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Abstract 

Background: It has been reported that the proteome in blood was an important source for biomarker 
and therapeutic target discovery. However, up to now, few proteomes have been identified with the risk 
of hematologic malignancies.  
Methods: Genome-wide association studies (GWASs) including 3,083 plasma proteins are based on data 
from 54,219 people in the UK Biobank Pharma Proteomics Project (UKB-PPP) and 35,559 individuals 
from Iceland (deCODE). Genetic correlations with 33 hematologic malignancies were derived from the 
FinnGen cohort and the UK Biobank Data. Further studies, including Bayesian colocalization, 
protein-protein interaction assessment, pathway enrichment analysis, and drug target evaluation, were 
performed to enhance knowledge and identify prospective therapeutic targets for 33 hematologic 
cancers.  
Results: Our study indicated that 86 potential plasma proteins may have a substantial causal association 
with the incidence of 33 hematological tumors, such as BCL2, NFKB1, PARP1, and TNFRSF14. There are 
18 proteins with strong evidence of genetic co-localization and 9 proteins with moderate support from 
colocalization analysis. Out of the 86 proteins, 51 have druggable targets, and 26 were identified as targets 
for current or prospective pharmaceuticals. 
Conclusion: Our research revealed numerous significant proteins linked to the likelihood of 
hematologic malignancies. It may elucidate protein-mediated processes of hematological tumors and 
provide prospective treatment options for individuals with these conditions. 

Keywords: hematologic malignancies, plasma protein, Mendelian randomization, drug target 

Introduction 
Hematologic malignancies, including conditions 

such as leukemia, lymphoma, and myeloma, arise 
from the alteration of hematopoietic cells [1]. They are 
characterized by the unregulated expansion of 
hematopoietic cells, resulting in significant 
disturbances in hematopoietic and immunological 
processes, greatly impacting the patient's quality of 
life and overall survival rate [2]. The primary 
treatment modalities for hematological tumors consist 
of chemotherapy, radiation, and stem cell 

transplantation [3]. Despite advancements in patient 
prognosis via these treatments, they often present 
limits, including restricted effectiveness, considerable 
adverse effects, and the development of resistance. 
Consequently, investigating the molecular causes of 
hematological malignancies is essential for improving 
patient prognosis. Recent advancements in 
comprehending the molecular foundation of 
hematological tumors have generated interest in 
discovering biomarkers that may function as 
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therapeutic targets, with several plasma proteins 
already recognized as prospective biomarkers and 
therapeutic argots [4]. The identification of atypical 
protein expression patterns in the plasma of 
individuals with malignant hematological disorders 
has initiated new research opportunities. These 
proteins provide insights into illness development 
and prognosis and may also serve as effective targets 
for innovative therapeutic approaches, possibly 
enhancing clinical tomes [5]. Through the use of 
genetic variation as an instrumental variable, 
Mendelian randomization (MR) provides a robust 
framework for conducting an investigation into the 
causal relationship that exists between plasma 
proteins and the consequences of sickness [6]. This 
approach allows researchers to alleviate confounding 
biases and reverse causality problems often identified 
in observational studies [7].  

The primary aim of this project is to 
comprehensively discover and assess plasma protein 
biomarkers linked to hematological malignancies via 
a Mendelian randomization framework. GWAS of 
levels of circulating proteins could identify protein 
quantitative trait loci (pQTLs). Combining pQTLs and 
disease-variant associations can examine the 
causative effects of the proteins on the disease 
through Mendelian randomisation. This work is 
important due to recent improvements in proteomics 
technology that facilitate the detection of 
low-abundance proteins in plasma. These 
improvements may provide new insights into the 
diagnostic and prognostic capabilities of plasma 
proteins, hence facilitating the development of 
precision medicine techniques for managing 
hematological tumors. This work included the 
collection of data from two extensive proteome-wide 
GWAS and 33 blood malignancy GWAS, followed by 
a proteome-wide MR analysis to comprehensively 
identify circulating protein biomarkers linked to the 
risk of blood malignancies. Given that MR alone may 
be inadequate for identifying genuine proteins 
associated with cancer causative pathways, a 
colocalization analysis was then performed. A 
pharmacological study was performed to investigate 
their potential as therapeutic targets for hematological 
malignancies. 

