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Abstract 

Colorectal cancer (CRC) is one of the most common malignant tumors. Isoliquiritigenin (ISL), a natural 
chalcone compound extracted from the roots of licorice and other plants, has demonstrated significant 
anti-tumor activity in various cancers. However, its specific mechanisms of action against CRC remain 
unclear. In this study, we investigated the molecular mechanisms underlying the effects of ISL targeting 
Fibroblast Growth Factor Receptor 4 (FGFR4) in CRC. Our findings revealed that FGFR4 is highly 
expressed in CRC cell lines, and functional assays demonstrated that silencing FGFR4 significantly inhibits 
cellular proliferation and migration. Further mechanistic studies showed that FGFR4 regulates fatty acid 
biosynthesis and the PI3K/Akt signaling pathway, as evidenced by the downregulation of Fatty Acid 
Synthase (FASN) and PI3K/Akt pathway proteins upon FGFR4 knockdown. Moreover, ISL significantly 
suppresses CRC cell proliferation and migration while disrupting tumor cell fatty acid metabolism. This 
study suggests that ISL may inhibit CRC progression by downregulating FGFR4 and suppressing 
PI3K/Akt-mediated fatty acid metabolism reprogramming. 
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1. Introduction 
Colorectal cancer (CRC) is the second leading 

cause of cancer-related deaths worldwide, accounting 
for nearly 900,000 deaths annually[1]. While the 
incidence of CRC has stabilized or even declined in 
developed countries, it continues to rise in developing 
nations, making it the leading cause of cancer death in 
men, with a mortality rate of approximately 8.9% 
(28,700 of 322,800 cases), and the second leading cause 
in women, with a mortality rate of about 8.4% (24,310 
of 288,920 cases)[1]. By 2035, the global incidence of 

CRC is projected to reach 2.5 million cases[2, 3]. The 
etiology of CRC is multifactorial, encompassing 
genetic, lifestyle, and environmental factors[4, 5]. 
Common risk factors include hereditary cancer 
syndromes, high-fat and low-fiber diets, chronic 
inflammatory bowel disease, obesity, smoking, and 
physical inactivity[6, 7]. Current treatment modalities 
for CRC have notable limitations: surgical resection 
often fails to eliminate micrometastases and is 
associated with a high rate of complications; 
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chemotherapy and targeted therapies are frequently 
undermined by drug resistance and severe side 
effects[8]; radiotherapy is restricted to specific patient 
populations and carries significant toxicity; and 
immunotherapy is effective for only a small subset of 
patients, with highly variable responses[9, 10]. 
Although combination therapies can enhance efficacy, 
they are often hindered by cumulative toxicity and the 
complexity of treatment coordination, limiting patient 
tolerance and outcomes[11]. These challenges 
underscore the need for optimized therapeutic 
strategies[12, 13]. The development of novel 
formulations with enhanced release control and 
targeted delivery may improve therapeutic efficacy 
while minimizing the toxicity associated with 
conventional chemotherapy drugs. As a result, the 
exploration of natural products for the prevention and 
treatment of colorectal cancer has emerged as a key 
focus in cancer research[14-16]. 

Studies have suggested that estrogen may play a 
potential role in the prevention and treatment of 
CRC[17]. Phytoestrogens, a class of non-steroidal 
plant-derived compounds, can mimic the effects of 
estrogen in the body[18]. Isoliquiritigenin, a flavonoid 
extracted from the rhizomes of the traditional Chinese 
medicinal herb licorice, exhibits various biological 
activities, including antioxidant, anti-inflammatory, 
and anti-tumor properties[19, 20]. Research has 
shown that isoliquiritigenin protects the 
cardiovascular system in cardiovascular diseases 
through its antioxidant and anti-inflammatory 
effects[21], enhances insulin sensitivity in 
diabetes[22], suppresses inflammatory cytokines in 
chronic inflammatory disorders[23], and alleviates 
oxidative stress and neuroinflammation in 
neurodegenerative diseases such as Alzheimer’s[24]. 
In the field of cancer research—including CRC[25], 
breast cancer[26, 27], glioma[28], and lung 
cancer[29]—it demonstrates anti-tumor effects by 
inhibiting cell proliferation, invasion, and 
angiogenesis, as well as promoting apoptosis. Its 
anti-tumor activity against CRC is increasingly being 
recognized, however, the precise mechanisms 
underlying its effects on CRC remain unclear. 

