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Abstract 

Background: Colorectal cancer (CRC) is the second leading cause of cancer-related mortality. Given its 
established associations with gut microbiota and inflammatory bowel disease (IBD), elucidating their 
relationships and developing predictive models are critical for early detection and therapy. 
Methods: Using Mendelian randomization (MR), we integrated data from the MiBioGen Consortium and 
multiple genome-wide association studies (GWAS). Single nucleotide polymorphisms (SNPs) associated 
with gut microbiota were mapped to genes, followed by gene selection via least absolute shrinkage and 
selection operator (LASSO) regression. Transcriptome analyses identified differential gene expressions 
and immune cell infiltration patterns. Six machine learning models were integrated through soft voting to 
predict CRC risk, validated by single-cell sequencing analysis. 
Results: Mediation MR identified 12 gut microbial taxa causally associated with CRC, mediated partially 
by IBD. SNP mapping and expression analysis highlighted eight CRC-associated genes, five of which 
(FAM120A, GBE1, MCM6, MSRA, ZDHHC4) were further underscored by drug target MR and 
summary-data-based MR (SMR). Transcriptomics implicated dysregulation in the neuroactive 
ligand-receptor interactions and the G2/M DNA checkpoint pathway. Immune infiltration analysis 
demonstrated elevated CD4⁺ T cells and M0 macrophages in the high-LASSO score group. Integrated 
machine learning models built using the five key genes achieved robust predictive performance. Single-cell 
sequencing analysis confirmed gene expression patterns.  
Conclusion: By integrating mediation MR, transcriptomics, and machine learning, this study 
demonstrated causal relationships between specific gut microbiota and CRC, with IBD as a mediator. We 
identified potential therapeutic targets and developed robust predictive models, providing crucial insights 
into the pathogenesis and clinical detection of CRC. 

Keywords: colorectal cancer, gut microbiota, inflammatory bowel disease, machine learning, mendelian randomization, 
transcriptome analysis 

Introduction 
CRC is the third most commonly diagnosed 

malignancy and the second leading cause of 
cancer-related mortality worldwide. In the United 

States alone, more than 154,270 new CRC cases are 
projected to be diagnosed in 2025 [1, 2]. Despite 
advances in surgical methods, chemotherapy, and 
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immunotherapy, the median survival for patients 
with advanced CRC remains poor, underscoring the 
urgent need for effective early detection and 
treatment.  

IBD is a chronic inflammatory disorder of the 
gastrointestinal tract, which includes Crohn’s disease 
and ulcerative colitis. Over recent decades, its 
prevalence has been steadily rising in Western 
countries. The incidence of early-onset IBD 
(diagnosed before the age of 20) is also increasing 
worldwide [3]. IBD is a complex, multifactorial 
condition influenced by genetic susceptibility, 
immune dysregulation, environmental exposures, 
and alterations in the gut microbiome. Numerous 
epidemiological studies have demonstrated a 
significant association between IBD and an elevated 
risk of CRC, with chronic intestinal inflammation 
playing a central role in carcinogenesis [4]. 

In recent years, the gut microbiota has received 
increasing attention for its crucial role in the 
development of both IBD and CRC. As a key 
component of the intestinal ecosystem, it functions as 
a primary defense against pathogenic invasion and 
plays a pivotal role in maintaining mucosal 
homeostasis [5, 6]. However, microbial dysbiosis may 
lead to inflammation, the production of bacterial 
toxins, and a compromise of the intestinal barrier 
integrity, thereby increasing the risk of IBD and CRC 
[7]. Observational studies have reported that specific 
pathogenic bacteria, such as enterotoxigenic Bacteroides 
fragilis and pks+ Escherichia coli, are more frequently 
found in CRC patients [8]. In a pivotal study by 
Salahshouri et al., the CRC-associated microbiome can 
promote inflammation and cancer progression 
through alterations in certain metabolites such as 
histamine, glutamine, and pyruvate, underscoring the 
functional contribution of microbiota in inflammatory 
responses and tumorigenesis [9]. 

Although existing evidence highlights the 
involvement of the gut microbiota in both IBD and 
CRC, most studies are observational and rely on 
limited datasets. The precise causal and mediating 
relationships among gut microbiota, IBD, and CRC 
remain poorly understood. Elucidating these 
connections is essential for developing targeted 
therapies and personalized prevention strategies.  

MR is a powerful statistical method that 
leverages genetic variants as instrumental variables 
(IVs) to infer causal relationships between exposures 
and outcomes. The integration of multi-omics data, 
encompassing transcriptomics and immune 
infiltration analysis, with machine learning 
techniques has demonstrated significant potential in 
clarifying pathogenesis and enhancing risk 
prediction. In previous studies, Long Wu et al. 

employed MR to identify five gut microbial genera 
causally associated with CRC [10], while Martyna 
Pawlak et al. investigated differentially expressed 
genes (DEGs) and immune cell infiltration patterns in 
both IBD and CRC [11]. However, no studies to date 
have systematically examined whether IBD mediates 
the causal pathway from gut microbiota to CRC. 
Furthermore, there remains a lack of integrated, 
multi-omics studies that leverage machine learning 
algorithms to unravel underlying mechanisms and 
construct predictive models for CRC. 

To address these knowledge gaps, we conducted 
a comprehensive analysis to elucidate the causal and 
mediating relationships among gut microbiota, IBD, 
and CRC using mediation MR methods. We mapped 
SNPs to genes and employed drug target MR to 
identify genes significantly associated with CRC 
progression. Transcriptomic analyses were conducted 
to investigate the biological functions and pathways. 
Six machine learning algorithms were applied to 
develop and validate predictive models for CRC. 
Additionally, single-cell sequencing analysis was 
employed to characterize cell-type-specific expression 
patterns of key genes (Figure 1). This integrative 
approach provides new insights into the microbiota–
IBD–CRC axis and identifies potential therapeutic 
targets and prediction models for clinical translation. 

Materials and Methods 
Data source 

Genetic data related to the gut microbiota were 
obtained from the MiBioGen consortium, which 
integrates 16S rRNA sequencing and SNP array data 
from approximately 19,000 individuals across 18 
cohorts [12]. The dataset includes 211 microbial taxa, 
encompassing 131 genera, 35 families, 20 orders, 16 
classes, and 9 phyla. GWAS summary statistics for 
CRC were sourced from two large-scale studies: one 
by Huyghe JR et al., involving 4,439 CRC cases and 
4,115 controls of European ancestry, and another by 
Ishigaki K et al., comprising 6,692 cases and 27,178 
controls of East Asian ancestry [13, 14]. GWAS data 
for IBD were drawn from three datasets of European 
ancestry: the International Inflammatory Bowel 
Disease Genetics Consortium (IIBDGC; 12,882 cases 
and 21,770 controls), the FinnGen study (5,673 cases 
and 213,119 controls), and the dataset published by 
Mbatchou J et al. (4,101 cases and 480,497 controls) [15, 
16]. Expression quantitative trait loci (eQTL) data 
were acquired from the initial phase of the eQTLGen 
consortium, which analyzed whole blood 
transcriptomes of 31,684 individuals to identify both 
cis- and trans-eQTLs, revealing associations between 
genetic variation and gene expression [17]. Bulk RNA 
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sequencing data for CRC were retrieved from The 
Cancer Genome Atlas (TCGA) CRC cohort. In 
addition, single-cell sequencing data were obtained 
from the study by Kabiljo J et al. (GSE279062), 

accessible through the NCBI Gene Expression 
Omnibus, comprising single-cell transcriptomic 
profiles from seven CRC patients. 

 

 
Figure 1. A flowchart of the study. This study was divided into five main components. The first component seeks to clarify the causal links between the gut microbiota, IBD, and 
CRC using mediation MR analysis. Then, SNP mapping to genes, variable selection, and drug target MR approaches were utilized to identify genes significantly correlated with 
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CRC progression. Transcriptomic analysis was conducted to elucidate CRC-related pathways and molecular mechanisms. Subsequently, machine learning models were 
constructed using six machine learning algorithms on a training set (70%) and validated on a test set (30%). Finally, single-cell sequencing analysis is performed on dataset 
GSE279062, involving cell filtration, batch removal effect, quality control, and expression analysis to annotate cells and validate therapeutic targets. Abbreviations: IIBDGC, 
International Inflammatory Bowel Disease Genetics Consortium; MR, Mendelian randomization; SNP, Single nucleotide polymorphism; CHR, chromosome; POS, single 
nucleotide polymorphism position; Lasso, least absolute shrinkage and selection operator; SMR, summary-based Mendelian randomization; CRC, colorectal cancer; DEG, 
differentially expressed gene; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis; WGCNA, weighted gene 
co-expression network analysis; RF, random forest; kNN, k-nearest neighbor; SVM, supporting vector machine; ANN, artificial neural network; XGBoost, extreme gradient 
boosting; AUC, area under the curve; ROC, receiver operating characteristic curve.  

