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Abstract 

Epigenetic regulation, encompassing DNA methylation, histone modifications, and non-coding RNA 
activities, is a crucial mechanism through which gene expression is modified without corresponding 
changes in genomic DNA sequences. Dysregulation of these mechanisms can lead to histone and DNA 
modifications that either suppress or enhance the expression of disease progression-related genes. 
Among these regulatory processes, histone modifications are particularly significant, as they contribute to 
genomic stability, DNA repair, and chromatin dynamics, all of which influence breast cancer initiation and 
progression. This review offers a detailed analysis of the current state of research centered on epigenetic 
regulatory factors, with a particular focus on the role that histone modifications play in the treatment of 
breast cancer. It also examines the interplay between epigenetic modifications and the effectiveness of 
radiotherapy and chemotherapy when treating breast cancer. Lastly, this article explores the potential of 
epigenetic regulatory factors as viable targets for the future design of new anticancer therapies. 
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1. Introduction 
Breast cancer is among the most widely 

diagnosed malignancies and remains a prominent 
driver of global cancer-related mortality in women 
[1]. GLOBOCAN 2022 indicates that 2.31 million new 
breast cancer diagnoses throughout the world in 2022, 
comprising 11.6% of all new cancer diagnoses. Over 
this same period, breast cancer was responsible for 
666,000 deaths, comprising 6.9% of all cancer-related 
fatalities worldwide [2, 3]. Breast cancer subtypes are 
defined by the expression of the major biomarkers 
estrogen receptor (ER), progesterone receptor, human 
epidermal growth factor receptor 2 (HER2), and Ki67 

[4]. The multidisciplinary treatment approach for 
operable breast cancer integrates local interventions, 
including surgery and radiotherapy, with systemic 
therapies, which include hormonal treatments, 
chemotherapy, and molecularly targeted agents. 
These systemic therapies can be administered as 
monotherapies or in combination regimens to 
enhance efficacy [5]. Despite advances in treatment, 
breast cancer remains a complex disease, often 
characterized by drug resistance and severe adverse 
effects associated with conventional therapies, which 
contribute to suboptimal patient outcomes [6]. The 
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integration of epigenetic-targeting agents, such as 
inhibitors of histone modification, with existing 
therapeutic modalities offers a promising strategy for 
improving treatment efficacy and overcoming drug 
resistance [7]. 

2. Epigenetic Regulatory Mechanisms 
Epigenetics consists of a class of heritable, 

reversible modifications capable of regulating gene 
expression without affecting the sequence of the 
underlying DNA. These mechanisms can entail DNA 
methylation, histone modifications, non-coding RNA 
activities, the remodeling of the chromatin, and 
nucleosome positioning [8]. In breast cancer, 
abnormal epigenetic modifications can result in tumor 
suppressor gene silencing and oncogene activation, 
thereby promoting tumor onset and progression [9] 
(Figure 1). 

2.1 Breast cancer-related histone 
modifications  

Histone modifications entail covalent chemical 
changes at the N-terminal histone tails, and can 

consist of phosphorylation, methylation, acetylation, 
and ubiquitination, among other post-translational 
modifications [10]. The resultant effects modulate 
chromatin structure and transcriptional activity, 
ultimately affecting gene expression. Dysregulated 
histone modifications contribute to aberrant gene 
expression in breast cancer, thereby facilitating tumor 
progression [11]. 

2.1.1 Histone acetylation 

Histone acetylation is a process through which 
acetyl groups (-COCH₃) are enzymatically added to 
lysine residues, primarily on histones H3 and H4. Key 
acetylation sites can include H3K9, H3K14, H3K27, 
H4K5, H4K8, H4K12, and H4K16 [12]. This process is 
dynamically regulated by histone acetyltransferases 
(HATs), which promote acetylation, and histone 
deacetylases (HDACs), which remove acetyl groups 
[13]. Acetylation relaxes chromatin structure, enabling 
RNA polymerase and transcription factors to bind the 
DNA, leading to enhanced gene transcription, 
whereas deacetylation is related to gene silencing [14]. 

