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Abstract 

Melanoma, a highly aggressive form of skin cancer, presents considerable challenges in early detection and 
accurate diagnosis, particularly across its diverse subtypes such as acral lentiginous melanoma (ALM), 
melanoma in situ (MIS), nodular melanoma (NM), and superficial spreading melanoma (SSM). This study 
assesses the epidemiology, clinical characteristics, and screening techniques related to various melanoma 
subtypes, emphasizing their distinct features and risk factors. Moreover, the use of machine learning (ML) 
methodologies to categorize melanoma subtypes and the thorough examination of advancements in 
AI-based melanoma diagnosis, primarily emphasizing convolutional neural networks (CNN) and transfer 
learning approaches. Evaluate the efficacy of several deep learning models in classifying melanoma 
subtypes while addressing significant obstacles, including class imbalance and model generalization. 
Furthermore, it contemplates the integration of multimodal data, including genetic information and 
patient demographics, to enhance diagnostic accuracy. This comprehensive review assesses the 
epidemiology, clinical characteristics, and machine learning techniques utilized for the classification and 
detection of different melanoma subtypes, emphasizing recent advancements in AI-driven methods and 
their clinical significance. 

Keywords: Skin Cancer, Acral Lentiginous Melanoma, Melanoma in situ, Nodular Melanoma, and Superficial Spreading 
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Introduction 
In humans, skin cancer is the most common 

cancer, with millions of cases diagnosed annually, 
particularly in the white population [1]. Ultraviolet 
radiation (UVR) and radiotherapy or immuno-
suppressive therapy caused by environmental 
exposure, that results in skin cancer [2]. The white 

populations are caused in 90 - 95% by UV radiation in 
skin cancer and therefore the population-attributable 
factors are considered to be predominantly [3]. 
Generally, skin cancer is classified into melanoma and 
non-melanoma skin cancer (NMSC) will be developed 
by the derived cell [4]. Melanoma highly deadly type 
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of skin cancer because it causes most deaths and 
minority populations, melanoma occurs more 
commonly in unusual anatomic locations compared 
to white populations [5, 6]. Compared to melanomas, 
non-melanomas are the largest common kind of skin 
cancer [7]. Melanoma is a dangerous type of skin 
cancer, with a global death rate of 14%, and 
to the World Health Organization, nearly 7,650 deaths 
from melanoma were anticipated in 2022, and 99,780 
new melanoma cases in the USA [8, 9]. There are 
1,958,310 newly diagnosed cancer cases and 609,820 
cancer deaths in the United States in 2023 [10]. In the 
United States, 5.4 million new cases of skin cancer in 
every year [11]. In 2020, the estimated 19.3 million 
new causes with a 95% uncertainty interval ranging 
between 19.0 to 19.6 million cancers and almost 10.0 
million deaths from cancer, with a 95% uncertainty 
interval of 9.7 to 10.2 million [12]. 

Diagnosis of cutaneous cancer usually begins 
with a skin assessment, dermoscopy, patient history, 
and surgical biopsy [13]. The management of skin 
cancer has a long and successful history in radiation 
therapy (RT), which is a complementary method in 
cutaneous oncology [14]. The ABCBE mnemonic 
stands for asymmetry (A), border irregularity (B), 
color variability (C), diameter (D), and evolution (E) 
or any change. Additionally, the morphology, 
location of the body, and arrangement of lesions may 
also provide information about skin malignancy [15]. 
There are four main types of skin melanoma: acral 
lentiginous melanoma (ALM), melanoma in situ 
(MIS), nodular melanoma (NM), and superficial 
spreading melanoma [16]. 

ALM is a subtype that is normally diagnosed at 
later stages due to poor attention to lesions arising on 
extremities and medical diagnostic mistakes [17]. 
ALM occurs on acral skin, including the nail beds, 
soles, and palms [18]. It is challenging to clinically 
diagnose ALM, particularly in its early stages, due to 
the subtle clinical and histopathologic changes [19]. 
ALM subtypes are the most frequent types of 
malignant among Asian people and are found in 
people with dark skin tone, particularly in the soles of 
the feet [20]. In individuals with Asian, black, or dark 
brown skin, the most common is ALM [21]. ALM is 
rare in all ethnicities because other melanoma types 
are even less common in African Americans, 
Hispanics, and Asians, ALM represents a common 
melanoma seen in ethnic groups [22]. ALM is the 
majority type of melanoma in several African, South 
American, and Asian countries it represents a 
moderately low percentage of melanoma cases in 
some countries. In populations of European descent, 
such as the United Kingdom, Australia, and the 
United States [23]. MIS is a special challenge in 

histopathology, clinical management, and treatment 
[24]. The incidence of MIS is increasing more rapidly 
than any invasive or in situ cancer in the US, and it 
represents the earliest form of melanoma where the 
malignancy is localized to the epidermis [25, 26]. The 
prevalence of MIS is increasing as the population ages 
and risk factors, including immunosuppression and 
sun exposure, are becoming more common, making 
treatment increasingly necessary, as long-term 
cumulative sun exposure is linked to the development 
of MIS [27, 28]. NM is the most popular type of 
melanoma, typically diagnosed between 40 and 50 
years old, and similarly common in each sex. The 
trunk and neck are the most common locations for 
occurrences [29, 30]. NM most commonly appears on 
the chest or back and tends to grow vertically in the 
skin, deeply penetrating if not removed [31]. NM has 
a poor prognosis, and it includes 12% - 30% of all 
diagnosed melanomas, with the largest incidence 
rates in Australia and New Zealand [32, 33]. SSM is 
the usual subtype of melanoma among fair-skin 
people, corresponding to 70% of cases, and it is a 
specific histologic subtype of cutaneous melanoma 
[34, 35]. It begins an initial radial growth phase, 
characterized by a growth limited to the skin layer, 
then a depth growth phase that involves the presence 
of invasion [36]. Between 1978 and 2007, the incidence 
and survival of SSM have increased, while the 
incidence and survival rates for NM have changed 
[37].  

