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Abstract

Background: Patients with "driver gene-negative" LUAD lack effective targeted therapies. This study
aimed to elucidate the role of the glycolysis pathway in driver gene-negative LUAD to identify key genes
and potential therapeutic targets.

Methods: Bulk RNA sequencing data from 49 patients with driver gene-negative LUAD were analyzed.
The driver gene-negative status of patients was confirmed by immunoblotting. Gene set enrichment
analysis (GSEA) was conducted on six hallmark pathways related to glycolysis. Additionally, key genes
were identified and a risk score model was constructed. Finally, single-cell RNA sequencing data were
processed using the Seurat package for data cleaning, dimensionality reduction clustering, and cell type
identification.

Results: GSEA analysis revealed significant enrichment of the glycolysis pathway in driver gene-negative
LUAD. Differential expression analysis identified 144 genes associated with the glycolysis pathway. Six
glycolysis-related genes (ANKZFI1, GPR87, KIF2A, LCT, MIF, SDHC) were identified associated with
poor prognosis. Single-cell sequencing analysis validated the key role of MIF in the glycolysis process and
revealed a positive feedback regulatory axis between MIF and HIF-1a, which may promoting glycolysis
and malignant transformation.

Conclusion: This study elucidated glucose metabolic reprogramming mechanisms and highlighted the
MIF-HIF-1a axis as a promising therapeutic target in "driver gene-negative” LUAD, which may offer new
avenues for improving outcomes, particularly those lacking conventional targeted therapy options.
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Introduction

As is well documented, lung cancer is one of the =~ 40% of the total cases[2]. In recent years, the

most prevalent cancers and the leading cause of
cancer-related deaths worldwide[1]. Lung
adenocarcinoma (LUAD) is the most common
histological type of lung cancer, accounting for over

exploration of tumor driver genes and the rapid
development of molecular detection technology has
led to the identification of a series of driver genes in
the field of LUAD, such as EGFR, KRAS, BRAF,
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HER2, MET, RET, ROS1 and ALK][3]. Targeted drugs
have been developed for some of these genes,
significantly improving the survival rates of patients
harboring driver gene mutationsl4. However, a subset
of LUAD patients lacks detectably mutational sites
corresponding to targeted drugs, referred to as "driver
gene-negative" lung adenocarcinoma patients, which
accounts for approximately 22%-55% of all LUAD
cases[5]. These patients have relatively limited
treatment options, highlighting the urgent need to
explore new therapeutic methods to improve their
prognosis. Therefore, a multi-omics cohort of patients
with LUAD negative for major driver gene mutations
(EGFR, KRAS, BRAF, HER2, MET, ALK, RET, and
ROS1)[6] was established to comprehensively explore
the pathogenic molecular mechanisms underlying
this subtype and identifying effective therapeutic
targets for this population.

In 1923, Otto Warburg[7] described that tumor
tissue slices consumed high levels of glucose and
synthesized lactate under aerobic conditions, a
phenomenon known as the "Warburg effect". Other
forms of metabolic reprogramming have been
discovered on this basis and have been hypothesized
to play a vital role in tumor proliferation and
metastasis[8, 9]. While many studies have reported
the role of glycolysis in the occurrence and
development of lung cancer[10], abnormalities in the
glycolysis pathway seem to play a more critical role in
driver gene negative LUAD. Our previous work
demonstrated that glycolysis is the most
discriminative metabolic features distinguishing
driver gene-negative LUAD from adjacent tissues[11,
12]. However, the mechanism underlying the role of
glucose metabolism reprogramming in driver
gene-negative lung adenocarcinoma remains elusive.

Therefore, this study utilized bulk and single-cell
RNA sequencing sequencing to further explore
glycometabolism-related pathways to identify key
genes and potential mechanisms that affect the
development and progression of driver gene-negative
lung adenocarcinoma, to determine cell types
involved at the cellular level and to use cell line
models to conduct preliminary validation.

Methods

Patient selection and data enrollment

The bulk-RNA sequencing data of 49 patients
with driver gene-negative LUAD was retrieved from
a previously published cohort[11, 13, 14] comprising
626 formalin-fixed, paraffin-embedded (FFPE) tumor
and healthy tissue samples between September 2003
and June 2015. No patients underwent antitumor
therapy prior to biopsy sampling.