 

 
Figure 1. Various epigenetic alterations in breast cancer. 
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In breast cancer, histone acetylation is a major 
driver of tumor development through its ability to 
modulate gene expression. A notable observation in 
cancer is the global reduction of H4K16 acetylation, 
which is thought to occur early in breast 
tumorigenesis [15]. Suzuki et al. reported significantly 
lower ac-H4 and ac-H4K12 levels in ductal carcinoma 
in situ and invasive ductal carcinoma as compared to 
the normal mammary epithelium [16]. Additionally, 
H3K4ac has been linked to both early- and late-stage 
breast cancer, as it is highly enriched at gene 
promoters involved in cancer-related pathways, 
including estrogen response and 
epithelial-mesenchymal transition [17]. Beyond 
regulating oncogenes or tumor suppressor genes, 
abnormal histone acetylation is implicated in other 
biological processes relevant to breast cancer, such as 
DNA repair, metastasis, apoptotic death, metabolic 
activity, cellular homeostasis, cell cycle regulation, 
cell adhesion, and cellular proliferation [18]. 

2.1.2 Histone methylation 

Histone methylation occurs on arginine, lysine, 
and histidine residue side chains, influencing gene 
expression through distinct methylation patterns. 
Lysine residues can undergo mono-, di-, or 
tri-methylation, while the asymmetric or symmetric 
methylation of arginine residues can take place. The 
types of histone methylation most commonly 
reported in the literature are H3K4, H3K9, H3K27, 
H3K36, H3K79, and H4K20 [19]. Different 
methylation states are associated with distinct 
genomic regions. For example, H3K4me2/3 is 
typically found at transcription start sites (TSS) of 
actively transcribed genes, while H3K4me1 is 
associated with active enhancer regions [20]. 
Consistently, H3K9me1 is related to active gene 
transcription, whereas H3K9me3 is linked to gene 
repression [21]. 

The tumor suppressor gene p53, which is 
frequently mutated or dysregulated in breast cancer, 
plays a crucial role in preventing oncogenesis [22]. 
H3K4 trimethylation at the p53 promoter region is 
related to its enhanced expression [23], while H3K27 
trimethylation may play a role in its silencing [24]. 
These histone modifications can impair p53 function, 
promoting breast cancer progression. BRCA1, among 
the most well-established breast cancer susceptibility 
genes [25], is also regulated through histone 
methylation. H3K27me3-mediated methylation of the 
BRCA1 promoter is linked to its downregulation, 
increasing susceptibility to breast cancer development 
[26, 27]. 

2.1.3 Histone phosphorylation and ubiquitination 

Beyond acetylation and methylation, histone 
phosphorylation and ubiquitination also play vital 
roles in the control of chromatin dynamics and the 
expression of genes. Histone H1 phosphorylation is 
closely linked with chromatin relaxation during 
interphase and its condensation in mitosis [28]. 

Histone ubiquitination, primarily facilitated by 
the Polycomb Repressive Complex 1 (PRC1), is 
integral to gene silencing in human cells [29]. PRT4165 
is a potent inhibitor of PRC1-driven H2A 
ubiquitination, both in vivo and in vitro [30]. 
Functional assays of E3 ubiquitin ligase activity 
indicate that PRT4165 directly inhibits RNF2 and 
RING1A, key components responsible for the 
enzymatic activity within the PRC1 complex. Given 
its ability to suppress PRC1 function, PRT4165 
presents a promising target for anticancer therapy 
[31].     

2.2 Breast cancer-associated DNA 
methylation  

DNA methylation is among the most 
widespread epigenetic modifications, typically 
occurring within CpG islands [32]. In normal cells, 
methylation patterns remain relatively stable; 
however, in breast cancer, genome-wide 
hypomethylation coupled with hypermethylation at 
specific promoter regions is frequently noted [33]. The 
aberrant hypermethylation of CpG islands in tumor 
suppressor gene promoters leads to transcriptional 
silencing, contributing to breast cancer initiation and 
progression [34]. 