This research offers a comprehensive review that 
synthesizes existing knowledge about the utilization 
of machine learning and artificial intelligence 
approaches for the identification and classification of 
melanoma subtypes. This review critically evaluates 
existing methodologies, including deep learning 
models like convolutional neural networks and 
transfer learning approaches, to elucidate their merits, 
limitations, and practical issues, in contrast to original 
experimental findings. The report synthesizes recent 
research findings to present an overview of technical 
breakthroughs and emerging trends, while noting 
gaps and opportunities for further inquiry. This 
comprehensive analysis aims to aid physicians, 
researchers, and AI practitioners in comprehending 
the advancing domain of AI-enhanced melanoma 
diagnosis and to facilitate the creation of more precise 
and universally applicable diagnostic instruments. 

Clinical Features of ALM, MIS, NM, SSM 
Acral lentiginous melanoma (ALM) 

ALM represents about 2 to 3% of all melanoma 
cases and its uncommon form of melanoma is related 
to later diagnosis and lower survival percentages [38, 
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39]. It is found beneath the nail plate or sole, toes, 
fingers, and hairless skin of palms. The colors that 
appear on ALM are brown, black, and red as shown in 
Figure 1 [40]. Clinically, ALM shows an initial radial 
growth phase, appearing as variegated pigmentation, 
and an uneven brown to-black macule [41]. The 
unique dermatoscopic characteristic of ALM is the 
linear ridge pattern, which is characterized by linear 
pigmentation along the bands of volar skin as shown 
in Figure 2 [42]. Prognostic factors include older age, 
pathologic stage, tumor thickness, socioeconomic 
status, and race [43]. Histopathologically, ALM is 
distinguished by lentiginous proliferation during the 
radial growth phase. Although rare, ALM represents 
around 10% of all melanomas [44]. Subungual 
variants are rarer in the white-skinned population, 
with additional clinical features including clinical 
hypomelanosis, a family record of melanoma, hair 
color, and any previous history of non-melanoma skin 
cancer [45, 46]. 

Melanoma in situ (MIS) 
MIS accounts for 4% to 15% of all melanoma 

types and commonly arises in chronically 
sun-damaged areas of the skin, particularly in older 
individuals, and begins as a brown or tan macule as 
shown in Figure 3 [47, 48]. It is often found on the 
neck, face, and scalp of advanced-age patients with 
major sun-induced skin damage, and can also occur in 
non-head and neck regions like the legs, forearms, 
and back of the hands as shown in Figure 4 [49, 50]. 
The colors are variable shades of dark brown, tan, 
brown, and black [51]. The dermatoscopic features are 
asymmetrically pigmented with follicular openings, 
dots, and globules aggregated around adnexal 
openings, thick pigmented lines, and an annular 
granular pattern [30]. In difference to other standard 
types of MIS, the borders of lentigo maligna (LM) are 
regularly defined histologically and clinically, as the 
lesion usually combines with the surrounding area of 
long-term sun damage [52]. 

 

 
Figure 1. Acral lentiginous melanoma based on their appearance. (a) brownish ALM at the left sole, (b) blackish ALM at the right sole, (c) blackish ALM at the left sole (d) blackish 
ALM at the sole 
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Figure 2. Overview of ALM clinical features 

 

 
Figure 3. Melanoma in situ (MIS) based on their color. (a) brownish MIS (b) blackish MIS (c) pinkish MIS, (d) reddish MIS 

 

Nodular melanoma (NM) 
NM is the second greatest well-known type in 

light-skinned individuals, representing around 15 to 
20% of melanoma cases. It is most generally located 

on the trunk, neck, or head, more common in males as 
shown in Figure 5 [53]. The colors found in NM vary 
from brown, blue, black, grey, and pink, including 
other shades of these color or their combinations. The 
surface of NM can be rough, scaly, or smooth as 
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shown in Figure 6 [54]. Dermatoscopic features of NM 
include a blue-white veil, white streaks, isolated 
globules, and dotted vessels or uneven linear [55]. 
NM indicates the lack of the early radial growth 
phase, which begins with perpendicular growth, and 
lesions are usually symmetric, with small diameters, 
regular borders, and uniform color [56, 57]. In the 
Early stage, the injury is usually an irregular black or 
blue nodule with even edges [58]. NM lesions are 
more common and lighter colored than other common 
melanoma subtypes [59]. 

Superficial spreading melanoma (SSM) 
SSM represents between 50% to 70% of 

melanoma cases and most commonly on the trunk in 
males and on the lower extremities in females [60, 61]. 
SSM typically presents as a macule or plaque with an 
uneven border and variable pigmentation, its 
measures range from several millimeters to various 
centimeters, often displaying multiple colors like blue, 
red, gray, black, and white as shown in Figure 7 [62]. 
Dermatoscopic features are a blue-white layer, 
peripheral black dots, several brown spots, and 
irregular vascular structures as shown in Figure 8 
[63]. Histopathological features of SSM include 
asymmetry, lack of cellular maturation, and poor 
circumscription [64]. 