Immunohistochemical staining and immunoblotting
assays were performed on FFPE tissues to confirm
driver gene-negative status. Driver gene-negative
status was defined as the absence of mutations in
ALK, EGFR, HER2, KRAS, MET, BRAF, ROS1, and
RET, which precluded the use of current mainstream
targeted therapies.

Single-cell RNA sequencing data were acquired
from GSE131907[15], which included tumors and
adjacent tissues of four driver gene-negative patients.
The workflow for sample collection, analysis, and
processing is illustrated in Figure 1A.

Gene set enrichment analysis (GSEA) of
glucose metabolism-related pathways

Six glucose metabolism-related hallmark
pathways were identified in the Molecular Signatures
Database (MSigDB)[16], namely glycolysis, oxidative
phosphorylation,  oxidative  respiratory  chain
assembly, gluconeogenesis, pentose phosphate
pathway, and glycogen synthesis and decomposition.
Gene set enrichment analysis was conducted using
GSEA software (v.4.3.2) to compare these pathways
between tumor and normal groups. p<0.05 was
considered statistically significant.

Identification and prediction model
construction of key genes

Differential expression analysis was performed
between tumor and healthy tissues. Differentially
expressed genes (DEGs) were identified based on the
thresholds adj.p<0.05 and |log2 (fold-change)| > 0.5.
Next, the least absolute shrinkage and selection
operator (LASSO) regression analysis was performed
on DEGs between the tumor and adjacent control
groups to confirm the optimal lambda value and
identify key genes. Utilizing these pivotal genes, a risk
score model was constructed for patients with driver
gene-negative lung adenocarcinoma. The risk score
was calculated as follows:

Risk Score = ﬁ;(t)exp(xiﬁ)

Model performance was assessed using the ROC
curve. The median risk score was used to stratify
patients into high-risk and low-risk groups and
visualized using the "survival", "glmnet", "pbapply",
and "survivalROC" R packages.

Single-cell data processing and cell type
determination

The dataset was curated by excluding cells with
nFeature_RNA counts greater than 200 or less than
5000. Additionally, to ensure the integrity of the
analysis, cells exhibiting mitochondrial gene
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expression exceeding 15% were systematically  was considered statistically significant.

excluded. Further analysis was performed using the R Cell li d cell fecti

package "Seurat" after cleaning and quality control of ell line and cell transtection

raw data. The FindClusters function was used to Based on previous studies on ‘'driver

identify functional characteristics of various cell
clusters, with a resolution of 0.4 and PC=25 for cell
clustering based on the expression profiles of each cell
cluster.

The marker genes for each cluster were
identified using the "FindMarkers" function. The cell
types in each cluster were annotated according to
human lung cell marker genes established in previous
studies[17]. Epithelial cells are recognized as cells of
origin for lung adenocarcinoma. To further explore
the roles of distinct epithelial cell subpopulations in
the progression of driver gene-negative lung
adenocarcinoma, EPCAM+ cells were categorized as
epithelial, and subcluster analysis was performed.

Copy number variation (CNV) analysis

CNVs analysis was conducted to determine the
malignancy of epithelial cells. To delineate cellular
trajectories, high CNV-score epithelial cells were
isolated from the squamous epithelium and classified
as malignant epithelial cells. Following this, the
Monocle2 algorithm was used, leveraging a gene-cell
matrix derived from a scaled Unique Molecular
Identifier (UMI) count dataset within the Seurat
framework as the input. The analysis was conducted

using default settings to predict cellular
developmental paths wusing the R package
"InferCNV".

Gene set enrichment analysis with pathway
activity estimation

Gene set enrichment analysis (GSEA) was
conducted using 50 hallmark pathways from the
Molecular Signatures Database (MSigDB) to evaluate
their activity levels across various cell types.
Additionally, Gene Set Variation Analysis (GSVA)
was performed on each cell to estimate the
enrichment scores for each pathway within individual
cells. Differences between activity scores were used to
quantify differential pathway activity among distinct
cell subtypes.

Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway
enrichment analysis

Enrichment analysis, including Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses, were performed using
R packages "edgeR", "org.Hs.eg.db", "enrichplot", and
"ggplot2" to elucidate the different biological
processes and pathways between the groups. p<0.05

gene-negative" lung cancers[18], we selected two lung
cancer cell lines (H1703 and Calu-3 cells) as positive
controls. The lung cancer cell lines and normal human
alveolar epithelial type II (AT2) cells were sourced
from the American Type Culture Collection and
cultured in Dulbecco's Modified Eagle medium
(DMEM; Thermo Fisher Scientific). MIF plasmids
were purchased from Synechuang Bio. Briefly, AT2
cells were transfected with 5pg plasmid using
lipofectamine 3000 and lipofectamine 2000 reagents
(Invitrogen). ISO-1 is a known antagonist of MIF that
exerts its effect by inhibiting the D-dopachrome
tautomerase activity of MIF. In the present study, the
activity of MIF was inhibited using 100 pM ISO-1.
Dimethyloxalylglycine (DMOG) is a small molecule
compound that stabilizes HIF-la by inhibiting the
activity of prolyl hydroxylase. Herein, the function of
HIF-1a was stabilized by the addition of 100 pM
DMOG.

[3H]-2DG method for detecting glucose
uptake

The glucose uptake efficiency of cells can be
assessed by measuring their uptake of [3H]-2DG.
Cells were starved for 24 hours and then incubated in
a DMEM culture medium supplemented with 37
kBq/mL [3H]-2DG (containing 1 mg/mL glucose) for
an additional 24 hours. Next, cells were digested with
trypsin, a small portion was retained for counting,
and the remaining cells were centrifuged and lysed
with 0.5 mol/L NaOH for 15 minutes. The cell lysate
was neutralized with an equal volume of 0.5 mol/L
hydrochloric acid. Finally, a liquid scintillation
counter (HIDEX300SL, Finland) was used to measure
the disintegrations per minute (DPM) of the cell
lysate, whilst [3H]-2DG uptake was calculated using
the following formula: [3H]-2DG uptake =
(Experimental group DPM - Blank control group
DPM)/(Control group DPM - Blank control group
DPM).

Microplate assay for lactate dehydrogenase
(LDH) activity

The LDH activity was determined following the
Lactate  Dehydrogenase  Activity Assay Kit
(Sigma-Aldrich, MAKO066). A total of 1x10¢ cells was
collected from each group, following which 100 pL of
cell lysis solution was added. Next, the mixture was
incubated on ice for 10 minutes, then centrifuged at
13,000g for 10 minutes to discard debris. The
supernatant was collected thereafter. Then, lactate
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solution, 1x INT solution, and enzyme solution were
mixed in equal volumes to prepare the working
solution. Subsequently, 50 pL of the working solution
was added to a 96-well plate and incubated at room
temperature in the dark for 30 minutes. Absorbance
was measured at 490 nm using a microplate reader.
Relative LDH activity was calculated as follows:
Relative LDH activity = (absorbance of the sample
well - absorbance of the background blank control
well)/(absorbance of the control group well -
absorbance of the standard blank well).

Microplate assay for lactate levels

Lactate levels were determined following the
Lactate Assay Kit (Sigma-Aldrich, MAK064). Cells
from each group were seeded at a density of 1x10°
cells per well in a 6-well plate and cultured for 12
hours, following which the medium was replaced
with 1 mL of serum-free medium per well and
incubated for an additional 24 hours. The cell culture
medium was then collected and centrifuged at 13,000g
for 10 minutes to remove impurities. A mixture of 20
pL of the sample, 26 pL of lactate assay buffer, 2 pL of
lactate enzyme mixture, and 2 pL of lactate probe was
prepared and incubated at room temperature for 30
minutes. Lastly, the absorbance of the sample was
measured at 570 nm using a microplate reader.

Assessment of cellular proliferation

To evaluate cell proliferation, Cell Counting
Kit-8 (CCK-8) was used following the protocols
provided by the manufacturer. An aliquot of
approximately 100 pL of the cell suspension was
carefully pipetted into each well of a 96-well
microplate. Subsequently, the CCK-8 reagent and 10
pL of a detection reagent were introduced into each
well. Following this, the optical density (OD) of each
well was determined at a wavelength of 450 nm using
a microplate spectrophotometer.