Metabolic reprogramming is a hallmark of 
cancer, enabling tumor cells to adjust their metabolic 
networks to meet the demands for rapid proliferation, 
growth, and invasion. These metabolic alterations not 
only help tumor cells adapt to their 
microenvironment but also actively promote cancer 
progression[30]. Lipid metabolism reprogramming is 
a critical component of these changes, involving 
processes such as fatty acid synthesis, breakdown, 
storage, and transport[31, 32]. Due to the pressures of 
rapid proliferation and survival, tumor cells exhibit 

an increased demand for fatty acids. To meet this 
requirement, they often upregulate the expression of 
key enzymes such as fatty acid synthase (FASN)[33] 
and acetyl-CoA carboxylase (ACC)[34], thereby 
enhancing endogenous fatty acid synthesis.  

This study aims to evaluate the involvement of 
isoliquiritigenin (ISL) in lipid metabolism and its 
impact on colorectal cancer (CRC) cell proliferation 
and invasion. The results demonstrate that ISL 
inhibits the proliferation and invasion of CRC cells in 
vitro, with the potential mechanism involving 
downregulation of the PI3K/AKT pathway and 
suppression of FGFT4-dependent lipid metabolism. 

2. Methods and Materials 
2.1 Cell culture and treatment 

Colorectal cell lines NCM460, SW480, SW620, 
HCT-116, HT-29, and LOVO were purchased from 
ATCC and cultured in media containing 10% fetal 
bovine serum (FBS), penicillin (100 U/mL), and 
streptomycin (100 μg/mL) at 37°C and 5% CO₂. 
FGFR4 expression in SW480 and SW620 cells was 
stably knocked down using FGFR4-targeting shRNA 
from Umine Biotechnology Co., Ltd. (Guangzhou, 
China), with knockdown efficiency confirmed by 
RT-PCR and Western blot.Isoliquiritigenin (ISL) was 
obtained from Sigma-Aldrich, dissolved in DMSO at 
100 mM, and diluted to working concentrations with 
culture medium before use. Control cells received 
equivalent volumes of DMSO.  

2.2 Cell Counting Kit-8 assay 
Cell proliferation was assessed using the CCK-8 

assay (UElandy, China) following the manufacturer’s 
protocol. Briefly, cells were seeded into 96-well plates 
at a density of 2000–3000 cells/well and treated with 
different conditions for the indicated times. At each 
time point, 10 μL of CCK-8 reagent was added to each 
well and incubated for 1–2 hours at 37°C. Absorbance 
at 450 nm was measured using a microplate reader. 
Each experiment was performed in triplicate. 

2.3 Cell invasive assay 
The invasive capacity of cells was evaluated 

using 24-well Transwell chambers (Corning, USA) 
with Matrigel coating. Cells (5 × 10⁴) suspended in 
serum-free medium were added to the upper 
chamber, and the lower chamber was filled with 
medium containing 10% FBS. After 24 hours of 
incubation at 37°C, non-invading cells were removed, 
and invading cells on the lower membrane surface 
were fixed in 4% paraformaldehyde, stained with 
crystal violet, and counted under a microscope in five 
randomly selected fields. 
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2.4 Quantitative real-time PCR 
Total RNA was extracted using TRIzol reagent 

(Invitrogen, USA) and reverse-transcribed into cDNA 
using a reverse transcription kit (Takara, Japan). 
qRT-PCR was performed using SYBR Green Master 
Mix (Roche, Switzerland) on a Bio-Rad detection 
system. Relative mRNA expression levels were 
calculated using the 2⁻ΔΔCt method[35], with 
GAPDH as an internal control. Primers used for PCR 
are listed in Supplementary Table S1. 