Screening and Diagnosis of ALM, MIS, 
NM, SSM 
Screening and Diagnosis of ALM 

Etiology 

The case of ALM remains uncertain, as familial 
cases have not been reported so far, there is diffused 
evidence indicating that some genetic risk factors may 
be present. For instance, a major longitudinal study 
observed that patients with degree relatives 
diagnosed with ALM had an increased risk of any 
major melanoma subtypes, indicating some shared 
genetic factors among various melanoma types [65]. 
In some studies, dummy or shearing stress was 
suggested as a cause of the occurrence of the ALM this 
becomes clear because ALM is most commonly found 
in load-bearing zones of the foot, such as the heel, 
forefoot, and lateral side [66, 67]. Ghanavatian et al., 
followed up on this and noted that adjusted for 
surface area, ALM occurrence was inversely 
proportional associated with atypical and benign 
acral nevi presence in these weight-bearing areas. The 
incidence of this phenomenon is much lower among 
men than women [68]. 

 

 
Figure 4. Overview of MIS clinical features 
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Figure 5. Nodular melanoma (NM) based on their location (a) NM at neck, (b) NM at leg, (c) NM at head, (d) NM at chest. 

 
Figure 6. Overview of NM clinical features. 
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Figure 7. Superficial Spreading Melanoma (SSM) based on their shape(a) reddish SSM with round, (b) brownish SSM at irregular borders, (c) reddish SSM at irregular round, (d) 
brownish SSM at small irregular borders. 

 
Figure 8. Overview of SSM clinical features. 

 

Epidemiology 

ALM is in the range of 2 to 3% among newly 
identified melanomas, and the average age of 
diagnosis is 62.8 years. Changing ALM distribution 

seems to positively influence women’s age, which 
generally begins when reaching 80 years old, and 
suddenly it increases within this age range. Male and 
female populations affected by ALM are reported to 
be approximately equal. However, females are 
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reported relatively better than males in the diagnosis 
stage of ALM. Besides, among different subtypes of 
melanoma, ALM is much more prevalent among 
non-whites than other types [69]. There appears to be 
a considerable difference in the frequency of ALM 
when compared to the other types of melanoma, 
across different ethnic-racial groups. Because of the 
shortage of available cases, the global patterns of 
ALM pancreatic cancer epidemiology have not been 
established, although it, in fact, usually, corresponds 
to the ethnicity of people residing within the territory. 
As an example, ALM comprises 55-58% of all the 
developmental melanoma types in Taiwan and Korea 
while in the United States, it is only about 2% [70]. 
This difference, for the most part, concerns the whiter 
population who sustain higher rates of sun-derived 
melanomas. ALM is present in 1-8% of rare melanoma 
populations of European origin, and responsible for 
more than 50% of all cutaneous 
malignant melanoma cases [23]. 

Dermoscopy 

The accurate clinical diagnosis of ALM has been 
greatly improved due to the dermoscopic analysis. 
Dermoscopic findings may be more crucial than 
histological images in the early stages of ALM [71]. In 
contrast, classical dermoscopic patterns of acral 
melanocytic nevi include the parallel furrow pattern, 
lattice-like pattern, and fibrillar pattern, which are 
found in over 75% of benign acral lesions [72]. While 
acquired acral nevi measure several millimeters in 
size, typically present symmetrically, and are flesh- 
colored, congenital acral nevi cover areas up to a few 
centimeters of the skin surface, often have an 
asymmetric pattern, and show blue-gray color or 
globules [73]. 

Screening and diagnosis of MIS 

Etiology 

MIS is an early, non-invasive form of melanoma 
in which the tumor is uncertain to the epidermis [49]. 
UVR exposure from sunlight and tanning beds is an 
important environmental risk since it increases the 
risk of melanoma [74]. The development of melanoma 
is usually caused by genetic mutations in genes such 
as BRAF, NRAS, and others [75].  

Epidemiology 

 MIS has increased the case strongly among 
white populations during the past few decades [76]. 
The Surveillance, Epidemiology, and End Results 
(SEER) database indicates that MIS is one of the 
cancers that is developing very quickly, with an 
annual increase of 9.5% [77]. In 2018, there will be 

nearly 2500 invasive and 1700 in-suit cases of 
melanoma in New Zealand, based on estimations [76]. 
There are indications that many cases of melanoma 
are overdiagnosed, with overtreatment causing harm 
to the patients, apart from increasing medical costs for 
individuals and healthcare systems. Current estimates 
about the rate of overdiagnosis in Australia may be 
outdated, and the financial implications for the 
healthcare system have not yet been thoroughly 
examined [78]. Over the past 40 years, the incidence of 
malignant melanoma has steadily increased, at a rate 
of approximately 5% a year. The current global 
incidence is reported at 10.9/100,000 persons with the 
lifetime risk of developing melanoma for Americans 
estimated to be 1 in 75. Though the overall survival 
rates specific to melanoma have improved over the 
last two decades, the prognosis for patients with 
advanced disease has not demonstrated any 
advancement compared to 20 years ago [79]. 

Pathophysiology 

MIS is the initial stage of melanoma where the 
atypical melanocytes are confined within the 
epidermis and have not yet increased depth dermal 
layers [49]. Genetic mutation, especially in the BRAF, 
NRAS, and CDKN2A genes, plays a very significant 
part in the development of melanoma. The genetic 
material coding for cyclin D1 (CCND1) plays a role 
through its interaction with normal cell cycle 
regulation [80]. Among these mutations, the most 
important is undoubtedly the BRAF V600E mutation, 
which leads to the activation of the mitogen-activated 
protein kinase-MAPK pathway that basically pushes 
melanocyte proliferation and survival [81]. 

Dermoscopy 

Recent literature suggests that dermatoscopy has 
increased the diagnostic precision of PSLs. The 
technique utilizes multiple criteria are specific 
patterns and structures both for melanocytic and 
non-melanocytic lesions, general asymmetry, and 
variability in color and structure [82]. Schiffner et al., 
described four characteristic dermoscopic criteria as 
diagnostic patterns of LM pigment asymmetric 
follicular openings, dark rhomboidal structures, slate- 
colored globules, and slate dots. These characteristics 
combined achieve a sensitivity of CI of 89% and a 
specificity of 96% [82]. 