Statistical analysis

Statistical analyses were conducted using R
software (version 431, sourced from
https:/ /www.r-project.org). Depending on the
distribution of the metric data, values were expressed
as mean * standard deviation for continuous variables
and as frequencies (percentages) for categorical data.
Kaplan-Meier survival curves were plotted to
evaluate differences in survival outcomes between the
groups. Wilcoxon rank-sum test and one-way
ANOVA were used to compare differences between
groups. All tests were two-sided, and p<0.05 was
considered statistically significant.

Results

The glycolysis pathway is highly enriched in
driver gene-negative LUAD

GSEA enrichment analysis on six glucose
metabolism-related pathways from MSigDB in driver
gene-negative lung adenocarcinoma identified
glycolysis as the only pathway with a significant
difference between tumor and healthy tissues, with
the highest enrichment in driver gene-negative LUAD
(Figure 1B). The results of other pathways are
illustrated in Supplementary Figure 1. Differential
expression analysis of glycolysis-related genes
between the tumor and adjacent control groups
yielded 144 DEGs (Supplementary Table 1), as
displayed in Figure 1B, indicating that differences in
glycolysis processes may be associated with the
development of driver gene-negative lung
adenocarcinoma.

The model established based on the glycolysis
pathway can effectively predict patient
prognosis

After performing a differential analysis of
glycolysis gene expression levels between the tumor
and adjacent control groups, LASSO regression
analysis was used to further screen potential feature
genes from DEGs. By determining the optimal A value
using glmnet (Figure 1C, D), six glycolysis-related
genes (ANKZF1, GPR87, KIF2A, LCT, MIF, SDHC)
were identified that are associated with poor
prognosis in patients with driver gene-negative
LUAD. The regression coefficients for each gene are
listed in Supplementary Table 2. To further validate
the significance of key genes, a survival prognostic
model was established (Figure 1E), and a ROC curve
was generated to validate the effectiveness of the
prognostic model (Figure 1F).

Single-cell sequencing confirmed that MIF is a
key gene involved in the glycolysis of driver
gene-negative lung adenocarcinoma

Single-cell sequencing data from driver
gene-negative lung adenocarcinoma were used to
further investigate the mechanisms underlying
glycolysis-related genes. The results of data cleaning
and identification of highly variable genes are
depicted in Supplementary Figures 2A and B. After
dimension reduction clustering of single-cell data
derived from tumor and adjacent tissues from three
patients, all cells were subdivided into 19 clusters, and
the dimension reduction results were stratified by
tissue origin, as shown in Figure 2A and
Supplementary Figure 2C. Subsequently, cell
annotation was performed using classic marker genes,
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namely EPCAM  (epithelial cell), PECAM1
(endothelial cell), FABP4 (alveolar macrophages),
CD3D (T cell), SFTPB (AT2 cell), and S100A8 (myeloid
cell), with gene expressions levels delineated in Figure
2B and marker genes in each cluster shown in Figure
2C. Clusters 6/8/11 were identified as epithelial cells
containing 717 marker genes. Previous studies have
demonstrated that alveolar epithelial cells are the
origin cells of lung adenocarcinoma[34]. Interestingly,
intersecting the previously identified
glycolysis-related genes with the marker genes of
alveolar epithelial cells revealed that MIF can
simultaneously serve as a differential gene in the
glycolysis pathway and a marker gene for alveolar
epithelial cells (Figure 2D), indicating that MIF is a
key gene involved in regulating glycolysis in driver
gene-negative lung adenocarcinoma. Its expression at
the single-cell level is presented in Figure 2E.

MIF+AT2 cells have higher glycolysis levels and
a higher degree of malignancy

Annotation of single-cell data based on the
expression of marker genes yielded 14 cell types
(Figure 3A). Among them, AT2 cells were further
subclassified into MIF+AT?2 cell subsets based on the
expression level of MIF. GSEA comparing MIF+AT2
cell subsets with other AT2 cell subsets revealed that
the glycolysis pathway was significantly more active