 
Figure 2. Flowchart of the mediation Mendelian randomization and its three key assumptions. (a) Relevance assumption: The instrumental variables must be associated with the 
exposure. (b) Independence assumption: The instrumental variables should not influence outcomes through factors other than exposure. (c) Exclusivity assumption: The 
instrumental variables should not influence outcomes directly. Effect estimates are defined as follows: β1 represents the causal effect of gut microbiota on inflammatory bowel 
disease; β2 denotes the causal effect of inflammatory bowel disease on colorectal cancer; and β3 corresponds to the total effect of gut microbiota on colorectal cancer. The 
proportion mediated by inflammatory bowel disease is calculated as: mediation effect proportion = (β1 × β2) / β3. 

 
Selection of IVs 

To ensure the validity of MR analysis, SNPs 
selected as IVs were required to satisfy three core 
assumptions [18]: 1) Relevance assumption: the SNPs 
must be strongly associated with the exposure. 2) 
Independence assumption: the SNPs must be 
independent of confounders and the outcome; and 3) 
Exclusivity assumption: the SNPs only influence the 
outcome through the exposure. To meet these 
assumptions, we applied the following stringent 
selection criteria: 1) SNPs with a p-value < 5 × 10⁻⁶ for 
SNP – exposure associations were retained to 
maximize the number of eligible variants; 2) SNPs 
were pruned for linkage disequilibrium using a 
threshold of r² < 0.01 and a window size > 10,000 kb 
[19]; 3) SNPs with p-values > 0.05 for association with 
the outcome were excluded to minimize confounding; 
4) SNPs with a minor allele frequency < 0.01 were 
removed [20]; 5) Proxy SNPs were excluded. 6) All 
SNPs were harmonized for effect allele orientation, 
and palindromic SNPs were removed; 7) SNPs with 
F-statistics ≤ 10 were excluded to mitigate weak 
instrument bias [6] (Figure 2). 

The proportion of exposure variance explained 

by IVs (R2) was calculated using the formula: R2 = 2 × 
EAF × (1 - EAF) × β2 / (2 × EAF × (1 - EAF) × β2 + 2 × 
EAF × (1 - EAF) × N × SE2), where EAF is the effect 
allele frequency, β is the effect size between the SNP 
and the exposure trait, SE is the variance of β, and N is 
the sample size. Instrument strength was further 
assessed using the F-statistic, calculated as F = R2 × (N 
- 2) / (1 - R2) [21]. 

MR analysis 

Preliminary analysis  

We conducted two-sample MR analyses to 
estimate the causal association between IBD and CRC, 
as well as between gut microbiota and CRC. For 
bacterial taxa associated with a single SNP, causal 
inference was performed using the Wald ratio 
method, calculated as the ratio of the SNP-outcome 
effect to the SNP-exposure effect. When multiple 
SNPs were available, five complementary MR 
methods were applied: inverse variance weighting 
(IVW), MR-Egger regression, weighted median, 
weighted mode, and simple mode. Among these, IVW 
was used as the gold standard to provide a more 
conservative but robust estimate [22]. 
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Although the IVW method is frequently 
employed due to its statistical efficiency, it can 
produce biased outcomes in the presence of 
horizontal pleiotropy [23]. In order to ensure the 
robustness of our findings, we included MR-Egger 
and weighted median methods as complementary 
methods. The MR-Egger regression yields unbiased 
estimates even in the presence of directional 
pleiotropy, although it is susceptible to outliers [24]. 
The weighted median method provides consistent 
results if at least 50% of the IVs are valid [25]. The 
weighted mode method assumes that the largest 
subset of instruments with similar causal estimates is 
valid, making it particularly useful in settings with 
heterogeneity among IVs. The simple mode method, 
which does not weight instruments, estimates causal 
effects by identifying clusters of IVs with consistent 
directional effects. Although this method 
demonstrates relative robustness to heterogeneity, it 
is generally less efficient and may perform suboptimal 
results, particularly when the number of IVs is limited 
[26].  

Results from the MR analyses were reported as 
regression coefficients, standard errors, odds ratios 
(ORs), and 95% confidence intervals. To control for 
false discovery rates due to multiple testing, p-values 
were modified using the Benjamini-Hochberg 
correction. Statistical significance was defined as a 
p-value < 0.05 and an adjusted p-value (p-adjusted) < 
0.10 [27].  

Mediation MR analysis 

In preliminary analyses, we performed 
two-sample MR to identify gut microbial taxa and 
IBD datasets associated with CRC. To assess whether 
IBD mediates the relationship between gut microbiota 
and CRC, we subsequently conducted a two-step MR 
mediation analysis. First, IBD datasets that showed 
positive associations with at least one CRC dataset 
were retained to maximize the inclusion of relevant 
SNPs. The causal effects of IBD on CRC (β2 in Figure 
2) were then estimated using two-sample MR [28]. 
Second, we identified microbial taxa that exhibited 
consistent causal associations with all selected IBD 
datasets and calculated their effects on IBD (β1 in 
Figure 2) via two-sample MR. The total effects of these 
taxa on CRC (β3 in Figure 2) were obtained from the 
initial microbiota–CRC MR analysis. The mediation 
effect was estimated using the product of coefficients 
method as (β1 × β2). The direct effect was calculated 
as (β3 - β1 × β2), and the proportion of the total effect 
mediated by IBD was computed as (β1 × β2) / β3 [29]. 

Sensitivity analysis 

We performed several sensitivity analyses to 

address potential pleiotropy. Cochran’s Q test was 
used to assess heterogeneity across SNP-specific effect 
estimates [30]. Significant Q values (p-value < 0.05) 
indicate the presence of heterogeneity, suggesting 
potential variability in causal effects. A leave-one-out 
analysis was conducted by sequentially excluding 
each SNP and recalculating the MR estimate based on 
the remaining instruments, thereby evaluating the 
impact of each SNP on the results. MR-Egger intercept 
analysis was employed to detect horizontal pleiotropy 
using the intercept term. An intercept close to 0 
suggests no horizontal pleiotropy, supporting the 
validity of the IVs [31]. MR-Steiger test was applied to 
confirm the causal direction, determining whether the 
observed relationships are more consistent with the 
hypothesis that the exposure influences the outcome 
rather than the reverse [32]. 

SNP mapping to genes 

We identified SNPs from gut microbiota that 
exhibited consistent causal associations across all IBD 
and CRC datasets. These SNPs were subsequently 
mapped to their corresponding genes using PLINK, a 
widely used open-source software suite for analyzing 
genotypic and phenotypic data. PLINK enables SNP 
annotation based on physical proximity to gene 
regions, thereby facilitating accurate genomic 
localization and identifying SNP–gene relationships 
[33]. Only SNPs located within gene regions were 
retained for further analysis, and a gene list was 
compiled accordingly to elucidate the genetic 
influences of gut microbiota on IBD and CRC. 

Expression analysis and variable selection 

Gene expression data from the TCGA database 
were utilized to compare the expression levels of 
previously identified genes between CRC and 
adjacent normal tissue samples. Differential 
expression analysis was conducted using the 
Wilcoxon rank-sum test [34]. Statistical significance 
was defined as p-value < 0.05 and p-adjusted < 0.10 
after multiple testing correction [35]. 

To identify the genes most strongly associated 
with CRC, we constructed a predictive model using 
the LASSO regression. LASSO is a linear regression 
technique that applies L1 regularization to perform 
variable selection and control model complexity. By 
introducing a penalty term (λ), the method shrinks 
regression coefficients; as λ increases, more 
coefficients are reduced, with some ultimately 
compressed to zero, which helps in selecting 
important features and reducing overfitting. The 
optimal λ value was determined using 10-fold 
cross-validation by evaluating both the minimum 
mean squared error (λ-min) and one standard error 
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above the minimum (λ-min + 1se). λ-min usually 
selects more variables and results in a more complex 
model, but provides the best prediction performance. 
In contrast, λ-min + 1se yields a sparser model with 
potentially reduced performance. In this study, we 
selected λ-min to maximize model accuracy while 
preserving more informative genes [36]. The resulting 
regression coefficients reflect the relative contribution 
of each gene to disease classification. A LASSO score 
model was then constructed by calculating the 
weighted sum of gene expression levels and their 
corresponding coefficients, quantifying individual 
CRC risk [37]. 