Screening and diagnosis of NM 

Etiology 

The major risk factors include multiple 
dysplastic nevi, family history, fair skin that tends to 
burn, and sun exposure some studies also indicate 
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that UV radiation is an important component of 
melanoma risk [83, 84]. NM has been associated with 
genetic factors, specifically mutations in the CDKN2A 
and CDK4 genes, but it also reflects the impact of such 
environmental factors as sun exposure and dysplastic 
nevi [85]. 

Epidemiological 

Epidemiological studies have shown that 
fast-growing NM is predominately found in men over 
the age of 50 presenting without the conventional risk 
factors for other types of cutaneous melanoma (CM), 
such as multiple nevi, freckles, or sun damage. 
Unfortunately, this group with high risk is largely not 
included in skin cancer screening programs. 
Moreover, these screening measures seem to have 
little impact on the early recognition of NM most 
tumors develop quickly de novo in other areas of the 
skin and are generally self-detected [86]. Over the past 
few decades, invasive melanoma incidence has 
increased progressively in the white populations of 
the USA, United Kingdom, Australia, and New 
Zealand. Incidence rates are projected to continue to 
rise through 2031 in the majority of these populations. 
In contrast, over the same time, melanoma mortality 
has also been rising, but at a rate far lower than the 
incidence increase [87]. 

Pathophysiology 

Melanoma has its origin in melanocytes at the 
dermal-epidermal junction where they undergo a 
malignant transformation. Although this cancer can 
arise from a pre-existing nevus, it often arises de novo. 
In summary, melanoma evolution is generally 
divided into two phases: the radial and vertical 
growth phases. The radial growth phase displays a 
horizontal alignment of neoplastic melanocytes at the 
intraepidermal plane which could extend to the 
papillary dermis as well [88]. The vertical growth 
phase is characterized by dermal invasion and nodule 
formation of a tumor [89].  

Dermoscopy 

 NM is challenging for dermoscopy because the 
pattern asymmetry is less significant than in SSM. 
However, pigmented NM usually found an uneven 
color [90]. Argenziano et al., found a novel indicator 
of NM characterized by the blue-black color within 
the lesion. It is proposed that the blue-black color is 
due to a blend of pigments in the mid-deep dermis 
resulting in the blue and the epidermis resulting in the 
black. There was at least moderate agreement 
between pathologists for any lesion surface with less 
than 10% blue and black areas being significantly 
pigmented NM, the authors wrote. Moreover, 

Pizzichetta et al., related to ulceration and 
homogeneous disorganized patterns, homogeneous 
blue pigmented structureless areas, three or more 
colors, a mix of polymorphous vessels, and milky-red 
globules, as well as symmetrical shapes, were some 
other features significantly associated with NM [91]. 

Screening and diagnosis of SSM 

Etiology 

The etiology of malignant melanoma is mainly 
associated with exposure to UV light, which can be 
regarded as a primary risk factor, especially in the 
presence of the susceptibility of phenotype. 
Furthermore, the risk of melanoma rising due to aging 
can be attributed to exposure to other environmental 
agents than only UV light. In the pathogenesis of 
melanoma, break periods between the initiation of 
exposure to the environment and the appearance of 
the tumor, along with many more variables, have 
interfered [92]. 

Epidemiology 

SSM is the most common type of melanoma and 
accounts for approximately 70% of the total incidence 
of melanoma in the world [93]. This melanoma 
originates because of the malignant transformation of 
melanocytes which are cells synthesizing the 
photoprotective melanin pigment [94]. The 
development of a precancerous lesion is usually 
observed to occur gradually over several years, before 
a more rapid transformation in the preceding months 
until diagnosis. Though SSM commonly occurs on the 
back in men and on the legs in women, it can occur on 
any part of the body [95]. Studies report that 
BRAF-mutant melanomas are more common in 
younger patients and mainly refer to the SSM 
subtype, the trunk region, and patterns of intermittent 
ultraviolet sun exposure [96-98]. The incidence of 
melanoma has significantly increased over the years 
on a worldwide basis. In 2019, it is estimated that 
there were 57,220 new cases of melanoma in males 
and 39,260 in females in the United States, which 
accounts for 5.5% of the total cancer incidence and 
was responsible for 7,230 deaths, or 1.2% of all 
cancer-related deaths. The average annual number of 
new cases is around 132,000. According to the 2019 
report from The American Cancer Society, it is 
estimated that 192,310 patients were diagnosed with 
melanoma in the U.S [99]. 

Pathophysiology 

In SSM, large numbers of single melanocytes are 
situated in the epidermis. These melanocytes may be 
arranged in clusters along the dermal-epidermal 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3981 

junction and frequently are present in the midportion 
and upper layers of the epidermis as well [100]. BRAF 
and NRAS gene mutations occur at an early point in 
melanoma pathogenesis and are consistently 
sustained during further tumor progression, taking 
part in the pathogenesis of invasive melanoma but 
also in cooperation with other mutations [101]. 
Several studies confirmed that immune evasion 
mechanisms-antigen downregulation and resistance 
to immune cell attacks- play an important role in the 
uncontrollable growth of melanoma cells [102].  