2.5 Western blotting 

Cells were lysed in RIPA buffer containing 
protease and phosphatase inhibitors (Beyotime, 
China), and protein concentration was determined 
using a BCA assay kit (Thermo Fisher, USA). Equal 
amounts of protein (20–30 μg) were separated by 
SDS-PAGE and transferred onto PVDF membranes 
(Millipore, USA). Membranes were blocked in 5% 
non-fat milk for 1 hour at room temperature and 
incubated with primary antibodies overnight at 
4°C[36, 37]. The primary antibodies used include 
GAPDH (#2118, 1:1000), FGFR4 (#8562, 1:1000), FASN 
(#3180, 1:1000), Phospho-Akt (Ser473) (#4060, 1:2000), 
PI3 Kinase p85 (#4292, 1:1000), PI3 Kinase (#4249, 
1:1000), and Akt (#9272, 1:1000) (all purchased from 
CST). After washing, membranes were incubated with 
mouse or rabbit secondary antibodies (purchased 
from Proteintech) for 1 hour at room temperature. 
Protein bands were visualized using enhanced 
chemiluminescence (ECL) reagent (Bio-Rad, USA) 
and imaged with a ChemiDoc system. GAPDH was 
used as a loading control. 

2.6 Oil red O staining 

Lipid droplet accumulation in tumor cells was 
analyzed using Oil Red O staining. Briefly, cells 
cultured in 12-well plates were fixed with 4% 
paraformaldehyde, stained with Oil Red O solution, 
and observed under a microscope. The stain was 
extracted for quantitative analysis at 520 nm using a 
spectrophotometer. Confocal microscopy was used 
for imaging lipid droplet distribution. 

2.7 Fatty acid oxidation assay 
To evaluate the fatty acid oxidation (FAO) rate, 

tumor cells were seeded into 6-well plates and 
cultured until reaching approximately 80% 
confluency. Cells were incubated in a medium 
supplemented with 14C-labeled fatty acids. All 
procedures were performed following the 

manufacturer’s instructions for the assay kit 
(BR00001). 

2.8 Measurement of total fatty acid content 
The total fatty acid content in tumor cells was 

determined using Free Fatty Acid Colorimetric Assay 
Kit (ab282927). Fatty acids were derivatized into their 
methyl esters (FAMEs) and quantified against internal 
standards.  

2.9 RNA-seq analysis 
We performed transcriptome sequencing using 

SW480 colorectal cancer cell lines with FGFR4 
knockdown. Total RNA was extracted from the cells 
using TRIzol reagent, then were sent to 
Ruibo(Guangzhou, China). Differentially expressed 
genes (DEGs) were identified based on criteria of 
|Log2 fold change| ≥ 2 and an adjusted p-value < 
0.05. Further enrichment analyses were conducted to 
explore the involved biological pathways and 
mechanisms. 

2.10 Statistical analysis 
All experiments were performed at least three 

times, and the resulting data were analyzed using 
GraphPad Prism 9 software. Results are presented as 
mean ± standard deviation (SD). Comparisons 
between two groups were conducted using Student’s 
t-test, with statistical significance defined as p< 0.05. 