Drug target MR and SMR analysis 

Drug target MR utilizes genetic variants 
associated with drug target genes as IVs to infer 
causal relationships between gene expression 
regulation and disease outcomes. In this study, we 
used eQTL data from the first phase of the eQTLGen 
Consortium for genes identified through LASSO 
regression as the exposure dataset, and CRC GWAS 
data as the outcome dataset. The IVW method served 
as the gold standard for testing causal relationships 
between gene expression and CRC risk [38]. 

To validate and complement these results, we 
used the SMR software, which was developed to 
implement the SMR and Heterogeneity in Dependent 
Instruments (HEIDI) methods. It integrates eQTL and 
GWAS summary statistics to identify pleiotropic 
associations between gene expression and disease 
traits. For each gene, the most significantly associated 
cis-eQTL SNP was selected as the top IV. The primary 
outcome was presented as the OR for CRC per 
standard deviation increase in gene expression. To 
distinguish true causal associations from those 
confounded by linkage or pleiotropy, we conducted 
the HEIDI test [39]. A HEIDI p-value < 0.05 suggests 
that the observed association may be due to multiple 
causal variants or complex gene regulation rather 
than a single causal pathway. Genes with SMR 
p-values < 0.10 and HEIDI p-values > 0.05 are 
considered to have robust and potentially causal 
associations with CRC risk [40]. 

Transcriptome analysis 
To systematically explore transcriptional 

patterns associated with CRC, we applied performed 
weighted gene co-expression network analysis 
(WGCNA), a systems biology approach that identifies 
modules of highly co-expressed genes based on their 
correlation patterns and associations with clinical 
traits [41]. All analyses were performed using the 
WGCNA R package. First, Pearson correlation 
coefficients were computed for all gene pairs to 

quantify expression similarity. A suitable 
soft-thresholding power was then selected to 
transform the correlation matrix into an adjacency 
matrix, reflecting the strength of the connections 
between genes. Next, a topological overlap matrix 
was constructed to quantify the degree of gene 
interconnectivity. Hierarchical clustering combined 
with dynamic tree cutting was applied to detect gene 
modules with similar expression patterns or potential 
functional relevance [32]. Among the identified 
modules, the three most significantly correlated with 
CRC onset were retained for downstream analyses. 

DEG analyses were conducted using data from 
the TCGA CRC dataset to compare gene expression 
profiles between CRC patients and normal controls. A 
second DEG analysis was performed by stratifying 
samples based on LASSO-derived scores from 
previously identified CRC-associated genes. Samples 
were divided into high- and low-LASSO score groups 
using the median LASSO score as the cutoff. For both 
analyses, p-values were adjusted for multiple testing, 
and genes with p-adjusted < 0.10 were retained. These 
genes were ranked in descending order by the 
absolute value of their log2 fold change, and the top 
2,500 ranked genes from each analysis were 
intersected with WGCNA-derived genes for 
enrichment analysis. To interpret the biological 
functions of these intersecting genes, Gene Ontology 
(GO) [42], Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis [43], and Gene Set 
Enrichment Analysis (GSEA) [44] were conducted.  

Additionally, immune infiltration analysis was 
carried out on the high- and low-LASSO score groups 
utilizing the CIBERSORT in R. This allowed us to 
investigate whether the differential gene expression 
changes were associated with changes in specific 
immune cell populations, providing further insight 
into potential immunological mechanisms underlying 
CRC pathogenesis. 

Construction of a CRC onset model based on 
machine learning 

The TCGA CRC dataset was randomly split into 
training and test sets at a ratio of 7:3. Predictive 
models were developed using the training set with six 
machine learning algorithms: random forest (RF), 
support vector machines (SVM), extreme gradient 
boosting (XGBoost), artificial neural networks (ANN), 
naive Bayes, and k-nearest neighbors (kNN). 
Hyperparameters were tuned with the caret package 
in R to maximize the area under the receiver operating 
characteristic curve (AUC). 

RF aggregates multiple decision trees to improve 
accuracy in classification or regression and minimize 
overfitting [45]. SVM constructs an optimal 
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hyperplane in a high-dimensional space to separate 
classes while maximizing the margin between data 
points and decision boundaries [46]. ANN consists of 
multiple layers of interconnected artificial neurons 
that process input data via weighted summation and 
activation functions, enabling the modeling of 
complex, nonlinear patterns [47]. XGBoost is a 
powerful gradient boosting algorithm that iteratively 
builds an ensemble of weak learners, typically 
decision trees, while minimizing the loss function 
through gradient descent [48]. kNN is a 
non-parametric, instance-based learning method that 
calculates Euclidean distances to training set points, 
selects the k nearest neighbors, and predicts outputs 
based on their labels or values [49]. Naive Bayes is a 
probabilistic classifier grounded in Bayes’ theorem, 
which assumes conditional independence between 
features [50]. 

Model performance was evaluated on the test set 
using five metrics: AUC, sensitivity, specificity, recall, 
and F1 score [51]. To assess the robustness and 
generalizability of each model, we performed 400 
iterations of 10-fold cross-validation and visualized 
the resulting AUC distributions using boxplots. 
Although the machine learning algorithms used in 
this study are widely applied in existing clinical risk 
prediction, the optimal model may vary depending on 
disease characteristics and population heterogeneity. 
To enhance predictive stability, we employed a soft 
voting ensemble strategy that integrated the 
probability outputs from all models. Each model 
generated a probability score ranging from 0 to 1, with 
higher values indicating greater predicted CRC risk. 
The final prediction was obtained by averaging these 
probabilities. This ensemble approach leveraged the 
complementary strengths of individual algorithms, 
thereby enhancing overall predictive accuracy and 
stability [52]. 

Single-cell sequencing analysis 
Single-cell sequencing provides detailed insights 

into gene expression at the individual cell level by 
combining cell isolation, library preparation, 
high-throughput sequencing, and advanced 
computational analysis techniques [53]. In this study, 
we analyzed single-cell sequencing data from CRC 
patients as reported by Kabiljo J et al., to construct 
cell-type-specific gene expression profiles within the 
immune system and tumor microenvironment [54]. 
The GSE279062 dataset from the comprehensive gene 
expression database (GEO, https://www.ncbi.nlm 
.nih.gov/geo/) was downloaded for analysis. This 
cohort includes cancer-associated fibroblasts (CAFs) 
and primary monocytes or macrophages derived from 
7 CRC patients. The sequencing matrix data were 

integrated using the R software package “Seurat”. 
Cell filtering criteria were set to exclude cells 
expressing fewer than 300 or more than 5,000 genes, 
with mitochondrial gene content kept below 10% and 
red blood cell gene content below 1%. Additionally, 
only cells with a unique molecular identifier count 
greater than 600 were retained. The Seurat package in 
R was utilized for cell annotation and identification of 
distinct cellular populations, elucidating CRC 
pathogenesis and potential therapeutic targets [55]. 
Subsequently, the data were normalized and 
standardized. Highly variable genes are selected for 
dimensionality reduction through principal 
component analysis, followed by batch correction 
using the Harmony algorithm. Clustering was 
performed, and the results were visualized using 
Uniform Manifold Approximation and Projection, 
with cell clusters annotated according to known 
marker genes. 

Results 
Selection of IVs 

Based on predefined selection criteria, we 
identified 658, 1117, 1039, 1624, and 4342 SNPs 
associated with 211 gut microbiota taxa at the 
phylum, class, order, family, and genus levels, 
respectively. In total, 8,780 SNPs were selected as IVs 
for downstream MR analyses of these microbial 
classifications (Table S12). For IBD, 1,596, 1,626, and 
1,636 SNPs were selected as IVs across three GWAS 
datasets (Tables S13–15). For CRC, 1,637 and 1,343 IVs 
were identified from two datasets (Tables S16–17). 

MR analysis 

The causal effect of IBD on CRC 

A two-sample MR analysis was conducted to 
evaluate the causal relationship between IBD and 
CRC. IVs derived from the FinnGen and IIBDGC 
datasets were significantly associated with CRC risk 
in the Huyghe JR et al. dataset (FinnGen: P-value = 
0.028; IIBDGC: P-value = 0.017). Similarly, IVs from 
Mbatchou J et al. were significantly associated with 
CRC risk in the Ishigaki et al. datasets (P-value = 
0.006). To maximize analytical power and biological 
interpretability, we retained all significant 
associations for downstream analysis following 
sensitivity analyses. Detailed results can be found in 
Table S4. 