Dermoscopy 

Dermoscopy is an early diagnostic technique 
that is non-invasive and complements the accuracy 
[103]. One review reported that a clinical examination 
with the addition of dermoscopy reaches 90% 
specificity-95% CI: 57-98% and 90% sensitivity-95% 
CI: 80-95%, and went on to show just how much 
dermoscopy increases the accuracy of the clinical 
examination in identifying primary melanoma [104]. 
Recently, dermoscopy benefitted from the technical 
evolution of imaging and digital cameras. The use of 
these new technologies allowed the creation of the 
so-called video-dermoscopy, paving the way for the 
application of this diagnostic technique for 
telemedicine approaches, simplifying the sharing of 
clinical images, and facilitating follow-up of unclear 
lesions [105]. This comprehensive review is progress 
in current applications for patients, primary care 
providers, dermatologists, and dermatopathologists. 
The authors discuss various applications of image and 
molecular processing applied in skin cancer and point 
out the potential to apply AI in the self-screening of 
patients and improving diagnostic accuracy in 
non-dermatologists [106]. 

Treatments 

Surgery 

Surgical treatment remains the gold standard in 
melanoma management. It consists in the complete 
excision of the scar after an excisional biopsy 
performed at the diagnostic stage - micro staging I - 
with a sufficiently large margin of healthy tissue, 
depending on the depth of infiltration of the lesion 
[107]. Other lymph nodes are removed if melanoma 
cells are detected in the lymph nodes. Surgery is 
another better therapy for metastatic melanoma, but it 
is a supportive therapy and is often used in 
conjunction with other treatments as a primary 
treatment [108].  

Chemotherapy 

Chemotherapy was the initial treatment 

approach for advanced melanoma. Various 
chemotherapy combinations have been studied to 
improve the clinical responses, but no significant 
improvement in overall survival (OS) was detected 
[109]. Apoptosis resistance is thought to be the main 
reason melanoma does not respond to treatment and 
while it remains one of the main treatments used in 
hospitals for patients with advanced, refractory, or 
recurrent melanoma, other treatments have replaced 
many chemotherapy regimens [110, 111].  

Targeted therapy 

Approximately 70% of patients with cutaneous 
melanoma have genetic mutations in key genes that 
control cell growth and cancer progression. These 
oncogenic mutations may be associated with 
melanoma cell proliferation and a malignant 
phenotype [109]. The targeted therapy approach uses 
use small molecule drugs or antibodies to disrupt the 
mutant protein and thereby reduce the severity of the 
disease [112]. 

Immunotherapy 

Melanoma is a cancer that generally tends to 
respond relatively to immune modulation [113]. 
Various factors have been identified to explain 
melanoma cell sensitivity to activation by the immune 
system. These factors include increased tumor 
mutational burden caused by UV light exposure, the 
generation of cancer-testis antigens, and mimicry of 
melanocyte lineage proteins that pathogen-associated 
antigens [114]. 

Machine Learning Applications in Skin 
Cancer Detection  
Acral lentiginous melanoma (ALM) 

In the study proposed by Abbas et al., [115] a 
seven-layered DCNN model was developed using a 
dataset of 724 dermoscopic images collected from the 
Hospital at Yonsei University Health Organization in 
South Korea. This experiment compared and 
analyzed the results of the three DL models. The 
proposed seven-layered DCNN model achieved an 
accuracy of over 90%. Additionally, they applied 
transfer learning models like Resnet18 and AlexNet 
for comparison, which achieved nearly 97% accuracy. 
This research shows that DL models diagnose the 
early stage of melanoma. In this study, Islam et al., 
[116] proposed a CNN model that uses image 
preprocessing techniques, using the HAM10000 
dataset, for this experiment consisting of 10,015 image 
files of different skin growths. The results of the study 
were compared with other existing models like 
AlexNet, ResNet, Inception V4, and VGG-16. The 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3982 

proposed CNN model achieved a 90.93% accuracy in 
training and 96.93% accuracy in testing respectively. 
This model works better at classification compared to 
other models.  

Barros et al., [117] focus on supervised and 
self-supervised models, using datasets from ISIC data 
archive, Atlases, PAD-UFES-2, and Derm7pt. The 
models are BYOL, SwAV, MoCo, InfoMin, 
supervised, and SimCLR. In the DDI dataset, all 
models show poor results, the supervised model 
achieved low results, and MoCo achieved high results 
with 55.8% accuracy and a 12.5% f1 score. The 
Fitzpatrick 17k dataset shows good results, the 
supervised model achieved the best accuracy of 63.4% 
and f1-score of 41.8%. Each of the supervised and 
self-supervised learning approaches performs 
similarly on the dataset. In the PAD-UFES-20 dataset, 
both model types performed similarly with the BYOL 
model achieving a high accuracy of 59.2% and the f1 
score of 27.5% respectively. 

Raza al., [118] focus dataset containing 724 
dermoscopy images collected from Dongsan Clinic at 
KeiMyung University, Korea, and Severance Medical 
Clinic, at Yonsei University, Korea. They used stacked 
ensemble methods Inceptionv3, Xception, 
InceptionResNet-V2, DenseNet201, and DenseNet121 
these models perform high accuracy of imageNet. The 
proposed stacking ensemble of the optimized models 
achieved an accuracy, sensitivity, and specificity of 
97.93%, 97.83%, and 97.50% respectively. In a study 
focused by Lee et al., [119] used a trained dataset of 
1072 dermoscopic image acral benign nevi. The 

system has three stages: stage I based on dermoscopic 
images, stage II clinical information, and stage III 
evaluation and probability estimated by CNN. The 
CNN achieved an accuracy of detecting ALM stage 
I-74.7%, stage II-79.0 %, and stage III-86.9% 
respectively. Figure 9 illustrates the methods for the 
early and accurate diagnosis of the ALM in these 
studies. 