in MIF+AT2 cell subsets (Figure 3B and
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Supplementary Figure 2D). To further explore the
expression of MIF in various epithelial cell subsets, a
re-clustering analysis of epithelial cell subsets was
performed (Supplementary Figure 2E), and the
expression of EPCAM and MIF in epithelial cell
subpopulations is delineated in Figures 3C and D.
Meanwhile, comparison with the results of cell
malignancy inferred based on chromosome ploidy
revealed a high degree of consistency between the
distribution of epithelial cells with high MIF
expression and aneuploid nuclear type, suggesting a
correlation between MIF expression and cell
malignancy (Figure 3E). Furthermore, We evaluated
the correlation between MIF expression and various
metabolic pathways and found that oxidative
phosphorylation, glycolysis, and other O-glycan
biosynthesis were more than 0.3 correlated with MIF
expression, suggesting a close relationship between
MIF and glucose metabolism (Supplementary Figure
2F). The results of glycolysis pathway scoring, based
on the AUcell algorithm, uncovered a significant
positive correlation between the glycolysis activity of
epithelial cells and their MIF expression levels
(Figures 3F and G). At the overall level, driver gene
negative LUAD also showed higher levels of
glycolysis ~ compared to  adjacent  tissues
(Supplementary Figure 2G).
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Figure 1. Construction of a Glycolysis-Related Prognostic Model for Patients with "Driver Gene-Negative" Lung Adenocarcinoma. (A) Sample type and main analysis process.

(B) Glycolysis pathways are significantly enriched in tumor tissues of "driver gene-negative"

lung adenocarcinoma. (C) Differential gene expression between "driver gene-negative"

lung adenocarcinoma tumor tissues and adjacent normal tissues. (D) LASSO coefficient pathway diagram for differentially expressed glycolysis-related genes. (E) LASSO
regression cross-validation curve. (F) Survival analysis of high and low-risk groups in the glycolysis-related prognostic model. (G) ROC curve for the glycolysis-related predictive

model.
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HIF-1a pathway is a key regulatory pathway
for MIF

Our previous studies established that MIF
overexpression can facilitate the malignant
transformation of AT2 cells[19]. As anticipated, the
expression level of MIF in tumor tissues was
significantly upregulated compared to healthy tissues
(Figure 4A). Patients with driver gene-negative lung
adenocarcinoma with high MIF expression had a
poorer prognosis, and MIF expression levels were
higher in patients with advanced disease (Figure 4B,

C). To investigate the specific mechanisms underlying
the influence of MIF on the development of driver
gene-negative lung adenocarcinoma, differential
expression analysis was carried out based on MIF
expression levels in patients, leading to the
identification of 906 differentially expressed genes,
with the top 50 genes shown in Figure 4D.
Additionally, 294 co-expressed genes of MIF were
identified in the tumor tissues of driver gene-negative
lung adenocarcinoma, and genes with high
correlation were utilized to construct a co-expression
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network (Figure 4E). Intersecting the aforementioned
differentially expressed genes with the co-expressed
genes yielded 128 co-expressed genes with differential
expression. KEGG enrichment analysis revealed that
these genes were primarily enriched in signaling
pathways such as Glycolysis/Gluconeogenesis, HIF-1
signaling pathway, Cell cycle, and Carbon
metabolism (Figure 4F), implying that MIF primarily
functions by influencing the glycolytic process in
tumors, while the HIF-1a pathway is a key regulatory
pathway.

HIF-1a and MIF form a positive feedback
regulatory axis to promote glycolysis and
induce cellular malignant transformation

The correlation between the expression of MIF
and HIF-la was validated in driver gene-negative

lung adenocarcinoma patients, and the result revealed
a significant positive correlation between the
expression levels of MIF and HIF-1a in tumor tissues
(Figure 5A). Moreover, high expression of HIF-1a was
associated with poor prognosis in patients with driver
gene-negative LUAD (Figure 5B). To further
corroborate the interaction between the two proteins,
cell-based experiments were conducted, and the
finding uncovered that MIF overexpression and
HIF-1a activation (DMOG) both increased L-lactate
levels in AT2 cells, whereas MIF inhibition (ISO-1)
reversed the increase in L-lactate production in AT2
cells induced by HIF-1a activation (DMOG) (Figure
5C). Similar trends were observed in glucose uptake
and LDH activity (Figures 5D and E), signaling that
both MIF and HIF-la significantly enhanced the
glycolysis of AT2 cells, which was reversed by MIF
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inhibitors. = However,  regardless = of  MIF
overexpression and HIF-la activation, the glucose
metabolism index levels of AT2 cells after treatment
were still significantly lower than those of H1703 and
Calu-3 lung cancer cell lines (Supplementary Figure
3A-C). Treatment of AT2 cells with the HIF-1a agonist
DMOG significantly enhanced their proliferative
capacity and this effect was also reversed by ISO-1
(Figures 5F and G). It was found that their
proliferation rate was still significantly lower than
that of lung cancer cell lines after 48 hours of
upregulation of MIF or HIF-1a, and the proliferation
rate of MIF+AT2 was higher than that of DMOG and
closer to tumor cells (Supplementary Figure 3D).
Overall, these results suggest that HIF-la and MIF
form a positive feedback regulatory axis that
promotes glycolysis and drives cellular malignant
transformation.