In the context of breast cancer, multiple genes 
undergo significant methylation alterations [35]. Key 
tumor suppressor genes, including BRCA1, p16, and 
RASSF1A, often exhibit hypermethylation, leading to 
their silencing and subsequent loss of 
tumor-suppressive functions. In contrast, oncogenes 
such as c-Myc and cyclin D2 frequently undergo 
hypomethylation, leading to their overexpression and 
promoting uncontrolled cell proliferation and 
survival. Furthermore, the hypermethylation of DNA 
repair genes like MGMT and MLH1 exacerbates 
genomic instability [9]. 

DNA methylation markers provide several 
advantages over other types of tumor biomarkers in 
the context of breast cancer diagnostics, including 
improved sensitivity, non-invasiveness, and early 
detection [36]. Notably, aberrant methylation patterns 
can be identified in early-stage breast cancer and even 
in precancerous lesions [37]. For example, 
hypermethylation of APC and RASSF1A has been 
detected in breast cancer patient blood samples, 
highlighting their potential as non-invasive diagnostic 
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markers [38, 39]. The integration of DNA methylation 
profiling with other omics data has led to significant 
improvements in early cancer screening accuracy [40]. 

The methylation status of specific genes serves as 
a valuable prognostic indicator for breast cancer 
patients. For instance, BRCA1 promoter 
hypermethylation is related to poor triple-negative 
breast cancer patient outcomes, while ESR1 gene 
methylation may predict responsiveness to endocrine 
therapy [41, 42]. These epigenetic markers hold great 
potential for guiding personalized treatment 
strategies. 

2.3 miRNA expression in breast cancer 
MicroRNAs (miRNAs) are small, non-coding 

RNAs, typically 21–23 nucleotides in length, that play 
vital roles in post-transcriptional gene regulation [43]. 
Some miRNAs are located within fragile genomic 
regions and are frequently subject to deletions or 
amplifications, resulting in their abnormal expression 
in various cancers, including breast cancer [44]. 
Depending on their function, miRNAs can function as 
tumor suppressors or oncogenic miRNAs (oncomiRs), 
influencing key pathways involved in cancer 
progression [45]. 

The first established link between miRNAs and 
cancer was demonstrated by Croce et al., who found 
that miR-15 and miR-16-1 can suppress tumor 
development via targeting the anti-apoptotic protein 
Bcl-2 [46]. In breast cancer, more than 40 miRNAs 
have been identified as key regulators, with the 
dysregulation of these miRNAs and their targets 
exhibiting either tumor-promoting or 
tumor-suppressing properties [47]. Notably, miR-126 
and miR-335 suppress metastasis in breast cancer 
models in vivo [48]. 

miRNAs also hold promise as biomarkers for 
breast cancer subtyping, metastasis prediction, and 
therapy resistance assessment [49]. While 
chemotherapy remains a cornerstone of metastatic 
breast cancer treatment, a significant subset of 
patients fails to respond to standard chemotherapy or 
endocrine therapies [50]. Studies indicate that bone 
metastases have been associated with the presence of 
miR-10a and miR-10b in breast cancer [51]. Similarly, 
plasma levels of miR-210 that are elevated are related 
to trastuzumab sensitivity, tumor burden, and lymph 
node metastasis [52]. Identifying circulating miRNAs 
capable of early cancer detection or predicting 
therapeutic response could revolutionize breast 
cancer treatment, ultimately improving patient 
outcomes. 

2.4 Chromatin remodeling and nucleosome 
positioning 

Chromatin remodeling is driven by 
ATP-dependent chromatin remodeling complexes 
that modulate nucleosome positioning to regulate 
gene transcription. Nucleosomes, which serve as the 
fundamental chromatin units, are composed of DNA 
that wrap around histone octamers, facilitating DNA 
organization and protection within the nucleus. The 
positioning of nucleosomes determines the precise 
genomic arrangement of nucleosomes throughout 
chromatin landscapes [53]. The four major chromatin 
remodeling complex families in humans are 
SWI/SNF, ISWI, CHD, and INO80 [54]. Among these, 
BRG1, a core subunit of the SWI/SNF complex, has 
been implicated in breast cancer progression. 
Research has demonstrated the overexpression of 
BRG1 in invasive ductal carcinoma, with high BRG1 
levels correlating with reduced overall survival and 
recurrence-free survival in breast cancer patients [55]. 
Despite these findings, research on the role of 
chromatin remodeling complexes in breast cancer 
remains limited, underscoring the need for further 
in-depth investigations. 