Melanoma in situ (MIS) 
Patil et al., [120] focus on two techniques CNN 

and multilayer perceptron (MLP). Using a dataset 
retrieved from https://dermnetnz.org/. The models 
are CNN-MLP architecture for multi-class 
classification. Their model achieved accuracy, recall, 
f1-score, and precision of 95.12%, 94.73%, 95.37%, and 
96.05% respectively. Hussein et al., [121] implemented 
a CNN method for classifying melanoma skin cancer. 
The publicly available datasets of skin lesion images 
consist of 1,800 images of two types of moles. The 
proposed CNN model delivered a 99.99% accuracy, 
99.9% precision, 99.9% Recall, and 99.99% F1 score 
respectively. Javaid et al., [122] focus on SVM, 
random forest, and quadratic discriminant for 
classification, using the publicly available ISIC-ISBI 
2016 collection of skin images as a dataset. The SVM, 
random forest, and quadratic discriminant system 
achieved an accuracy of 88.17%, 90.84%, and 93.89%. 
The random forest classifier achieved high accuracy 
compared to other classifiers. 

 
Figure 9. Machine Learning Overview of ALM.  
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Figure 10. Machine Learning Overview of MIS. 

 
 Ghosh et al., [123] proposed an ensemble model 

that used a dataset consisting of evaluation images of 
1000 and training images of 9600. The study uses ViT, 
DCNN, and Caps-Net to extract features from the skin 
image and ensemble model with five ML methods 
XGBoost, SVM, RF, KNN, and logistic regression. The 
proposed ensemble method achieved an accuracy, f1 
score, precision, and recall of 91.6%, 91.16%, 91.16%, 
and 91.16% respectively. Cozzolino et al., [124] 
developed models such as LR, SVM, RF, gradient 
boosting (GB), kNN, and DNN. The DNN models 
achieved the best accuracy of 91.1%, a recall rate of 
91.1%, and an f1-score of 80.0%. The logistic 
regression model achieved the best precision of 86.7% 
respectively. Figure 10 shows the methods for the 
early and accurate diagnosis of the MIS in these 
studies. 

Nodular melanoma (NM) 
The study performed by Safdar et al., [125] 

indicated that ensemble models like DenseNet-201 
and ResNet-50 significantly increased classification 
rates. The datasets of multiple skin lesions including 
Med-Node, DermIs, and PH2 have been collected for 

the identification and classification of lesions. The 
database comprises a total of 2301 images consisting 
of 1611 training images and 690 testing images. The 
ensemble models achieved an accuracy of 95.20%, 
ROC- AUO of 98.50%, sensitivity of 92.80%, and 
specificity of 96.70% in multiple dermoscopy image 
datasets. Winkler et al., [126] the study focus on a 
CNN to detect the different melanoma subtypes. Six 
dermoscopic image sets are used for the 
classifications. The CNN showed a high-level 
performance for NM achieving a sensitivity of over 
93.3%, ROC-AUO of 92.60%, and specificity above 
65% respectively.  

Daghrir et al., [127] focuses on different models 
namely KNN, SVM, CNN, and majority voting. The 
system utilized a public dataset of the ISIC archive, 
which contains 23000 images of melanoma. The 
system achieved an accuracy kNN of 57.3%, SVM of 
71.8%, CNN of 85.5%, and majority voting of 88.4% 
were obtained. The majority voting methods will 
achieve high accuracy in detecting melanoma. Raza et 
al., [128] experimented with the CNN model by using 
the dataset of 17,805 training images using the DL 
model. Their CNN model achieved an accuracy of 
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94% for the melanoma skin cancer classification task. 
Kilicarslan et al., [129] the study tested five DL models 
Densenet, ResNet50, InceptionResNetV2, 
InceptionV3, and MobileNet with seven optimizers. 
The melanoma skin cancer dataset is used and it 
consists of RGB images 10,605, benign 5500, and 
malignant 5105. The DenseNet-SGD optimizer model 
delivered the best accuracy of 94.90%, f-score of 
94.92%, and sensitivity of 94.03%. Figure 11 represents 
the methods for the early and accurate diagnosis of 
NM in these studies. 

Superficial spreading melanoma (SSM) 
Thiyaneswaran et al., [130] proposed models 

consisting of three different approaches feed-forward 
back propagation neural network, fuzzy logic, and 
SVM. The PH2 and ISIC database images are used for 
this analysis. The images of the ISIC datasets were 
compared with those of existing processes, including 
Inception-V3, ResNet50, Inception ResNet V2, and 
DenseNet-201. This study achieved an accuracy of the 
models like fuzzy, SVM, and FFBPNN of 78%, 83%, 
and 90% respectively. The FFBPNN model achieved 
the highest accuracy for melanoma classification. 
Pillay et al. [131] the study focus on transfer learning 
by testing 14 pre-trained models to classification and 

diagnosis of skin cancer. The datasets used are 
MED-NODE, DermIS, and DermQuest to determine 
the model performance and this experiment consists 
of 376 macroscopic images. The squeezenet1-1 
method achieved a high-performance accuracy of 
93.42%, a sensitivity of 92.11%, and a specificity of 
94.74% respectively. Kaur et al., [132] this study focus 
on an automated melanoma classifier using an LCNet 
model. The dermoscopic image datasets ISIC 2017, 
ISIC 2016, and ISIC 2020 were used for this study and 
the ISIC 2020 dataset achieved high results. The 
proposed LCNet model achieved an accuracy, 
f1-score, precision, and recall of 90.42%, 90.42%, 
90.39%, and 90.41% for ISIC 2020, respectively.  