Causal effects of gut microbiota on CRC and IBD 

A two-sample MR analysis was performed to 
investigate the causal effects of gut microbiota on both 
CRC and IBD. After multiple testing correction, 101 
and 90 taxa exhibited causal relationships with CRC 
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in the GWAS datasets by Huyghe JR et al. and Ishigaki 
et al., respectively. Likewise, 82, 99, and 83 microbial 
taxa were identified as causally associated with IBD in 
the FinnGen, IIBDGC, and Mbatchou J et al. datasets, 
respectively. By intersecting the taxa significantly 
associated with both CRC and IBD, 13 overlapping 
taxa were identified, including 1 phylum, 1 class, 1 
order, 2 families, and 8 genera. However, the genus 
LachnospiraceaeND3007 group was excluded from 
further analysis due to insufficient statistical power 
(power < 0.5), which could compromise the reliability 
of causal inference. The remaining 12 taxa were 
retained for downstream analyses, suggesting 
potential shared causal roles in both CRC and IBD. To 
assess the robustness of these findings, sensitivity 
analyses were performed, with detailed results 
provided in Tables S1–S3 and S5–S6. Based on the 
consistency across multiple MR methods, current 
literature support, and the biological plausibility of 
the identified taxa, all 12 were included in subsequent 
analyses. 

In our analysis, the genetically predicted relative 
abundance of nine microbial taxa showed consistent 
protective or pathogenic effects on CRC across both 
GWAS datasets. A higher abundance of the phylum 
Actinobacteria was associated with reduced CRC risk 
(Huyghe JR et al.: OR = 0.844, 95% CI: 0.791–0.901; 
Ishigaki K et al.: OR = 0.913, 95% CI: 0.879–0.948). 
Similar protective associations were observed for its 
subordinate taxa, including class Actinobacteria 
(Huyghe JR et al.: OR = 0.843, 95% CI: 0.810–0.876; 
Ishigaki K et al.: OR = 0.903, 95% CI: 0.876–0.930), 
family Bifidobacteriaceae (Huyghe JR et al.: OR = 0.889, 
95% CI: 0.854–0.925; Ishigaki K et al.: OR = 0.914, 95% 
CI: 0.891–0.937), genus Bifidobacterium (Huyghe JR et 
al.: OR = 0.864, 95% CI: 0.831–0.898; Ishigaki K et al.: 
OR = 0.888, 95% CI: 0.865–0.912), and order 
Bifidobacteriales (Huyghe JR et al.: OR = 0.889, 95% CI: 
0.854–0.925; Ishigaki K et al.: OR = 0.914, 95% CI: 
0.891–0.937). Other taxa demonstrating protective 
associations included genera Streptococcus (Huyghe JR 
et al.: OR = 0.415, 95% CI: 0.384–0.449; Ishigaki K et al.: 
OR = 0.845, 95% CI: 0.745–0.959) and Lachnoclostridium 
(Huyghe JR et al.: OR = 0.604, 95% CI: 0.518–0.704; 
Ishigaki K et al.: OR = 0.809, 95% CI: 0.725–0.901). In 
contrast, elevated genetically predicted abundance of 
the genera Eubacterium coprostanoligenes group 
(Huyghe JR et al.: OR = 1.610, 95% CI: 1.358–1.910; 
Ishigaki K et al.: OR = 1.222, 95% CI: 1.118–1.336) and 
RuminococcaceaeUCG011 (Huyghe JR et al.: OR = 1.371, 
95% CI: 1.314–1.430; Ishigaki K et al.: OR = 1.249, 95% 
CI: 1.203–1.297) was associated with an increased risk 
of CRC. 

Regarding IBD, seven microbial taxa 
demonstrated consistent protective or pathogenic 

effects across three IBD datasets. These included the 
phylum Actinobacteria, its subordinate class Actino-
bacteria, Bifidobacteriaceae, Bifidobacterium, Bifidobac-
teriales, as well as Eubacterium coprostanoligenes group 
and RuminococcaceaeUCG011. Among these, phylum 
Actinobacteria was found to be the most protective, 
consistently demonstrating significant effects across 
all datasets (FinnGen: OR = 0.765, 95% CI: 0.734–0.797; 
IIBDGC: OR = 0.721, 95% CI: 0.695–0.748; Mbatchou J 
et al.: OR = 0.995, 95% CI: 0.995–0.996). In contrast, the 
Eubacterium coprostanoligenes group showed the 
strongest positive association with IBD risk across all 
datasets (FinnGen: OR = 1.161, 95% CI: 1.027–1.313; 
IIBDGC: OR = 1.320, 95% CI: 1.201–1.451; Mbatchou J 
et al.: OR = 1.006, 95% CI: 1.005–1.007). Importantly, 
the taxa that conferred risk or protection for IBD 
demonstrated similar roles in CRC, supporting the 
hypothesis of shared microbiota-mediated 
mechanisms underlying both gastrointestinal diseases 
(Tables 1 and 2). 

Mediating effects of IBD on gut microbiota–CRC 
relationship 

We applied a two-step MR method to investigate 
the mediating role of IBD in the causal relationship 
between 12 gut microbial taxa and CRC. The 
proportion of mediation varied across different 
microbial classifications, as summarized in Table 3. 

In the CRC dataset from Huyghe JR et al., IBD 
(FinnGen dataset, β = -0.107, P-value = 0.028) 
mediated the relationship between Alcaligenaceae (β = 
0.693, P-value = 9.732E-26) and CRC (Huyghe JR et al.) 
with a mediation effect of -0.026, accounting for 3.8% 
of the total effect. Likewise, using the IIBDGC dataset 
(β = -0.062, P-value = 0.017), IBD was found to 
mediate the relationships between Streptococcus, an 
unknown genus (id.1868), and Peptococcus with CRC, 
with corresponding mediation effects of -0.021 
(2.44%), -0.004 (3.082%), and -0.009 (12.007%), 
respectively. 

In the Ishigaki K et al. CRC dataset, IBD 
(Mbatchou J et al.) mediated the relationship between 
class Actinobacteria (β = -0.102, P-value = 9.839E-12), 
Bifidobacteriaceae (β = -0.090, P-value = 1.792E-12), 
Eubacterium coprostanoligenes group (β = 0.200, P-value 
= 1.063E-05), Bifidobacterium (β = -0.119, P-value = 
1.470E-18), RuminococcaceaeUCG011 (β = 0.222, 
P-value = 2.746E-31), an unknown genus (id.1868, β = 
0.079, P-value = 0.003), Bifidobacteriales (β = -0.090, 
P-value = 1.792E-12), and phylum Actinobacteria (β = 
-0.091, P-value = 2.564E-06) and CRC, with mediation 
effects of -0.038 (36.997%), -0.041 (45.678%), 0.064 
(31.848%), -0.037 (30.857%), 0.014 (6.129%), 0.008 
(10.232%), -0.041 (45.678%), and -0.051 (55.725%), 
respectively. 
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Figure 3. Variable selection using the LASSO algorithm. (A) LASSO cross-validation error plot. The plot illustrates the relationship between the mean square error and the 
logarithm of the regularization parameter (λ). The vertical dashed lines indicate the optimal values of λ determined by cross-validation: λ-min+1se and λ-min. (B) LASSO 
coefficient path plot. This plot shows the coefficient paths of each variable change as λ varies. The vertical solid line corresponds to the logarithm of the optimal λ (λ-min) we 
chose to identify the eight genes that best fit the LASSO model. Abbreviations: LASSO, least absolute shrinkage and selection operator. 

 
No mediation effects were observed for other 

taxa due to the inconsistent direction of their β values. 
Collectively, these findings provide evidence that IBD 
acts as a partial mediator in the causal pathway 
between specific microbial taxa and CRC 
development. Detailed results can be found in Table 
S7. 

SNP mapping to genes 

A total of 1,443 SNPs associated with the 12 gut 
microbial taxa were identified via MR analysis and 
mapped to corresponding genes using PLINK. SNPs 
located within gene regions were retained and 
annotated with gene symbols, shown as 
“GeneSymbolName(0)”, while those without gene 
annotations were excluded from subsequent analysis. 

In the causal pathway where IBD (FinnGen 
dataset) mediated the association between 
Alcaligenaceae and CRC (Huyghe JR et al.), 5 genes 
were identified. In the causal pathways in which IBD 
(IIBDGC dataset) mediated the effects of Streptococcus, 
an unknown genus (id.1868), and Peptococcus on CRC 
(Huyghe JR et al.), 21 genes were identified. Likewise, 
in the causal pathways where IBD (Mbatchou J et al.) 
mediated the associations between class Actino-
bacteria, Bifidobacteriaceae, Eubacterium coprostanoligenes 
group, Bifidobacterium, RuminococcaceaeUCG011, an 
unknown genus (id.1868), Bifidobacteriales, and 
phylum Actinobacteria on CRC (Ishigaki K et al.), a 
total of 36 genes were identified. After merging gene 
lists and removing duplicates, a final set of 59 unique 
genes was obtained for downstream analyses. 

Detailed results are presented in Tables S18–S20. 