3. Results 
3.1 Knockdown of FGFR4 suppresses 
colorectal cancer cell proliferation and 
invasion 

FGFR4 expression was assessed across colorectal 
cancer cell lines representing various molecular 
subtypes. RT-qPCR analysis revealed significantly 
higher levels of FGFR4 in colorectal cancer cells 
compared to normal intestinal epithelial cells 
(NCM460) (Figure 1A). Among these, SW480 and 
SW620 exhibited the highest FGFR4 expression levels, 
prompting their selection for FGFR4 knockdown 
experiments (Figure 1B). In CCK-8 assays, the 
proliferation capacity of the FGFR4-knockdown 
group was significantly reduced compared to the 
control group (p < 0.05) (Figure 1C). Furthermore, 
Transwell assays demonstrated that the invasive 
ability of FGFR4-knockdown cells was also markedly 
lower than that of the control group, indicating that 
FGFR4 knockdown inhibits the invasiveness of 
colorectal cancer cells (Figure 1D). 
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Figure 1. Knockdown of FGFR4 suppresses colorectal cancer cell proliferation and invasion. (A) RT-qPCR analysis revealed FGFR4 expression levels across various colorectal 
cancer cell lines. (B) Stable shRNA knockdown cell lines (sh-FGFR4#1 and sh-FGFR4#2) were generated in SW480 and SW620 colorectal cancer cell lines, and FGFR4 expression 
levels were confirmed. (C) CCK-8 assays demonstrated significant growth inhibition in SW480 and SW620 cells over 1–6 days following FGFR4 knockdown. (D) Transwell assays 
showed reduced invasion capacity of SW480 and SW620 cells after FGFR4 knockdown. **P <0.05. 

 
3.2 Knockdown of FGFR4 inhibits fatty acid 
metabolism in colorectal cancer 

To investigate the role of FGFR4 in the 
progression of colorectal cancer, we conducted 
transcriptomic sequencing analysis using the 
FGFR4-stably silenced SW480 colorectal cancer cell 
line. Differential expression analysis identified 867 
upregulated genes and 793 downregulated genes 
between groups. Network pathway clustering further 
revealed that fatty acid biosynthesis and the PI3K-Akt 
signaling pathway are central among the pathways 
regulated by FGFR4, suggesting its involvement in 
both fatty acid metabolism and PI3K-Akt signaling 
(Figure 2A). Subsequent lipid metabolism 
experiments showed that, compared to control cells, 
sh-FGFR4 cells exhibited reduced lipid droplet 

accumulation (Figure 2B), decreased fatty acid 
oxidation rate (Figure 2C), and lower overall fatty 
acid content (Figure 2D). Additionally, quantitative 
analysis of cellular palmitic acid levels demonstrated 
that FGFR4 knockdown significantly reduced palmitic 
acid levels in SW480 cells (Figure 2E). 

3.3 FGFR4 promotes fatty acid metabolism in 
colorectal cancer by upregulating FASN 

To further investigate the downstream effector 
proteins of FGFR4, genes downregulated in 
FGFR4-knockdown cells were intersected with 
differentially expressed genes identified from 
TCGA-COAD datasets comparing high FGFR4 
expression vs. low FGFR4 expression, as well as with 
genes associated with fatty acid biosynthesis. Fatty 
acid synthase (FASN) emerged as the sole 
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overlapping gene (Figure 4A). Analysis of the 
TCGA-COAD database revealed a positive correlation 
between FGFR4 and FASN expression levels (Figure 
4B). qRT-PCR and Western blot analysis 
demonstrated that FGFR4 knockdown in SW480 and 
SW620 cells resulted in a concurrent reduction in 
FASN expression (Figures 4C-D). Furthermore, 
treatment of SW480 cells with the FGFR4-specific 
inhibitor Roblitinib reduced PI3K and Akt 
phosphorylation, as well as FABP5 expression (Figure 
4E). These findings suggest that FGFR4 facilitates 
fatty acid metabolism remodeling by activating the 
downstream PI3K-Akt pathway and upregulating 
FASN expression, thereby promoting the initiation 
and progression of colorectal cancer. 

3.4 ISL effectively inhibits colorectal cancer 
cell invasion by suppressing fatty acid 
metabolism 

To evaluate the clinical potential of 
isoliquiritigenin (ISL) in colorectal cancer (CRC), 
researchers conducted in vitro experiments using the 
SW480 and SW620 cell lines treated with ISL at 
concentrations ranging from 0–100 μmol/L for 24–72 
hours. Results showed that ISL significantly inhibited 
cell proliferation in a dose- and time-dependent 
manner. In SW480 cells, the half-maximal inhibitory 
concentrations (IC50) at 24, 48, and 72 hours were 
148.2 μmol/L, 60.37 μmol/L, and 42.95 μmol/L, 
respectively. Similarly, SW620 cells showed IC50 
values of 240.8 μmol/L, 79.56 μmol/L, and 59.81 
μmol/L at the same time points (Figure 4A). Based on 
the IC50 values at 48 hours (60.37 μmol/L for SW480 
and 79.56 μmol/L for SW620), subsequent studies 
were conducted using ISL concentrations of 50 
μmol/L for SW480 cells and 70 μmol/L for SW620 
cells.  