Methods 
Data sources 

We identified cis-single-nucleotide polymorph-
isms (cis-SNPs) linked to plasma protein levels from 
two extensive GWAS, the UK Biobank Pharma 
Proteomics Project (UKB-PPP) [8] and the deCODE 
Health Study [9]. The genetic variation data 

pertaining to 27 hematological malignancies was 
acquired through the FinnGen consortium 
(https://www.finngen.fi/en/access_results). The 
genome-wide association study on six hematological 
malignancies was derived from the UK Biobank study 
(http://www.nealelab.is/uk-biobank/).  

Selection of instrumental variables (IVs)  
The plasma protein SNPs that satisfied the 

GWAS testing P value threshold (< 1×10−5) were 
identified.[10] All the IVs were categorized according 
to a linkage disequilibrium (LD) threshold (r2 < 0.001) 
within a distance of 10,000 kilobases (kb), utilizing the 
1000 Genomes European reference panel on an 
individual basis. In instances of palindrome SNPs, the 
forward allele was established utilizing allele 
frequency data [11]. GWAS of levels of circulating 
proteins could identify protein quantitative trait loci 
(pQTLs). Cis-pQTLs were characterized as SNPs 
located within 1 MB of the gene that encodes the 
protein, with linkage disequilibrium assessed using 
the 1000 Genomes European panel [11]. To reduce the 
influence of weak instrumental bias, we calculated the 
F statistic for each SNP and excluded those with a F 
statistic lower than 10 [12]. SNPs with minor allele 
frequency (MAF)≤0.01 were removed. With the use of 
the Olink technology, the UKB-PPP was able to 
perform proteome profiling on blood plasma samples 
from 54,306 individuals, which resulted in the 
collection of information for 2,923 proteins [8]. During 
the Mendelian randomization investigation with two 
samples, we used index cis-SNPs as instrumental 
variables for a total of 2,112 proteins [8]. The deCODE 
Health project evaluated 4,907 aptamers in a group of 
35,559 Icelanders using the SomaScan platform [9]. 
The results of this evaluation were used to produce 
index cis-SNPs for 1,970 plasma proteins. Each of the 
two examinations revealed that a total of 999 proteins 
had index cis-SNPs that overlapped with one another.  

Mendelian randomization (MR) 
Multiple MR techniques were used in order to 

assess the causal link that exists between the exposure 
and the result. The primary technique of MR analysis 
that was used was known as the inverse variance 
weighting (IVW)[13] approach. When only one SNP 
instrument was available, the method of causal 
estimation was the Wald method [14]. Following the 
use of Bonferroni adjustment for multiple testing, the 
combined relationship was shown to be statistically 
significant with a p value of less than 1.62 × 10-5 
(0.05/3083 proteins). However, in order to explore 
more common plasma proteins of potential 
hematological malignancies, we set the P value at four 
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levels. Level 1: P value is less than 1.62×10-5, denoted 
as “* * * *”; Level 2: P value ranges from 1.62×10-5 to 5
×10-4, denoted as “* * *”; Level 3: P value ranges from 
5×10-4 to 5×10-3, denoted as “* *”; Level 4: P value 
ranges from 5 × 10-3 to 5 × 10-2, denoted as “*”. 
Sensitivity analysis was employed to estimate 
pleiotropy and heterogeneity. We assessed 
heterogeneity using Cochrane's IVW Q statistics [15]. 
We evaluated vertical pleiotropy by examining the 
intercept obtained from the MR-Egger regression. The 
MR analyses were carried out using the 
“TwoSampleMR” software version 0.5.10[16] 
packages in R (version 4.3.2).  

Colocalization analysis 
We conducted colocalization analysis to see 

whether linkage disequilibrium accounted for the 
protein relationships reported with hematological 
malignancies. The study was conducted using a 
Bayesian framework, which took into consideration 
the evidence for five hypotheses that were 
incompatible with one another [17]. For every 
hypothesis test (H0, H1, H2, H3, and H4), a posterior 
probability is given to the hypothesis being tested. 
Under the condition that the posterior probability for 
shared causal changes (PH4) was more than 0.75, it 
was determined that two signals had strong evidence 
for colocalization. It was revealed that the medium 
colocalization indication lies between 0.5 and 0.75 for 
PH4. For the purpose of this study, the coloc tool in 
the R programming language (version 4.4.1) was 
used.  