3. Epigenetic Drugs in the Treatment of 
Breast Cancer 

3.1 Histone target inhibitors 
Histone targeting inhibitors represent a class of 

pharmacologically active compounds that modulate 
gene expression, chromatin architecture, and cellular 
differentiation through the regulation of histone 
function and post-translational modifications. These 
therapeutic agents exert their anti-neoplastic effects in 
breast cancer by specifically inhibiting various classes 
of histone-modifying enzymes (Figure 2). 

3.1.1 Histone deacetylase inhibitors (HDACi) 

HDACs are often overexpressed in tumor cells, 
leading to excessive histone deacetylation, which in 
turn suppresses the transcription of essential 
housekeeping and tumor suppressor genes. This 
epigenetic silencing plays a role in malignant 
transformation [56]. HDAC inhibitors (HDACi) 
counteract this process by restoring tumor suppressor 
gene expression, resulting in the inhibition of tumor 
cell proliferation as well as the induction of apoptosis 
[57]. With over 50 HDAC inhibitors developed, they 
represent the largest class of epigenetic drugs and 
account for most FDA-approved epigenetic therapies 
for cancer [58]. Clinically, HDACi have demonstrated 
efficacy against various malignancies, including 
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pancreatic, ovarian, breast, colon, prostate, and 
thyroid cancers [59-64]. 

HDACi are classified based on their chemical 
structure into short-chain fatty acids, benzamides, 
cyclic peptides, and hydroxamic acids [65]. A 
well-known example of a short-chain fatty acid 
inhibitor is butyrate, which, at higher doses, can 
suppress growth in multiple cancers, including 
colorectal, prostate, breast, endometrial, and cervical 
cancers [66]. Sodium butyrate has been found to exert 
both anti-proliferative and pro-apoptotic effects in 
breast cancer cells while modulating genotoxicity [67]. 
Entinostat, a synthetic benzamide-derived HDACi, 
enhances the expression of ER and aromatase, thereby 
restoring sensitivity to nonsteroidal aromatase 
inhibitors (NSAIs). A Phase 1 clinical trial found that 
the combination of entinostat with exemestane 
improved tolerability and antitumor efficacy in 
hormone receptor-positive (HR+) advanced breast 
cancer (ABC). The Phase 2 ENCORE301 trial, which 
included HR+ ABC patients who had progressed 
following endocrine therapy but had not received 
CDK4/6 inhibitors, revealed significantly improved 
progression-free and overall survival (PFS and OS) 
with the entinostat-exemestane combination 
compared to exemestane alone. Moreover, a 
multicenter Phase 3 clinical trial conducted in China 
demonstrated that entinostat significantly prolonged 
PFS in HR+/HER2- ABC patients following endocrine 

therapy failure [68]. Cyclic peptide HDAC inhibitors, 
such as Romidepsin (FK228, depsipeptide), have also 
been investigated in breast cancer. Romidepsin has 
completed a Phase 2 clinical trial for metastatic breast 
cancer (NCT02393794). In patients treated with 
Romidepsin combined with Cisplatin and the PD-1 
inhibitor Nivolumab, the median progression-free 
survival (PFS) was 4.4 months, with a 1-year PFS rate 
of 23%. The median overall survival (OS) was 10.3 
months, and the 1-year OS rate was 43%, showing 
significant efficacy [69, 70]. Studies indicate that 
FK228 and its analogs act as dual inhibitors of HDAC 
and PI3K, directly inhibiting PI3K activity while 
promoting apoptosis [71]. Hydroxamic acid-based 
HDACi, such as Vorinostat (SAHA) and 
Panobinostat, have been explored as ER+ breast 
cancer therapies. Vorinostat has demonstrated 
efficacy in enhancing anti-estrogen therapy and has 
shown promising outcomes in Phase 2 trials 
(NCT00365599) in patients resistant to tamoxifen or 
aromatase inhibitors. The efficacy is particularly more 
significant in patients with high histone acetylation or 
high HDAC2 expression. However, hematological 
toxicity requires close monitoring, and future efforts 
should focus on exploring biomarker-guided 
precision treatment strategies [72]. Panobinostat has 
been found to downregulate BRCA1 expression in 
breast cancer, thus sensitizing tumor cells to PARP 
inhibitors (PARPi) [73]. 