Discussion

Driver gene-negative lung adenocarcinoma
accounts for approximately 22%-55% of all lung
adenocarcinoma cases and lacks effective treatment
modalities[5]. Currently, targeted research on driver
gene-negative lung adenocarcinoma is scarce, with
the majority of studies investigating clinical and
pathological characteristics and biomarkers for
immunotherapy. Previous studies have reported that,
in addition to PD-L1 and the tumor
microenvironment, systemic inflammatory factors[20,
21] and metabolic indicators[22] can also predict the
efficacy of immunotherapy in patients with driver
gene-negative lung cancer.

Notably, metabolic reprogramming is a hallmark
of malignant tumors. Previous studies have
established that reprogramming of glucose
metabolism is closely related to the development and
progression of lung cancer[11, 13]. Our previous
research revealed significant differential expression of
glycolysis-related pathways in driver gene-negative
lung adenocarcinoma tumors and adjacent tissues and
that high-risk patients identified by radiomics
likewise exhibited a significant increase in glucose
metabolism[12]. Herein, bioinformatics analysis and
statistical methods were performed to explore the
gene expression profiles of 49 patients with driver
gene-negative lung adenocarcinoma. Furthermore,
GSEA enrichment analysis and LASSO regression
were used to identify six characteristic genes
(ANKZF1, GPR87, KIF2A, LCT, MIF, SDHC). These
six characteristic genes have been proven in previous
studies to promote the occurrence and development
of various tumors by affecting glucose metabolism
processes. ANKZF1, an ankyrin repeat and zinc finger
domain-containing protein, is implicated in tumor

progression and glycolysis across cancers. In
colorectal cancer|[23] and hepatocellular
carcinoma[24], it was identified as an independent
prognostic biomarker. GPR87 exhibits dual roles in
tumor progression and glycolysis: it acts as an
oncogene in melanoma by promoting glycolysis and
suppressing immune responses through AKT/LDHA
pathway activation[25], while functioning as a tumor
suppressor in prostate cancer by inhibiting
glycolysis[26]. KIF2A is implicated in tumor
progression and glycolysis, WAC-AS1 promotes
glycolysis and proliferation by sponging miR-320d to
upregulate KIF2A expression in hepatocellular
carcinoma[27]. LCT is implicated in endometrial
cancer progression through its association with
glycolysis. High LCT expression correlates with
aggressive tumor features and poorer survival[28].
SDHC, a subunit of succinate dehydrogenase (SDH),
plays a dual role in tumorigenesis and glycolysis. Its
dysfunction, such as epigenetic inactivation, drives
metabolic reprogramming by suppressing
mitochondrial respiration and enhancing glycolysis,
thereby promoting tumor progression and metastasis
in cancers[29, 30]. Meanwhile, single-cell sequencing
was employed to conduct subpopulation analysis at
the single-cell level in driver gene-negative lung
adenocarcinoma, ultimately identifying MIF as a key
gene involved in regulating glycolysis and playing a
crucial role in regulating malignant cell
transformation. Of note, the results of preliminary
experiments validated our findings.