Protein-protein interaction (PPI) and 
functional enrichment analysis 

Through the use of the Search Tool for the 
Retrieval of Interacting Genes (STRING, Version 11.5, 
https://string-db.org/), PPI networks were built in 
order to investigate the interactions that occurred 
between the MR-prioritized proteins. In addition, 
STRING was used to perform pathway analyses 
based on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) in order to study the possibly 
enriched pathways that are associated with these 
proteins.  

Mapping MR-prioritized proteins to drug 
targets 

Plasma proteins are a rich therapeutic target 
reservoir. The list of druggable genes discovered by 
Finan et al. [18] was compared to the MR-prioritized 
proteins to see whether they overlap. Finan et al. [18] 
discovered 4,479 drugged or druggable genes and 

divided them into three groups by drug development 
level. Tier 1 has 1427 genes for effectiveness targets of 
licensed small compounds, biotherapeutic medicines, 
and clinical drug candidates. Tier 2 includes 682 genes 
with demonstrated bioactive drug-like small- 
molecule binding partners and ≥50% identity (over 
75% sequencing) with authorized drug targets. Tier 3 
contains 2,370 genes that encode secreted or 
extracellular proteins, are distantly related to known 
drug targets, and belong to key druggable gene 
families missing from tiers 1 or 2. Tier 3A prioritizes 
genes within ±50 kbp of GWAS SNPs and 
extracellular locations, whereas Tier 3B includes 
additional genes. MR-prioritized proteins were 
annotated as therapeutic targets by development 
phase using the Therapeutic Target Database 
(http://db.idrblab.net/ttd/). The database has 3,578 
therapeutic targets, including 498 successful, 1,342 
clinical trials, 185 preclinical/patented, and 1,553 
research targets [19]. This analysis focuses on target 
type, drug connected to target, and illness treated by 
treatment.  

Results 
A summary of the conceptual framework of the 

research is shown in Figure 1. Each and every analysis 
made use of the data at the summary level that is 
shown in Table 1. The MR analysis included 1,970 
proteins (Table S1) from the deCODE project and 
2,112 proteins (Table S2) from the UKB-PPP 
collaboration; both sets of proteins were analyzed. 
Every single piece of outcome data showed that the 
least F statistic for the genetic instruments that were 
used was more than 10.  

Estimating the effects of plasma proteins on 33 
hematological tumors by using MR identified 
86 plasma proteins 

The overview of the findings from the 
examinations of thirty-three distinct hematologic 
cancers is shown in Figure 2 and Table S3. When the 
p-value of a protein is less than 5×10-4, we consider it 
to be a candidate plasma protein. This methodology 
allows us to investigate a greater number of 
prospective plasma proteins that are often associated 
with hematological malignancies. The genetically 
predicted amounts of 86 proteins were shown to have 
a substantial association with the probability of 
hematological tumors, as shown in Figure 2 of the 
combined analysis of two outcomes data. We found 
that some proteins have causal associations in 
multiple hematological tumors. Our findings indicate 
that certain plasma proteins exhibit causative roles in 
various hematological tumors, specifically ISOC1 in 
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14 tumors, ADK in 11 tumors, FKBPL in 10 tumors, 
and BCL2 in 9 tumors. In addition, we found that 
some plasma proteins play the same role in many 
blood tumors. ACTA2 serves as a risk factor across all 
seven types of blood tumors. CNTN1 serves as a 
protective factor in six types of hematological tumors 
(Figure 2 and Table S3).  

27 plasma proteins were verified by 
colocalization evidence 

27 plasma proteins were verified by 
colocalization evidence. 18 proteins demonstrated 
strong support of colocalization analysis (PH4 > 0.75) 
out of 86 MR-identified proteins in connection to 
hematological tumors (P value of MR < 5 × 10-4) 
(Figure 3 and Table S4). Nine proteins obtained 
medium support of colocalization analysis (0.75 < 
PH4 < 0.5) (Figure 3 and Table S4). Some diseases 
have colocalization with multiple other diseases. For 
example, myeloproliferative diseases (excluding 
chronic myeloid leukemia, CML) have the most 
colocalized genes, including RPN1, BRAP, PPP1CC, 
ERP29, and PARP1. Moreover, myeloproliferative 
diseases (excluding CML) and essential 
(haemorrhagic) thrombocythaemia have three 
identical colocalized genes, namely BRAP, PPP1CC, 

and ERP29. In addition, certain genes have 
colocalization with multiple diseases. For instance, 
HSD17B8 has colocalization with lymphoid leukemia 
and chronic lymphocytic leukemia; RPN1 has 
colocalization with myeloproliferative diseases 
(excluding CML) and polycythaemia vera; and 
PARP1 has colocalization with myeloproliferative 
diseases (excluding CML) and polycythaemia vera.  