 

 
Figure 2. Histone targeting inhibitors agents exert their anti-neoplastic effects in breast cancer by specifically inhibiting various classes of histone-modifying enzymes. 
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3.1.2 Histone methyltransferase inhibitors (HMTi) 

Histone methyltransferases (HMTs) catalyze the 
methylation of specific histone residues, playing 
crucial roles in chromatin remodeling and gene 
expression regulation [74]. These enzymes are broadly 
classified into SET domain-containing and non-SET 
domain-containing families, with the former 
including EZH2, G9a, and SETD8, and the latter 
exemplified by DOT1L [75]. 

EZH2, the catalytic subunit of PRC2, mediates 
H3K27 trimethylation, leading to gene silencing. 
Silencing of PPP2R2B by EZH2 has been linked to 
poor prognosis in HER2-positive breast cancer and 
HER2-targeted therapy resistance, including 
trastuzumab and lapatinib. Inhibitors of EZH2, 
including GSK126 and EPZ-6438, have been shown to 
restore PPP2R2B expression, thereby mitigating 
resistance to HER2-targeted treatments [76, 77]. 
EPZ-6438 is currently being evaluated in a Phase 1/2 
clinical trial (NCT01897571) for solid tumors and 
hematologic malignancies [78]. G9a, a major lysine 
methyltransferase, catalyzes the dimethylation of 
H3K9 and is implicated in multiple epigenetic 
modifications, including H3K27 methylation [79]. 
Inhibitors such as BIX-01294 have demonstrated the 
ability to promote the induction of apoptosis in breast 
cancer cells and reverse epithelial-mesenchymal 
transition, thereby reducing metastatic potential [80]. 
Similarly, the SETD8 inhibitor UNC0379 has been 
reported to inhibit breast cancer cell growth by 
inducing DNA damage and resulting in the arrest of 
the cell cycle [81]. DOT1L, a non-SET domain 
methyltransferase, regulates H3K79 methylation and 
is related to oncogenic gene expression. DOT1L 
inhibitors such as EPZ004777 have been shown to 
effectively suppress breast cancer growth and 
metastasis [82]. 

These HMTi not only exhibit standalone 
antitumor effects but also hold potential for 
combination therapies that enhance treatment 
efficacy. For example, combining EZH2 inhibitors 
with PARP inhibitors has been demonstrated to 
markedly enhance cytotoxicity in BRCA1-mutated 
breast cancer cells [83]. Furthermore, targeting HMTs 
may help overcome drug resistance, offering a 
promising avenue for improving breast cancer 
treatment outcomes [84]. 

3.1.3 Histone lysine demethylase inhibitors (HDMi) 

Histone lysine demethylases are enzymes that 
remove methyl groups from specific histone lysine 
residues, thereby modulating gene expression. In 
accordance with their catalytic mechanisms, these 
enzymes are classified into lysine-specific 
demethylases (LSDs) and the Jumonji C (JmjC) 

domain-containing family [85]. LSD1 was the first 
histone demethylase to be identified and primarily 
mediates the demethylation of H3K4me1/2 and 
H3K9me1/2 [86]. The JmjC domain-containing family 
is further divided into multiple subgroups, including 
the KDM5 and KDM6 families, each targeting distinct 
histone methylation sites [87]. 