Jangsamsi et al., [133] this research focuses on 
comparing three DL models AlexNet, ResNet-18, and 
MobileNet-V2 using a comprising dataset from the 
MED-NODE dermatology database. The dataset 
consists of 358 images of skin cancer. The ResNet-18 
model achieved high accuracy, precision, sensitivity, 
and specificity at 86.11%, 88.10%, 88.10%, and 88.33% 
respectively. Chaturvedi1 et al., [134] focus CNN 
models like InceptionV3, ResNeXt101, 
InceptionResNetV2, Xception, and NASNetLarge. In 
this study, they utilized a HAM10000 dataset. The 
dataset includes 10,015 dermoscopic images of 

 

 
Figure 11. Machine learning overview of NM. 
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various skin cancer types. The models achieved an 
accuracy of 91.56%, 93.20%, 93.20%, 91.47%, and 
91.11% respectively. The high-performance accuracy 
is ResNetXt101 and InceptionResNetV2. Figure 12 
presented the techniques for the early and accurate 
diagnosis of SSM in these studies. 

Despite significant progress in AI-based 
melanoma classification, some limitations remain in 
the analyzed models. A primary limitation is the 
relatively small size and uneven attributes of most 
training datasets, which may hinder model robustness 
and increase the risk of overfitting. Furthermore, most 
models have been developed and validated using 
data from limited demographic and ethnic 
populations, which raises concerns regarding their 
generalizability and effectiveness in diverse clinical 
settings. Variations in imaging devices, acquisition 
techniques, and data fidelity intensify the difficulties 
of model transferability. To address these constraints, 
it is imperative to collect larger, more diverse datasets 
and establish consistent review protocols to ensure 
that AI technologies are trustworthy, equitable, and 
usable for all populations. Notwithstanding the 
encouraging progress in AI-based melanoma 
detection and diagnosis, some potential obstacles 
persist prior to achieving broad clinical 

implementation. Regulatory approval processes must 
guarantee the safety, efficacy, and resilience of AI 
models across varied populations and clinical 
environments. Ethical considerations around data 
privacy, algorithmic bias, and informed consent 
necessitate meticulous attention to uphold patient 
trust and ensure equitable healthcare delivery. 
Furthermore, thorough clinical validation via 
prospective trials and real-world investigations is 
crucial to establish the generalizability and 
dependability of AI solutions. Confronting these 
obstacles will be essential to properly leveraging the 
capabilities of AI technologies in dermatology and 
eventually enhancing patient outcomes. A crucial 
issue affecting the clinical adoption of AI tools is the 
capacity to comprehend model decisions. Methods 
like Gradient-weighted Class Activation Mapping 
(Grad-CAM) and saliency maps offer visual 
elucidations of deep learning model predictions by 
emphasizing image areas that significantly impact 
classification results. These interpretability 
methodologies boost clinician trust through 
transparency, facilitate validation and error analysis, 
and eventually support the safer and more successful 
integration of AI in melanoma diagnosis. 

 

 
Figure 12. Machine learning overview of SSM. 
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Discussion 
Newly emerging technologies for the early 
detection of skin cancer 

Hyperspectral and multispectral imaging 
methods use optical equipment to measure several 
wavelength bands that are not found in the visible 
spectrum [135]. Light absorption and reflectance 
properties of different parts of the skin allow these 
imaging methods to give a detailed overview of both 
structural and chemical properties of the tissues. 
Using this enhanced data allows for better separation 
of malignant from benign lesions than was previously 
possible with typical imaging methods. Hyperspectral 
and multispectral imaging improve the way lesions 
are examined and melanoma is detected, as they can 
find small skintone and shape changes in a clinical 
setting [136]. Similarly, biosensors and molecular 
diagnostic systems are advanced ways to find early 
signs of skin cancer by looking at certain melanoma 
biomarkers [137]. They combine biomolecules such as 
antibodies, nucleic acids or aptamers, to detect 
cancerous DNA, proteins or microRNAs in bodily 
fluids. When biosensors are combined with 
microfluidics and nanotech, this greatly increases the 
speed, sensitivity and available locations for 
diagnostic tests and may enhance traditional 
histopathology. Monitoring melanoma progress and 
therapy effects in real time, thanks to molecular 
diagnostics, makes it possible to personalize care for 
each patient. A liquid biopsy is now often used to 
detect and track melanoma by studying circulating 
tumor cells (CTCs), circulating tumor DNA (ctDNA) 
and extracellular vesicles found in the blood or in 
various bodily fluids [138]. This approach allows 
doctors to analyze the tumor’s molecular features 
without taking out pieces of the tumor. With liquid 
biopsy, metastasis can be detected early, the 
variability of tumors can be studied and how therapy 
is working can be monitored in real time [139]. 
Manufacturers have greatly improved the accuracy of 
liquid biopsy for melanoma thanks to new 
technology. Nanotechnology-enhanced imaging 
methods, in conjunction with optical coherence 
tomography (OCT), provide high-resolution, 
depth-resolved viewing of skin microstructures, 
hence enhancing the identification of early melanoma 
lesions [140]. Nanoparticles can be designed as 
contrast agents or molecular probes to selectively 
target certain tumor markers, hence improving OCT 
signal contrast and specificity. OCT delivers 
cross-sectional images of the skin with micrometer- 
level resolution, facilitating noninvasive evaluation of 
lesion depth and morphology in real time [141]. The 
integration of nanotechnology with OCT presents 

significant potential for enhancing traditional imaging 
techniques and enabling more precise, early-stage 
melanoma detection. 