Macrophage migration inhibitory factor (MIF) is
a multifunctional cytokine that plays a pivotal role in
tumorigenesis, cancer progression, and inflammatory
responses[31, 32]. It exerts various biological effects
through various intracellular and extracellular
signaling pathways[32], including binding to
receptors such as CD74 and CXCR, as well as the
activation of Akt and NF-kB pathways[33]. In patients
with lung cancer, MIF overexpression is associated
with poor prognosis and is regarded as a candidate
biomarker for non-small cell lung cancer[34-36].
Specifically, MIF overexpression directly enhances the
growth and metastasis of lung cancer[20], whereas its
inhibition attenuates tumor progression by
suppressing angiogenesis and metastasis[33, 37].
Importantly, MIF also plays a vital role in glucose
metabolism. Indeed, it can influence glucose
homeostasis by promoting insulin release while
concurrently regulating glucose uptake, glycolysis,
and insulin resistance in target cells. According to
earlier studies, MIF overexpression significantly
promotes the Warburg effect in H524 cells[38, 39].
This study aimed to explore the upstream and
downstream pathways of the key gene MIF and
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identify potential regulatory mechanisms. By
constructing a PPl co-expression network and
performing KEGG pathway enrichment analysis, we
discovered that the HIF-1a pathway is linked to the
function of MIF.

The HIF-1a pathway modulates key biological
processes such as glycolysis, cell proliferation,
migration, and angiogenesis, which are essential for
tumor survival and progression[20]. Noteworthily,
HIF-1a is a known transcription factor for MIF[40].
The hypoxia-responsive element SNP rs17004038 in
the MIF promoter region binds to HIF-1q, leading to
the upregulation of MIF expression. Additionally,
MIF can also affect HIF-1la activity. Earlier studies
concluded that MIF can influence HIF-1a expression
through the NF-xB pathway[41] or regulate HIF-1
stability in a p53-dependent manner2. Besides,
previous research indicated that MIF may promote
the development of pancreatic cancer by forming a
positive feedback loop with HIF-1a[42]. In pancreatic
cancer cell lines, MIF stabilizes the structure of HIF-1a
through CSN5, which in turn further up-regulates the
expression of MIF. In the present study, the
correlation between MIF and HIF-1a expression was
validated, and cellular experiments were conducted
to validate our hypothesis[43]. We observed that the
upregulation of MIF or HIF-la can promote the
glycolysis level and cell proliferation ability of AT2
cells, but still lower than that of lung cancer cell lines.
It is worth noting that the enhanced glucose
metabolism and proliferation ability caused by the
upregulation of HIF-la can be reversed by MIF
inhibitors. But currently, there is a lack of clear
evidence of the interaction between these two
molecules in lung cancer. We speculate that the
presence of a MIF/HIF-la positive feedback
regulatory loop impacts the development of driver
gene-negative  lung  adenocarcinoma  through
glycolysis mechanisms. We observed their co
expression and cross-talk between pathways in tumor
tissues, but lacked direct evidence on how they
interact with each other. This inference warrants
further experimental confirmation.

Nevertheless, some limitations of this study
cannot be overlooked. This study is limited by
reliance on bulk RNA-seq, which may mask
cell-type-specific contributions to the MIF-HIF-1a
axis. While single-cell analysis identified AT2 cells as
key drivers, the sample size restricts broader
conclusions. Future work will integrate spatial
transcriptomics and expand single-cell profiling to
validate cell-state dynamics. Mechanistically, this
study exclusively explored the selected key genes at
the cellular level, direct interactions between MIF and
HIF-1a remain unproven. We are addressing this gap

through Co-IP/mass spectrometry and HIF-la
ChIP-seq to define their molecular interplay. These
limitations underscore the need for deeper
mechanistic interrogation and multi-omics integration
to fully harness the therapeutic potential of the
MIF-HIF-1a axis. Notably, our team has recently
completed relatively in-depth experiments and more
comprehensive methylation omics analysis for a
subset of driver gene-negative LUAD samples[44].
We plan to perform integrative analyses of bulk
RNA-seq, single-cell transcriptomics, and DNA
methylation data to identify epigenetic regulators of
the MIF-HIF-1a axis and their clinical implications.

Conclusion

This study investigated patients with driver
gene-negative LUAD, and multi-omics analysis
revealed the instrumental role of the glycolysis
pathway in tumorigenesis. Moreover, MIF was
identified as a key gene affecting glycolysis and the
malignant transformation of tumors. These findings
collectively suggest that MIF may form a positive
feedback regulatory axis with HIF-la, promoting
glycolysis and the malignant phenotype in tumor
cells. These insights provide potential targets for the
treatment of driver gene-negative LUAD. Despite
limitations in sample size and study scope, the results
offer valuable directions for future research and the
development of effective treatment strategies.
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