Expression analysis and variable selection 

Differential expression analysis between CRC 
and control groups identified 37 DEGs among the 59 
candidates after adjusting the P-values. These genes 
were subsequently used to construct a LASSO 
regression model, with 10-fold cross-validation 
determining the optimal λ (λ-min = 0.011, ln(λ-min) = 
-4.533) and selecting eight genes for further analysis. 
The LASSO score for each sample was calculated 
using the formula score = Σ (gene coefficient × gene 
expression). Detailed results are presented in Table S8 
and Figure 3. 

Drug target MR and SMR analysis 

Due to the unavailability of eQTL data for 
ADCYAP1R1, drug target MR analyses were 
conducted on the remaining seven candidate genes. In 
the dataset from Huyghe JR et al., all seven genes 
showed significant associations with CRC risk. 
Specifically, elevated expression levels of ATP11A, 
GBE1, and SOAT1 were associated with an increased 
risk of CRC (OR > 1), while increased expression of 
FAM120A, MCM6, MSRA, and ZDHHC4 was 
associated with a reduced risk (OR < 1). In the 
Ishigaki K et al. dataset, four genes were significantly 
associated with CRC after P-value adjustment, among 
which FAM120A and MCM6 consistently 
demonstrated protective effects. 

Given the potential confounding effects of 
linkage disequilibrium on causal inference between 
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gene expression and CRC risk, we applied SMR and 
HEIDI tests to validate the drug target MR results. 
Due to data availability, SMR analysis was restricted 
to the Ishigaki K et al. dataset, which identified four 
genes meeting the predefined criteria for association 
with CRC (P-SMR < 0.10 and P-HEIDI > 0.05). 
Notably, increased expression of MSRA and 
ZDHHC4 was significantly associated with a 
decreased CRC risk, consistent with findings from the 
Huyghe JR et al. dataset. To enhance the robustness of 
downstream analyses, five genes—FAM120A, MCM6, 
MSRA, GBE1, and ZDHHC4—that demonstrated 
consistent associations in at least two of the drug 
target MR or SMR analyses were prioritized for 
further investigation. Detailed results can be found in 
Tables 4 and S9–11. 

Transcriptome analysis 
We applied WGCNA to investigate gene 

expression patterns in CRC patients by performing 
hierarchical clustering on all samples. After excluding 
one outlier sample (TCGA-AA-3695-01A) and 
filtering out low-expression genes, a total of 51 normal 
and 617 CRC samples were retained for analysis 
(Figure 4A). A soft-thresholding power of 5 was 
selected to ensure scale-free topology (R² = 0.85), and 
the corresponding mean connectivity plot was 
generated (Figure 4B–C). Co-expressed genes were 
grouped into modules using a dynamic tree-cutting 
algorithm, and modules with eigengene correlations 
greater than 0.75 were merged. This process identified 
15 co-expression modules, each labeled by a distinct 
color and comprising at least 52 genes (Figure 4D–E). 
Among these, the magenta, tan, and red modules 
showed the strongest correlations with CRC 
pathogenesis, contributing 513 genes to downstream 
analyses (Figure 4F). 

Differential expression analyses were performed 
both between CRC and normal samples, as well as 
between high- and low-LASSO score groups based on 
previously identified CRC-related genes (Figure 5A–
B). After excluding missing values and adjusting for 
multiple testing, the top 2,500 genes were selected and 
ranked by absolute log2 Fold Change. Intersecting the 
DEG results with WGCNA module genes yielded 
1,666 overlapping genes, which were subjected to 
functional enrichment analysis.  

GO analysis revealed significant enrichment in 
biological processes such as regulation of membrane 
potential, neuronal cell body, and modulation of 
chemical synaptic transmission. KEGG analysis 
indicated enrichment in neuroactive ligand-receptor 
interaction, calcium signaling, and cAMP signaling 
pathways. GSEA analysis further highlighted 
enrichment in pathways including apoptosis, G2/M 

checkpoint, and pancreatic β-cell function. The top 15 
GO and KEGG terms and all GSEA results are 
presented in Figure 5C–E. 

To explore the role of immune cell infiltration in 
CRC progression, we used CIBERSORT to estimate 
immune cell proportions between high- and 
low-LASSO score groups. Rainbow plots visualized 
the composition of immune cell subsets across 
samples (Figure 5F). Subgroup bar plots 
demonstrated significant differences in the levels of 22 
immune cell types, underscoring the heterogeneity of 
immune responses in CRC. Notably, nine cell types 
exhibited statistically significant differences: memory 
B cells, plasma cells, activated NK cells, resting 
dendritic cells, and resting mast cells were more 
abundant in the low-LASSO score group; whereas 
activated CD4⁺ memory T cells, resting NK cells, M0 
macrophages, and neutrophils were more enriched in 
the high-LASSO score group (Figure 5G). 

Construction of a CRC onset model based on 
machine learning 

Six machine learning models were developed to 
predict CRC status based on five key genes identified 
through drug-target MR and SMR analyses, with the 
aim of simplifying the model structure and enhancing 
prediction efficiency and accuracy. 

The RF model was developed utilizing the 
randomForest package, with optimized 
hyperparameters: mtry (number of features sampled 
per split) = 3, and ntree (number of decision trees) = 
500. In the test set, the model achieved an accuracy of 
0.975, precision of 0.952, recall of 1.000, F1 score of 
0.975, and an AUC of 0.900. Feature importance, 
assessed via the Mean Decrease Gini index, identified 
MCM6 as the most influential gene (Figure S1B). The 
SVM model, implemented using the e1071 package 
with an eps-regression kernel, was configured with 
cost = 10, gamma = 0.01, and epsilon = 0.1. This model 
also exhibited outstanding performance, with an 
accuracy of 0.975, a precision of 0.952, a recall of 1.000, 
an F1 score of 0.975, and AUC of 0.972. 

The ANN model, constructed with two hidden 
layers comprising 2 and 6 neurons, respectively, 
attained an accuracy of 0.911, a precision of 0.930, a 
recall of 0.889, an F1 score of 0.909, and an AUC of 
0.931. Feature importance was evaluated using the 
neuralnet package, which calculates the relative 
contribution of each gene based on internal weight 
parameters. Consistent with the RF model, MCM6 
was identified as the most predictive feature, which 
demonstrates the robustness of our results (Figure 
S1E). The XGBoost model was implemented using the 
XGBoost package with optimum parameters: nrounds 
= 300, max_depth = 3, eta = 0.1, gamma = 0, and 
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colsample_bytree = 0.8. It achieved an accuracy of 
0.967, a precision of 0.937, a recall of 1.000, an F1 score 
of 0.967, and an AUC of 0.952. 

The kNN model, also developed using the e1071 
package, employed k = 19 as the optimal number of 
nearest neighbors. This model achieved an accuracy 
of 0.920, a precision of 0.947, a recall of 0.889, an F1 

score of 0.917, and an AUC of 0.943. The Naive Bayes 
model, also constructed using the e1071 package with 
a Laplace smoothing parameter of 0, attained an 
accuracy of 0.959, a precision of 0.923, a recall of 1.000, 
an F1 score of 0.960, and an AUC of 0.945. Default 
values were used for all other parameters. 

 
 

 
Figure 4. Results of weighted gene co-expression network analysis. (A) Sample clustering dendrogram, where each leaf represents a sample. (B) The impact of soft-threshold 
power on the scale-free topology fit index. A soft-thresholding power of β = 5 was selected, achieving a scale-free topology fit index (R2) of 0.85. (C) The impact of soft-threshold 
power on the mean connectivity. (D) Hierarchical cluster analysis of co-expression clusters with corresponding color assignments. (E). Collinear heat map of module feature 
genes. Red color represents a high correlation, and blue color represents the opposite trend. (F). The heatmap of the relationship between module eigengenes and clinical traits. 
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Figure 5. Results of transcriptome analysis. (A) Volcano plot showing 2,500 differentially expressed genes between the CRC group and the normal group. (B) Volcano plot 
showing 2,500 differentially expressed genes between the high- LASSO score group and the low-LASSO score group. (C) Bubble plots of Gene Ontology analysis results for the 
1,666 intersected genes. (D) Bubble plots of Kyoto Encyclopedia of Genes and Genomes analysis results for the 1,666 intersected genes. (E) Bubble plots of Gene Set Enrichment 
Analysis results for the 1,666 intersected genes. (F) Rainbow plot showing the proportions of 22 immune cells in the low-LASSO and high-LASSO groups estimated by 
CIBERSORT. (G) Grouped bar chart illustrating a comparison of immune-cell infiltration scores between the low-LASSO and high-LASSO score groups estimated by 
CIBERSORT. Statistical significance: ns, not significant; *, P-value<0.05; **, P-value<0.01; ***, P-value<0.001. Abbreviations: CRC, colorectal cancer; LASSO, least absolute 
shrinkage and selection operator. 
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Figure 6. Evaluation of machine learning models. (A) ROC curves with corresponding AUC values for six classifiers: RF, SVM, ANN, XGBoost, kNN, and Naive Bayes. (B) Bar 
graph showing the accuracy, precision, recall, and F1 score of each model. (C) Box plot illustrating the distribution of AUC values from 400 iterations of 10-fold cross-validation, 
indicating model robustness. Abbreviations: ROC, receiver operator characteristic curve; AUC, area under the curve; RF, random forest; SVM, supporting vector machine; ANN, 
artificial neural network; XGBoost, extreme gradient boosting; kNN, k-nearest neighbor. 