 

 
Figure 2. Knockdown of FGFR4 inhibits fatty acid metabolism in colorectal cancer. (A) Network analysis using Metascape highlighted fatty acid biosynthesis and the PI3K-Akt 
signaling pathway as critical processes regulated by FGFR4. (B) Oil Red O staining showed decreased lipid droplet synthesis in sh-FGFR4 cells. (C) Quantification of total free fatty 
acid content in SW480/sh-NC and SW480/sh-FGFR4 cells. (D) Measurement of fatty acid oxidation activity in SW480/sh-NC and SW480/sh-FGFR4 cells. (E) Quantification of 
palmitic acid levels in SW480/sh-NC and SW480/sh-FGFR4 cells. ** p< 0.05. 
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Figure 3. FGFR4 promotes fatty acid metabolism in colorectal cancer by upregulating FASN. (A) Venn diagram illustrating the overlap between genes downregulated in the 
sh-FGFR4 group, genes upregulated in the TCGA-COAD dataset, and genes involved in fatty acid biosynthesis. (B) Correlation analysis from the TCGA-COAD database showing 
the association between FGFR4 and FASN expression levels. (C) qPCR results demonstrating reduced FASN expression in SW480 and SW620 cells following FGFR4 
knockdown. (D) Western blot analysis confirming decreased FASN protein levels in SW480 and SW620 cells after FGFR4 interference. (E) Protein level changes in 
phosphorylated and total PI3K, Akt, and FABP5 detected in colorectal cancer cells treated with FGFR4 inhibitor Roblitinib (5 µM). ** p< 0.05. 

 
Treatment with ISL resulted in a significant 

reduction in the expression levels of FGFR4 and 
FASN in both SW480 and SW620 cells (Figure 4B). 
Further experiments revealed that ISL decreased lipid 
droplet formation (Figure 4C), total fatty acid content 
(Figure 4D), and fatty acid oxidation levels (Figure 
4E), indicating its role in reprogramming lipid 
metabolism in CRC cells. Additionally, functional 
assays demonstrated that ISL suppressed the invasive 
capabilities of SW480 and SW620 cells (Figure 4F). 
hese findings suggest that isoliquiritigenin effectively 
inhibits CRC progression by targeting FGFR4 and 
disrupting lipid metabolism. 

4. Discussion 
Fibroblast Growth Factor Receptor 4 (FGFR4) 

has garnered attention as a key oncogenic driver in 
multiple malignancies, including liver, breast, lung 
cancers and CRC[38-40]. Recent studies have 
implicated FGFR4 in regulating proliferation, 
migration, and resistance to therapies through its 
downstream signaling cascade[41]. In CRC, our study 
confirms that FGFR4 is highly upregulated in tumor 
cells, consistent with prior data correlating FGFR4 

expression with poor prognosis[40]. FGFR4’s ability 
to activate PI3K/Akt signaling is particularly 
noteworthy, as this pathway orchestrates cellular 
processes such as growth and survival, while also 
playing a central role in lipid metabolism. These 
findings align with previous research emphasizing 
PI3K/Akt as a master regulator of metabolic 
reprogramming, wherein tumor cells shift towards 
heightened fatty acid synthesis to sustain rapid 
growth and invasion. Similarly, Guo et.al identified 
KDM6A as a driver of HCC progression via 
FGFR4-mediated activation of the PI3K-AKT-mTOR 
pathway, leading to altered glucose and lipid 
metabolism[42]. Besides, FGFR4 drives basal-like 
breast cancer cell survival through PI3K/AKT 
activation, with a subset relying on FGF19-mediated 
autocrine signaling[43]. 

