MIF): A multifaceted cytokine 
regulated by genetic and physiological strategies. Pharmacol Ther. 2022; 233: 
108024. 

41. Li J, Zhang J, Xie F, Peng J, Wu X. Macrophage migration inhibitory factor 
promotes Warburg effect via activation of the NF‑kappaB/HIF‑1alpha 
pathway in lung cancer. Int J Mol Med. 2018; 41: 1062-8. 

42. Oda S, Oda T, Nishi K, Takabuchi S, Wakamatsu T, Tanaka T, et al. 
Macrophage migration inhibitory factor activates hypoxia-inducible factor in a 
p53-dependent manner. PLoS One. 2008; 3: e2215. 

43. Winner M, Koong AC, Rendon BE, Zundel W, Mitchell RA. Amplification of 
tumor hypoxic responses by macrophage migration inhibitory 
factor-dependent hypoxia-inducible factor stabilization. Cancer Res. 2007; 67: 
186-93. 

44. Shu M, Huang L, Chen Y, Wang Y, Xie Z, Li S, et al. Identification of a 
DNA-methylome-based signature for prognosis prediction in driver 
gene-negative lung adenocarcinoma. Cancer Lett. 2024; 593: 216835. 

 
 
 