 
Model performance was visualized using ROC 

curves (Figure 6A–B), demonstrating consistently 
high discriminative ability across all six algorithms. 
To evaluate model robustness, we conducted 400 
iterations of 10-fold cross-validation and displayed 
the AUC distributions using boxplots. The average 
AUCs were: 0.999 (RF), 0.991 (SVM), 0.891 (ANN), 
0.988 (XGBoost), 0.980 (kNN), and 0.876 (Naive Bayes) 
(Figure 6C). Based on these results, a soft voting 
ensemble approach was employed, combining the 
probabilistic outputs of all models through weighted 
averaging to further enhance predictive accuracy and 
stability. The outcomes and model performances are 
provided in Figures 6 and S1. 

Single-cell sequencing analysis 
To investigate the infiltration of CD4+ T cells and 

M0 macrophages in CRC tissues, we analyzed a 
single-cell sequencing dataset in the GEO database, 
which included samples from 7 patients. After quality 
control, a total of 40,290 cells were included in the 
analysis. Through harmonized data integration, 
dimensionality reduction, and batch effect correction, 
we systematically annotated single-cell populations. 
We identified six cell types, including macrophages 
(PPP1R17), monocytes and neutrophils (FCAR, 
S100A12, CD93), tumor stem cells (CPZ), smooth 
muscle cell populations and epithelial cells (CSF3, 
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TTC23L). These results were consistent with the 
findings from our previous analyses. Additionally, we 
examined the expression patterns of five key genes 
and their distribution within the tumor 
microenvironment, highlighting potential therapeutic 
targets (Figure 7). 

Discussion 
CRC is one of the most prevalent malignancies 

worldwide, with its consistently poor prognosis 
largely attributed to delayed diagnosis and limited 
therapeutic options. Emerging evidence indicates that 
gut microbiota dysbiosis, in concert with host 
inflammatory responses, plays a critical role in CRC 
development. However, to our knowledge, no prior 
study has systematically investigated the mediating 
role of IBD in the causal pathway linking gut 
microbiota to CRC. To address this gap, we 

performed a mediation MR analysis and identified 
IBD as a significant mediator in the relationship 
between 12 gut microbial taxa and CRC, providing 
novel insights into the microbiota–inflammation–
cancer axis. In addition, we identified five key genes 
as potential therapeutic targets. Transcriptomic 
analysis revealed dysregulated pathways involved in 
membrane-mediated signal transduction and cell 
cycle regulation. Immune infiltration analysis 
underscored the involvement of CD4⁺ T cells and M0 
macrophages in CRC progression. A predictive model 
incorporating six machine learning algorithms 
demonstrated robust performance, and our results 
were further validated through single-cell sequencing 
analysis. These results enhance our understanding of 
CRC pathogenesis and provide promising 
implications for early diagnosis and targeted therapy. 

 

 
Figure 7. Single-cell sequencing analysis. (A) The characteristic atlas of cell subsets constructed based on the standardized gene expression matrix shows the expression levels 
of key marker genes in the cell subsets defined by the seven transcriptomes. (B) The nonlinear dimensionality reduction visualization results of UMAP show the single-cell 
clustering distribution. Cells are color-coded according to predefined subgroups. (C) Confidence interval heat maps, with light colors for higher confidence and dark colors for 
lower confidence. Abbreviations: UMAP, Uniform Manifold Approximation and Projection. 
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Table 1. Mendelian randomization analyses between gut microbiota and two CRC datasets of inverse variance weighted method. 

Trait IVW-OR (95%CI, P-value) 
Colorectal cancer (Huyghe JR et al.) Colorectal cancer (Ishigaki K et al.) 

class.Actinobacteria.id.419 0.843(0.810-0.876, 0) 0.903(0.876-0.930, 0) 
family.Alcaligenaceae.id.2875 0.504(0.439-0.569, 0) 1.508(1.389-1.636, 0) 
family.Bifidobacteriaceae.id.433 0.889(0.854-0.925, 0) 0.912(0.891-0.937, 0) 
genus.Eubacteriumcoprostanoligenesgroup.id.11375 1.634(1.358-1.910, 0) 1.222(1.118-1.336, 0) 
genus.Bifidobacterium.id.436 0.864(0.831-0.898, 0) 0.888(0.865-0.912, 0) 
genus.Lachnoclostridium.id.11308 0.604(0.518-0.704, 0) 0.809(0.725-0.901, 0) 
genus.Peptococcus.id.2037 0.924(0.882-0.969, 0.001) 1.262(1.224-1.300, 0) 
genus.RuminococcaceaeUCG011.id.11368 1.371(1.314-1.430, 0) 1.249(1.203-1.297, 0) 
genus.Streptococcus.id.1853 0.415(0.384-0.449, 0) 0.845(0.745-0.959, 0.009) 
genus.unknowngenus.id.1868 0.875(0.804-0.952, 0.002) 1.082(1.027-1.141, 0.003) 
order.Bifidobacteriales.id.432 0.889(0.854-0.925, 0) 0.912(0.891-0.937, 0) 
phylum.Actinobacteria.id.400 0.844(0.791-0.901, 0) 0.913(0.879-0.948, 0) 

IVW, inverse variance weighted method; OR, odds ratio; CI, confidential interval; a P-value of 0 means the P-value < 0.001. 
 

Table 2. Mendelian randomization analyses between gut microbiota and three IBD datasets of inverse variance weighted method. 

Trait IVW-OR (95%CI, P-value) 
IBD (FinnGen) IBD (IIBDGC) IBD (Mbatchou J et al.) 

class.Actinobacteria.id.419 0.830(0.810-0.851, 0) 0.805(0.788-0.823, 0) 0.997(0.996-0.997, 0) 
family.Alcaligenaceae.id.2875 1.279(1.185-1.381, 0) 0.887(0.832-0.946, 0) 0.999(0.998-0.999, 0) 
family.Bifidobacteriaceae.id.433 0.782(0.761-0.803, 0) 0.784(0.766-0.802, 0) 0.996(0.996-0.997, 0) 
genus.Eubacteriumcoprostanoligenesgroup.id.11375 1.161(1.027-1.313, 0.017) 1.320(1.201-1.451, 0) 1.006(1.005-1.007, 0) 
genus.Bifidobacterium.id.436 0.789(0.768-0.811, 0) 0.806(0.788-0.824, 0) 0.997(0.996-0.997, 0) 
genus.Lachnoclostridium.id.11308 0.507(0.460-0.560, 0) 0.885(0.816-0.960, 0.003) 1.002(1.001-1.003, 0) 
genus.Peptococcus.id.2037 0.912(0.885-0.939, 0) 1.166(1.137-1.195, 0) 0.999(0.999-1.000, 0) 
genus.RuminococcaceaeUCG011.id.11368 1.071(1.044-1.098, 0) 1.043(1.020-1.067, 0) 1.001(1.001-1.001, 0) 
genus.Streptococcus.id.1853 0.795(0.752-0.841, 0) 1.417(1.359-1.477, 0) 1.003(1.002-1.003, 0) 
genus.unknowngenus.id.1868 0.881(0.822-0.944, 0) 1.069(1.022-1.119, 0.004) 1.001(1.000-1.001, 0.004) 
order.Bifidobacteriales.id.432 0.782(0.761-0.803, 0) 0.784(0.766-0.802, 0) 0.996(0.996-0.997, 0) 
phylum.Actinobacteria.id.400 0.765(0.734-0.797, 0) 0.721(0.695-0.748, 0) 0.995(0.995-0.996, 0) 

IVW, inverse variance weighted method; OR, odds ratio; CI, confidential interval; a P-value of 0 means the P-value < 0.001. 
  

Table 3. Mediation analysis of the effect of gut microbiota on CRC via IBD. 