Fatty acid metabolism is increasingly recognized 
as a hallmark of cancer progression[44]. Tumor cells 
rely on enhanced lipogenesis, driven by enzymes such 
as FASN, to support membrane synthesis, energy 
production, and oncogenic signaling[45, 46]. Our data 
reveal FGFR4 as a key regulator of FASN expression, 
further implicating lipid biosynthetic pathways in 
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CRC malignancy. Notably, FASN has also been 
identified as a therapeutic target in diverse cancer 
types, with its inhibition leading to tumor 

suppression[47]. Thus, the FGFR4-FASN axis presents 
a dual opportunity for both mechanistic insight and 
therapeutic intervention in CRC.  

 

 
Figure 4. ISL Effectively inhibits colorectal cancer cell invasion by suppressing fatty acid metabolism. (A) The CCK-8 assay revealed that ISL treatment for 24, 48, and 72 hours 
significantly inhibited the viability of SW480 and SW620 cells. (B) Western blot analysis demonstrated that ISL treatment for 24 and 48 hours reduced the expression levels of 
FGFR4 and FASN proteins in colorectal cancer cells. (C) Oil Red O staining indicated decreased lipid droplet formation in colorectal cancer cells following ISL treatment. (D) 
Quantitative analysis showed a reduction in total free fatty acid content in ISL-treated colorectal cancer cells compared to control cells. (E) ISL treatment also led to a decrease 
in fatty acid oxidation activity in colorectal cancer cells, as evaluated by quantitative assays. (F) Transwell assays confirmed that ISL treatment inhibited the invasive capabilities of 
SW480 cells. ** p< 0.05. 
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Figure 5. Mechanism of isoliquiritigenin inhibits colorectal cancer progression by targeting the FGFR4/FASN pathway. 

 
The role of ISL in modulating lipid metabolism 

provides a novel perspective in anti-cancer therapy. 
Current anti-metabolic strategies, such as inhibitors 
targeting FASN, ACC, or lipid transport proteins, face 
challenges including toxicity, off-target effects, and 
compensatory metabolic shifts[48, 49]. ISL, on the 
other hand, offers a natural and low-toxicity 
alternative, demonstrating the ability to downregulate 
FGFR4, suppress FASN, and inhibit the PI3K/Akt 
pathway—all key drivers of lipid metabolism and 
CRC progression. Combining ISL with existing 
treatments targeting FGFR or metabolic enzymes may 
further enhance therapeutic efficacy. Prior studies 
suggest synergies between FGFR or PI3K inhibitors 
and chemotherapeutic agents, especially in 
overcoming drug resistance[50, 51]. Despite 
significant progress, challenges remain. The 
translational application of ISL requires validation in 
in vivo models and clinical trials to assess its 
bioavailability, pharmacodynamics, and long-term 
effects. Furthermore, heterogeneity among CRC 
subtypes underscores the need for personalized 
approaches, especially in tumors reliant on distinct 
metabolic pathways. In addition, this study has not 
yet clarified the specific molecular mechanisms by 
which ISL regulates FGFR and FASN, which warrants 
further investigation in future research. Moreover, the 
current study is limited to in vitro experiments and 
lacks verification through in vivo animal models, 
highlighting the need for further validation in animal 
studies.  

In conclusion, this study identifies FGFR4 as a 
critical driver of lipid metabolic reprogramming in 
CRC and demonstrates that ISL effectively inhibits 
this axis, suppressing tumor progression (Figure 5). 
Future research integrating ISL with metabolic 
therapies and immunomodulation may pave the way 
for innovative treatments that improve outcomes for 
CRC patients.  

5. Conclusion 
This study reveals FGFR4 as a key driver of lipid 

metabolism in CRC and demonstrates that 
isoliquiritigenin (ISL) effectively inhibits tumor 
progression by targeting the FGFR4/FASN pathway. 
ISL shows promise as a novel metabolic therapy, 
warranting further exploration for clinical 
application. 
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