Established and emerging methods for 
differentiating benign and malignant lesions 

Diagnosing benign from malignant skin lesions 
is easier because of these types of diagnostics which 
rely on analysis of specific genomic, proteomic and 
metabolomic profiles [142]. Experts use genetic 
markers and especially changes in BRAF and NRAS 
genes, to learn more about how melanoma develops 
and progresses. In proteomic studies, characteristic 
changes in proteins are observed in cancer cells, while 
metabolomic analysis finds differing metabolic ways 
in cancer. The use of biomarkers provides more clarity 
about lesions than just their appearance, helping with 
early and correct diagnosis. By using high-throughput 
sequencing and mass spectrometry technology, 
molecular diagnostics can become more accurate and 
help with choosing personal approaches to care and 
treatment. RCM, MPM and hyperspectral imaging 
allow advanced visualization of the skin’s structure 
and cellular shapes without invading the skin. RCM 
lets experts see inside the skin in real time and at 
nearly the same quality as a biopsy, helping to 
identify cancerous cells without a biopsy. With 
endogenous fluorophores, MPM captures images that 
highlight the energy use and organization of tissues. 
Hyperspectral imaging gives a wide range of 
frequencies, so it can detect the biochemical 
differences between tumors and normal tissues that 
help tell them apart. They add to the reliability of 
diagnosis and obviate unnecessary invasive 
treatments, accompanying traditional medical and 
dermoscopic evaluations. Combining the findings of a 
clinical exam, images and molecular information 
often results in more accurate diagnosis of skin lesions 
and reduces incorrect positive or negative test results. 
Employing multimodal data fusion, we are able to 
merge morphological, functional and molecular 
information to assess the lesion status carefully [143]. 
The use of machine learning and similar algorithms 
supports the efficient processing of different types of 
data which helps build dependable diagnostic 
models. When an integrated approach is used, doctors 
can create unique treatment plans that benefit each 
patient’s care. 

Newly emerging therapeutics for the 
treatment and prevention of skin cancer 

Concentrating on important systems in the body 
that fuel tumor growth and life has brought major 
changes to melanoma treatment. Using BRAF and 
MEK inhibitors which are small molecule inhibitors, 
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helps to stop diseases related to melanoma in patients 
with these gene abnormalities [144]. On top of that, 
monoclonal antibodies designed to interfere with 
signaling or attack antigens on cancer cells are highly 
effective and cause less harm to the body. As a result 
of using targeted strategies, melanoma patients have 
improved reaction to treatment and live longer than 
those who use conventional chemotherapy. 
Immunotherapy is now often given in melanoma 
treatment, relying on the patient’s immune system to 
seek out and kill cancer. Anti-CTLA-4 and anti-PD-1 
antibodies are immune checkpoint inhibitors that 
boost immune cells and encourage them to fight 
cancer [145]. Cancer vaccines and therapies such as 
transferring tumor-infiltrating lymphocytes are meant 
to enhance how the immune system recognizes cancer 
cells. Numerous patients now benefit from a longer 
and more successful treatment due to the 
standard-setting value of these medications in 
advanced melanoma. It uses light therapies called 
photodynamic therapy and lasers to treat selected 
cancerous cells without harming healthy tissues 
nearby. The approach involves using drugs that build 
up in cancer cells which are then exposed to light of 
the right color to make toxic oxygen species. Laser 
therapy uses direct and focused light power to 
carefully remove malignant tumors [146]. Especially 
with early or outward skin cancers, these methods are 
useful as either main or complementary treatments to 
surgery. Skincare precautions are designed to 
decrease the risk of skin cancer with prevention 
drugs, better habits and new vaccines. Nicotinamide 
and retinoids are drugs that have shown they help 
decrease the risk of non-melanoma skin cancers. 
Public health programs underscore sun protection 
practices, such as the application of sunscreen and the 
avoidance of UV exposure, as essential strategies for 
melanoma prevention. Furthermore, vaccination 
research is investigating preventative and therapeutic 
strategies aimed at melanoma-associated antigens to 
elicit enduring immune protection. These methods 
combined form a comprehensive strategy for skin 
cancer prevention. 

Conclusion 
Melanoma includes subtypes like ALM, MIS, 

NM, and SSM which present significant challenges for 
early detection and accurate diagnosis. The systematic 
review paper has considered various 
machine-learning techniques for detecting and 
classifying skin cancer. All those techniques are 
noninvasive. Recent advancements in deep learning, 
particularly CNN are highly effective in improving 
diagnostic accuracy. By integrating advanced imaging 
techniques with dermoscopic, healthcare providers 

can diagnose melanoma earlier and improve 
accuracy, thereby providing instant treatment and 
better patient care. This technique has greatly 
improved the accuracy of skin cancer detection, the 
diagnostic process, and clinicians diagnosing 
high-risk lesions. There is strong potential for further 
development, particularly in enhancing AI models by 
integrating a broader range of multimodal input data, 
including genetic markers, patient histories, and 
advanced imaging techniques such as hyperspectral 
and multispectral imaging. Challenges will survive, 
especially in addressing class imbalance when the 
dataset expands to include various skin types and 
melanoma subtypes. The integration of AI tools into 
telemedicine presents a valuable opportunity to 
increase early screening, especially in rural areas. The 
effective incorporation of AI-driven melanoma 
detection tools into clinical practice will mostly rely 
on thorough prospective validation trials carried out 
in actual healthcare environments. These studies are 
crucial for thoroughly evaluating model performance, 
safety, and usefulness among varied patient 
populations and clinical workflows. Furthermore, the 
continual enhancement of AI algorithms via 
persistent learning and feedback systems will be 
essential to uphold their precision and pertinence. 
Subsequent research ought to investigate 
multi-institutional cooperation to promote data 
sharing and standardization, thus improving model 
robustness and generalizability. These initiatives, 
alongside a focus on ethical, regulatory, and practical 
factors, will facilitate AI's integration as a crucial 
element in tailored melanoma management. In 
conclusion, the research in AI, advanced imaging 
technologies, and telemedicine provides strong 
improvements in melanoma detection and diagnosis. 
The advancement is considered to improve early skin 
cancer detection and provide more personalized 
treatment options, improve patient outcomes and 
further advance the management of skin cancer.  
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