Among histone demethylases, LSD1 is 
particularly well-studied due to its frequent 
overexpression in breast cancer [88]. By 
demethylating H3K4me2, LSD1 downregulates tumor 
suppressor genes, while its activity on H3K9me2 
promotes epithelial-mesenchymal transition (EMT), 
enhancing cancer cell proliferation, invasion, and 
metastasis [89]. Inhibitors targeting LSD1, such as 
Tranylcypromine (TCP) and ORY-1001, have 
demonstrated the ability to suppress ER+ breast 
cancer cell growth and increase sensitivity to 
endocrine therapy [90, 91]. The KDM5 family, 
including KDM5A and KDM5B, is also frequently 
overexpressed in breast cancer. These enzymes 
catalyze the removal of H3K4me3, thereby 
suppressing DNA damage repair and cell cycle 
regulation-related genes. This repression contributes 
to tumor progression and drug resistance [92]. 
Notably, KDM5 inhibitors such as CPI-455 and 
KDOAM-25 have shown potential in reversing 
resistance to chemotherapy, thereby enhancing 
treatment efficacy [93]. The role of KDM6 family 
members, UTX and JMJD3, in breast cancer is 
complex. While UTX serves as a tumor suppressor, 
with its inactivation leading to increased H3K27me3 
levels that repress tumor suppressor genes, JMJD3 
exhibits oncogenic potential by demethylating 
H3K27me3 and activating oncogene expression [94]. 
The KDM6 inhibitor GSK-J4 has been found to 
effectively inhibit the proliferation and invasiveness 
of triple-negative breast cancer (TNBC) cells [95]. 

3.1.4 Histone acetyltransferase inhibitors (HATi) 

HATs play a dual role in cancer biology, 
functioning as both tumor suppressors and oncogenic 
drivers depending on the context [96]. These enzymes 
catalyze acetyl-CoA-derived acetyl group transfer to 
histone lysine residues, thus altering chromatin 
structure and gene expression. According to their 
sequence homology and substrate specificity, HATs 
are classified into the HAT1, GCN5/PCAF, MYST, 
p300/CBP, and Rtt109 subfamilies [97]. 

HATi are broadly divided into bisubstrate 
inhibitors and small-molecule inhibitors [96]. The 
clinical application of bisubstrate inhibitors is limited 
due to their poor metabolic stability and low cell 
permeability. Consequently, most currently available 
HATi are small-molecule compounds, many of which 
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are derived from natural sources. For instance, 
anacardic acid, a naturally occurring HAT inhibitor, 
can markedly inhibit p300 and the 
p300/CBP-associated factor [98]. However, the 
phenolic structures in many natural HATi make them 
susceptible to oxidation, which limits their stability. 
Several synthetically designed HAT inhibitors have 
been developed to address these limitations [99]. 
A-485, a selective inhibitor targeting p300/CBP, has 
demonstrated potent anticancer activity against 
multiple malignancies, including colon, liver, and 
prostate cancers, as well as hematologic cancers [100]. 
Another notable HATi, C646, preferentially targets 
p300 and has been shown to suppress the survival 
and invasiveness of gastric cancer cells [101]. 
Additionally, Remodelin, an inhibitor of the 
acetyltransferase NAT10, has been reported to 
overcome doxorubicin resistance in breast cancer by 
reversing EMT, a key process in tumor progression 
[102]. 

3.2 DNA methylation inhibitors (DNMTi) 
DNA methylation, a critical epigenetic 

modification, is primarily mediated by DNA 
methyltransferases (DNMTs) [103]. The first 
epigenetic drugs developed to treat cancer were 
DNMT inhibitors (DNMTi), which include nucleoside 
analogs and non-nucleoside inhibitors [104]. 
Nucleoside analogs function by incorporating into 
DNA, forming covalent complexes with DNMTs that 
trigger their degradation [105]. Among these, 
Azacitidine was the first FDA-approved epigenetic 
therapy for cancer. This cytidine analog irreversibly 
binds DNMTs, leading to DNA demethylation and 
reactivation of silenced tumor suppressor genes [106]. 
Another FDA-approved nucleoside analog, 
Decitabine, incorporates into DNA and induces 
hypomethylation, thereby disrupting DNA 
replication and promoting S-phase cell cycle arrest 
[107]. Both Azacitidine and Decitabine have received 
approval as treatments for acute myeloid leukemia, 
chronic myelomonocytic leukemia, and 
myelodysplastic syndromes [108, 109]. Zebularine, 
another cytidine analog, selectively inhibits DNMT1 
and forms covalent complexes with DNMTs, 
effectively reversing gene silencing. Compared to 
other DNMTi, Zebularine exhibits greater chemical 
stability and lower toxicity. It has been shown to 
demethylate the p16 gene promoter, leading to the 
reactivation of the p16 tumor suppressor gene, which 
is frequently silenced in cancer [110]. Currently, 
Zebularine is a potential anticancer agent for breast 
cancer treatment, either as a monotherapy or in 
combination regimens [111]. Non-nucleoside DNMTi, 
in contrast, directly interact with the catalytic domain 