Exposure Mediator Outcome Total effect Direct effect Mediation effect  Mediation proportion (%) 
family.Alcaligenaceae.id.2875 IBD (FinnGen) CRC (Huyghe JR et al.) -0.693  -0.667  -0.026  3.800% 
genus.Streptococcus.id.1853 IBD (IIBDGC) CRC (Huyghe JR et al.) -0.879  -0.858  -0.021 2.440% 
genus.unknowngenus.id.1868 IBD (IIBDGC) CRC (Huyghe JR et al.) -0.133  -0.129 -0.004 3.082% 
genus.Peptococcus.id.2037 IBD (IIBDGC) CRC (Huyghe JR et al.) -0.079  -0.069  -0.009  12.007% 
class.Actinobacteria.id.419 IBD (Mbatchou J et al.) CRC (Ishigaki K et al.) -0.103  -0.065  -0.038  36.997% 
family.Bifidobacteriaceae.id.433 IBD (Mbatchou J et al.) CRC (Ishigaki K et al.) -0.090  -0.049  -0.041  45.678% 
genus.Eubacteriumcoprostanoligenesgroup.id.11375 IBD (Mbatchou J et al.) CRC (Ishigaki K et al.) 0.200  0.137  0.064  31.848% 
genus.Bifidobacterium.id.436 IBD (Mbatchou J et al.) CRC (Ishigaki K et al.) -0.119  -0.082  -0.037  30.857% 
genus.RuminococcaceaeUCG011.id.11368 IBD (Mbatchou J et al.) CRC (Ishigaki K et al.) 0.222  0.209  0.014  6.129% 
genus.unknowngenus.id.1868 IBD (Mbatchou J et al.) CRC (Ishigaki K et al.) 0.079  0.071  0.008  10.232% 
order.Bifidobacteriales.id.432 IBD (Mbatchou J et al.) CRC (Ishigaki K et al.) -0.090  -0.049  -0.041  45.678% 
phylum.Actinobacteria.id.400 IBD (Mbatchou J et al.) CRC (Ishigaki K et al.) -0.091  -0.040  -0.051  55.725% 

  

Table 4. Drug target Mendelian randomization and SMR results.  

Gene IVW-OR (95%CI, P-value) SMR-OR (95%CI) P-SMR P-HEIDI Number of Significant 
 SNPs in SMR Colorectal cancer (Huyghe JR et al.) Colorectal cancer (Ishigaki K et al.) 

ADCYAP1R1 N/A 
ATP11A 1.361(1.173-1.580, 0) 0.945(0.855-1.044, 0.263) 1.240(0.715-2.148) 0.444 0.592 0 
FAM120A 0.752(0.716-0.791, 0) 0.841(0.813-0.869, 0) 1.283(0.990-1.663) 0.059 0.228 1 
GBE1 1.082(1.052-1.113, 0) 0.929(0.912-0.946, 0) 0.950(0.738-1.223) 0.689 0.062 3 
MCM6 0.969(0.963-0.975, 0) 0.969(0.965-0.972, 0) 1.241(1.017-1.516) 0.034 0.115 2 
MSRA 0.941(0.935-0.947, 0) 1.030(1.025-1.035, 0) 0.846(0.718-0.997) 0.046 0.259 7 
SOAT1 1.072(1.063-1.081, 0) 1.006(0.997-1.014, 0.180) 1.174(0.963-1.432) 0.113 0.500 0 
ZDHHC4 0.950(0.939-0.961, 0) 1.003(0.992-1.014, 0.632) 0.887(0.815-0.965) 0.006 0.250 4 

IVW, inverse variance weighted method; OR, odds ratio; CI, confidential interval; a P-value of 0 means the P-value<0.001. 
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Previous epidemiological studies and systematic 
reviews have consistently identified IBD as a 
significant risk factor for CRC. Chronic 
inflammation-induced oxidative stress is believed to 
contribute to CRC development by activating 
oncogenes and silencing tumor suppressor genes [7]. 
Pharmacological interventions commonly used in IBD 
management—such as 5-aminosalicylic acid, 
thiopurine, nonsteroidal anti-inflammatory drugs, 
and tumor necrosis factor-α inhibitors—have been 
associated with reduced CRC risk [56]. Our study 
provides supporting evidence for a causal link 
between the two diseases. To enhance robustness, we 
integrated multiple GWAS datasets and employed 
complementary MR methods. Although one MR 
analysis yielded an unexpectedly high OR, we 
retained the results based on the biological 
plausibility of the IBD–CRC association and the 
methodological strength of MR. 

To further elucidate the role of gut microbiota in 
CRC pathogenesis, we conducted a two-sample MR 
analysis and identified 12 bacterial taxa with 
significant causal associations with both CRC and 
IBD. Several identified taxa—including 
Bifidobacteriaceae, Eubacterium coprostanoligenes group, 
Bifidobacterium, RuminococcaceaeUCG011, Streptococcus, 
an unknown genus (id.1868), and phylum 
Actinobacteria—are consistent with previous reports 
[57-59]. A novel microbial marker (m3) from 
Lachnoclostridium has shown promise for non-invasive 
CRC detection [60]. Additionally, members of the 
phylum and class Actinobacteria, such as Tyzzerella 
nexilis, have been associated with CRC development 
[61], while Alcaligenaceae has been reported to be 
enriched in the gut microbiota of CRC patients [62]. 
Although Peptococcus has not been directly linked to 
CRC in previous studies, related genera such as 
Peptostreptococcus have been found to be enriched in 
both fecal and mucosal microbiota of CRC patients 
and implicated in tumor initiation and progression, 
suggesting a potential analogous role [63]. 
Nevertheless, these observational findings cannot 
serve as definitive evidence for a direct relationship 
due to potential confounding factors, such as the 
environment and diet. Our MR analysis strengthens 
the evidence for causal relationships between specific 
gut microbial taxa and CRC risk. 

Furthermore, mediation MR analysis revealed 
that IBD significantly mediates the relationship 
between these 12 taxa and CRC. Notably, IBD 
accounted for 55.73% of the total effect in the causal 
pathway from phylum Actinobacteria to CRC—the 
highest mediation proportion among all identified 
taxa. Prior studies suggest that certain Actinobacteria 
members exert both pro- and anti-inflammatory 

effects in IBD, which may influence CRC progression 
via immune modulation [66]. These findings offer a 
mechanistic basis for the contribution of specific 
microbiota components to CRC in the context of 
intestinal inflammation [64]. 

To explore potential downstream molecular 
mediators, we mapped SNPs associated with these 12 
microbial taxa and performed Wilcoxon rank-sum 
tests, identifying 37 candidate genes. LASSO 
regression was applied to refine these candidates, 
ultimately highlighting eight genes potentially 
involved in CRC pathogenesis. Subsequent 
drug-target MR and SMR analyses, based on eQTL 
data for seven of these genes, confirmed five 
genes—FAM120A, GBE1, MCM6, MSRA, and 
ZDHHC4—as significantly associated with CRC, 
supporting their potential as therapeutic targets and 
underscoring the robustness of our gene selection 
strategy. 

The five identified genes demonstrate distinct 
roles in cancer biology. FAM120A promotes 
tumorigenesis via its circular RNA variant 
(circFAM120A), which enhances translation of the 
parental gene [65]. GBE1, while traditionally linked to 
glycogen metabolism, has emerged as a tumor 
progression factor through its involvement in 
NF-κB-mediated FBP1 methylation in lung cancer 
[66]. MCM6 encodes a conserved protein, which 
drives S/G2 phase cell cycle progression and serves as 
a potential diagnostic and prognostic biomarker in 
hepatocellular carcinoma. Notably, elevated MCM6 
expression correlates with poor survival in gastric 
cancer patients [67]. MSRA, a key enzyme in redox 
homeostasis, suppresses metastasis in pancreatic 
ductal adenocarcinoma via the MSRA–PKM2 axis, 
linking oxidative stress regulation to cancer 
metabolism [68]. ZDHHC4 encodes a 
palmitoyltransferase that promotes the palmitoylation 
and membrane raft localization of KAI1, thereby 
enhancing its stability and anti-angiogenic function 
[69]. In our study, the effects of these genes on CRC 
risk varied between the drug target MR and SMR 
analyses, with some genes exhibiting ORs less than 1 
and others greater than 1. These discrepancies may 
reflect the complex and context-dependent roles of 
these genes in CRC pathogenesis. In addition, 
differences in data sources and analytical frameworks 
between the two methods could also contribute to the 
inconsistent results. Such variation underscores the 
need for further validation using more approaches 
and refined functional studies. 