of DNMTs, rendering them inactive [112]. However, 
the clinical development of this class of inhibitors 
remains in the early research phase. Several 
promising compounds, including procainamide, 
SGI-1027, DC-05 analogs, and derivatives of 
quinazoline, propiophenone, and pyrrolopyridine, 
are being investigated for their potential as anticancer 
agents [113]. 

4. Summary and Future Perspectives 
Epigenetic alterations, particularly aberrant 

histone modifications and DNA methylation, are 
central to breast cancer development and therapeutic 
resistance. HDACi have been widely explored, but 
their use as monotherapies has shown only limited 
efficacy in clinical trials. Consequently, current 
research is focused on their combination together with 
chemotherapy and targeted treatments to enhance 
therapeutic outcomes. A number of clinical trials are 
underway. 

Currently, emerging epigenetic targets and 
innovative drugs mainly include KAT6A/6B 
inhibitors, NSD2/WHSC1-targeted therapies, and 
super-enhancer regulation. The first-in-class KAT6 
inhibitor, PF-07248144, demonstrated promising and 
durable anti-tumor activity in later-line treatment of 
ER+/HER2- advanced breast cancer. When combined 
with fulvestrant, the objective response rate (ORR) 
reached 30.2%, with a median duration of response 
(DOR) of 9.2 months. The median progression-free 
survival (PFS) was 10.7 months—significantly longer 
than the 1-2 months observed with fulvestrant 
monotherapy—and efficacy was independent of ESR1 
or PIK3CA mutations [114]. Histone 
methyltransferase NSD2/WHSC1 has been found to 
be highly expressed in triple-negative breast cancer 
(TNBC) and is associated with poor prognosis, as it 
accelerates tumor metastasis by promoting 
autophagy. Inhibition of NSD2 can block autophagic 
flux and significantly suppress TNBC metastasis in 
animal models. Small-molecule inhibitors targeting 
NSD2 are in the preclinical development stage [115]. 
The targets regulated by Super-Enhancers are FOXC1 
and ANLN. CRISPR/Cas9-mediated knockout of the 
FOXC1 enhancer or targeted inhibition of the ANLN 
enhancer to reduce its expression can suppress tumor 
growth and metastasis [116]. 

Despite the promise of histone 
modification-based therapies, a major challenge lies in 
their broad-spectrum activity, which can lead to 
off-target effects and toxicity as a result of the 
disruption of gene expression within healthy cells. 
Therefore, improving the selectivity of epigenetic 
drugs remains a key priority in drug development. 
Precision medicine demands the multi-dimensional 
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integration of molecular data to shift from "one drug 
for one disease" to "one strategy for one patient."  
PIK3CA is one of the most prevalent mutated genes in 
breast cancer. For patients with hormone 
receptor-positive, HER2-negative locally advanced or 
metastatic breast cancer, PIK3CA testing should be 
routinely performed before first-line treatment. If 
mutations are detected, patients may benefit from 
treatment with PI3K inhibitors such as inavolisib and 
alpelisib [117]. Future advancements in precision 
medicine may enable single-gene epigenetic editing 
approaches, allowing for highly targeted regulation of 
gene expression. This strategy could facilitate the 
development of more personalized treatments, 
minimizing adverse effects while maximizing 
therapeutic efficacy. As studies in the field of 
epigenetics continue to expand, the discovery of new 
histone-modifying enzymes and regulatory pathways 
will provide further opportunities for the 
development of targeted epigenetic therapies. These 
advancements hold great potential for improving 
cancer treatment, particularly for breast cancer, by 
offering novel therapeutic approaches to overcome 
drug resistance and enhance patient outcomes.       
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