To elucidate the molecular mechanisms driving 
colorectal carcinogenesis, we integrated DEG analysis 
with WGCNA, identifying 1,666 genes for 
transcriptomic evaluation. GO enrichment analysis 
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revealed significant involvement in the regulation of 
membrane potential, synaptic signaling, and 
muscular system processes. KEGG pathway analysis 
showed prominent enrichment in the neuroactive 
ligand-receptor interaction pathway. GSEA 
highlighted activation of key oncogenic pathways, 
particularly the G2/M checkpoint and apoptosis 
pathways. Current studies have underscored the 
critical role of the Wnt membrane-mediated signaling 
pathway in the development and progression of CRC, 
primarily through the regulation of key oncogenes 
such as c-Myc and cyclin D1. In addition, the 
PI3K-Akt signaling pathway is notably activated in 
CRC and promotes cell cycle progression from the G2 
to M phase by regulating cell cycle regulators, 
including cyclin B1, cdc25C, and cdc2 [70]. The 
consistency between our findings and established 
CRC-related mechanisms supports the robustness and 
biological relevance of our analysis. 

Immune infiltration analysis revealed relatively 
higher levels of plasma cells and mast cells in the 
low-LASSO score group. Plasma cells, as 
antibody-secreting effector cells, are known to 
enhance anti-tumor immune responses. The role of 
mast cells in CRC, however, remains controversial. 
While some studies have associated their infiltration 
with improved prognosis, others have reported 
adverse outcomes or even reduced survival, possibly 
due to the high heterogeneity of tumor 
microenvironments [71]. Our results suggest that 
mast cells may exert anti-tumor effects in CRC, 
warranting further investigation into their functional 
contributions to tumor immunology. In contrast, the 
high-LASSO score group showed elevated levels of 
CD4⁺ T cells and M0 macrophages. CD4⁺ T cells can 
differentiate into various subsets, including Th1, Th2, 
Th17, and regulatory T cells (Tregs), each modulating 
the CRC immune microenvironment through specific 
cytokine profiles [72]. Notably, increased infiltration 
of FOXP3⁺ Tregs has been linked to greater tumor 
aggressiveness and lymph node metastasis, primarily 
through their secretion of the immunosuppressive 
cytokine IL-10 [73]. M0 macrophages, as 
undifferentiated precursors, can polarize into M1 
(pro-inflammatory) or M2 (anti-inflammatory) 
phenotypes in response to microenvironmental 
signals. The predominance of M2 macrophages in 
CRC is consistently associated with 
immunosuppression and tumor progression [74]. 
Importantly, the gut microbiota modulates the 
function and differentiation of CD4⁺ T cells and 
macrophages through microbial-derived metabolites 
and immune signaling. For instance, short-chain fatty 
acids derived from microbial fermentation promote 
Tregs differentiation and function, while microbially 

modified bile acids modulate immune responses by 
affecting macrophage polarization [75]. These 
findings collectively highlight the intricate interplay 
between gut microbiota and host immune responses 
in CRC pathogenesis. 

Machine learning has become a widely adopted 
approach in biomedical informatics due to its ability 
to efficiently integrate and analyze complex datasets 
[76]. In this study, we constructed six predictive 
models for CRC based on five key genes identified in 
previous analyses. Among these, the SVM model 
demonstrated the highest performance, with an AUC 
of 0.972, demonstrating promising potential for 
clinical application in CRC diagnosis and risk 
stratification. The integrated soft voting approach 
further enhanced predictive accuracy. 

To verify gene expression at the cellular level, we 
used data from untreated CRC patients to ensure a 
reliable cell source. Key subpopulations included 
tumor stem cells, macrophages, monocytes, and 
intestinal epithelial cells, all of which are critical 
components in shaping the tumor microenvironment. 
These findings are consistent with previous studies. 
For example, single-cell sequencing analysis of CAFs 
and their role in extracellular matrix remodeling and 
angiogenesis, as reported by Hu et al., demonstrated 
that CAFs in right-sided colon cancer exhibit a 
stronger cancer invasion signal. Additionally, the 
reprogramming of CD8+ T cells and macrophages 
plays a significant role in the malignant progression of 
CRC [77]. Moreover, a significant causal relationship 
between various immune cell phenotypes—such as B 
cells, CD8+ T cells, Tregs, and monocytes—and CRC 
development has been reported [78]. Xu et al.’s study 
also highlighted that the CD3 immune cell phenotype 
on CD28+CD4-CD8-T cells and the HLA-DR 
expression on CD33-HLA-DR+ cells exhibit protective 
effects against breast cancer [79]. We also identified 
new subpopulations, such as smooth muscle cells, 
which have not been extensively described in 
previous studies, providing novel directions for CRC 
research. However, limitations such as sample size 
and sensitivity in detecting rare cell populations may 
influence the interpretation of these findings. Notably, 
FAM120A and GBE1 were significantly expressed in 
multiple cell types, suggesting their roles in CRC cell 
proliferation and providing new insights into their 
functions in tissue regeneration, inflammatory 
response, and tumor microenvironment regulation. 

Our findings offer significant translational 
relevance and provide several directions for future 
research. By elucidating the mediating role of IBD in 
the causal relationship between gut microbiota and 
CRC, this study proposes a new mechanistic 
framework for understanding microbiota- and 
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inflammation-driven carcinogenesis. Moreover, by 
integrating microbiome features, SNP mapping, and 
transcriptomic analyses, we identified candidate 
microbial and genetic biomarkers as well as 
functionally relevant pathways, which not only align 
with current studies but also offer novel opportunities 
for early detection and therapeutic targeting. The 
machine learning model developed in this study 
exhibited strong predictive performance, 
underscoring its potential utility in CRC risk 
stratification, particularly for high-risk IBD 
populations. As the field progresses, incorporating 
these markers into existing clinical workflows may 
enhance their sensitivity and specificity of early CRC 
screening. For instance, the fecal immunochemical 
testing-based prediction model proposed by Cubiella 
et al. has demonstrated robust diagnostic performance 
in symptomatic patients, highlighting the feasibility of 
biomarker-driven clinical applications [80]. Similarly, 
the work of Díez Alonso et al. [81], which proposed 
incorporating tumor deposits into the definition of the 
TNM system contributes to the prognostic 
stratification of CRC. Building on these precedents, 
our study contributes additional value by introducing 
microbiome- and gene-based predictors. Future 
studies should validate these biomarkers and 
predictive models in large-scale, multicenter, and 
multi-ethnic prospective cohorts and evaluate their 
integration into multi-omics-driven screening and 
surveillance frameworks. These efforts hold promise 
for enabling more personalized and effective 
prevention and therapeutic strategies for 
inflammation-associated CRC. 

The main strengths of this study include: 1) 
Comprehensive integration of dataset from IIBDGC, 
FinnGen, eQTLGen, GEO, and the published 
literature, which enhances the generalizability and 
robustness of the findings; 2) Application of diverse 
analytical methodologies, enabling multidimensional 
validation and improved analytical rigor; and 3) 
Cross-database validation, ensuring reproducibility 
and reliability of the results across different 
populations and study settings. However, several 
limitations should be acknowledged: 1) Although the 
genetic data were derived from multiple cohorts, most 
participants were of European and Asian ancestry. 
Future studies should include more ethnically diverse 
populations to improve the generalizability of the 
findings; 2) The single-factor MR analysis was based 
on the assumption of a linear relationship among gut 
microbiota, IBD, and CRC. To better capture complex 
biological interactions, future studies using 
individual-level data are needed to explore potential 
nonlinearities and interaction effects across different 
exposures. 3) The lack of eQTL data for certain genes 

limited comprehensive functional characterization. 
Incorporating additional multi-omics datasets in 
future research may provide deeper mechanistic 
insights; 4) While the identified genes and predictive 
models demonstrate strong potential, their clinical 
relevance requires further experimental and clinical 
investigations; 5) The focus on genetic determinants 
may restrict the model’s ability to fully account for the 
multifactorial nature of CRC. Future work should 
incorporate data on environmental exposures and 
lifestyle factors to enhance explanatory power and 
clinical applicability. 

Conclusions 
This study integrates MR, transcriptomic 

analysis, and machine learning to clarify the causal 
relationship between specific gut microbiota and 
CRC, and is the first to establish the mediating role of 
IBD in this pathway. These findings offer new 
mechanistic insights into the microbiota–
inflammation–cancer axis and identify microbial and 
genetic markers, along with predictive models, with 
strong potential for early CRC detection and targeted 
interventions. In addition, immune infiltration and 
pathway enrichment analyses highlight key 
immunological and molecular features that may 
guide future therapeutic strategies. Collectively, our 
results lay a foundation for incorporating multi-omics 
biomarkers into clinical risk assessment for 
IBD-associated CRC. Future studies should focus on 
large-scale clinical validation and functional 
experiments to facilitate the translation of these 
findings into effective prevention and treatment 
strategies. 
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