PPI networks and KEGG pathway of the 86 
MR-prioritized proteins 

PPI and pathway studies were carried out in 
order to get a better knowledge of the etiology of 
hematological tumors and to gain a better 
understanding of the association between 86 
MR-prioritized proteins and their enriched activities 
(Figure 4A, Table S5). The PPI network comprised 87 
nodes and produced 92 edges, significantly exceeding 
the anticipated 58 edges based on an interaction score 
threshold of 0.4 (medium confidence) (enrichment 
p-value: 8.86×10-5) (Figure 4A, Table S5). By KEGG 
enrichment analysis, 86 proteins were mainly 
enriched in the NF-kappa B signaling pathway, the 
IL-17 signaling pathway, the NOD-like receptor 
signaling pathway, the TNF signaling pathway, and 
so on (Figure 4B, Table S6). 

 
 
 

 
Figure 1: Flowchart of the MR-based analytical framework for evaluating the effect of plasma proteome on 33 hematologic malignancies. UKB-PPP, UK Biobank Pharma 
Proteomics Project; pQTLs, protein quantitative trait loci; SNP, single-nucleotide polymorphisms; LD, linkage disequilibrium; MAF, minor allele frequency; MR, Mendelian 
randomization; IVW, inverse variance weighting. 
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Table 1: Characteristics of exposures and outcome. 

Variable Source Cases Controls 
Exposure    
4,907 plasma protein (pQTLs) deCODE Health study 35,559 / 
2,923 plasma protein (pQTLs) UK Biobank Pharma Proteomics Project (UKB-PPP) 54,219 / 
Outcome    
Hodgkin lymphoma FinnGen data CD2_HODGKIN_LYMPHOMA_EXALLC 846 324,650 
Diffuse large B-cell lymphoma FinnGen data C3_DLBCL_EXALLC 1,050 314,193 
Follicular lymphoma FinnGen data CD2_FOLLICULAR_LYMPHOMA_EXALLC 1,181 324,650 
Mantle cell lymphoma FinnGen data C3_MANTLE_CELL_LYMPHOMA_EXALLC 210 314,193 
Marginal zone B-cell lymphoma FinnGen data C3_MARGINAL_ZONE_LYMPHOMA_EXALLC 202 314,193 
Mature T/NK-cell lymphomas FinnGen data CD2_TNK_LYMPHOMA_EXALLC 363 324,650 
Waldenstrom macroglobulinemia, lymphoplasmacytic lymphoma FinnGen data C3_MACROGLOBULINEMIA_EXALLC 88 314,193 
Other and unspecified types of non Hodgkin lymphoma FinnGen data CD2_NONHODGKIN_NAS_EXALLC 1,171 324,650 
Non-Hodgkin lymphoma FinnGen data C3_NONHODGKIN_EXALLC 1,072 314,193 
Lymphoid leukaemia FinnGen data CD2_LYMPHOID_LEUKAEMIA_EXALLC 1,617 324,650 
Acute lymphocytic leukaemia FinnGen data C3_ALL_EXALLC 197 314,192 
Chronic lymphocytic leukaemia FinnGen data C3_CLL_EXALLC 668 314,189 
Myeloid leukaemia FinnGen data CD2_MYELOID_LEUKAEMIA_EXALLC 734 324,650 
Acute myeloid leukaemia FinnGen data C3_AML_EXALLC 244 314,192 
Chronic myeloid leukaemia FinnGen data C3_CML_EXALLC 115 314,192 
Chronic myeloid leukaemia [CML] BCR/ABL+ FinnGen data CML 258 409,880 
Monocytic leukaemia FinnGen data CD2_MONOCYTIC_LEUKAEMIA_EXALLC 85 324,650 
Leukaemia of unspecified cell type FinnGen data CD2_LEUKAEMIA_NAS_EXALLC 239 324,650 
Other leukaemias of specified cell type FinnGen data CD2_OTHER_LEUKAEMIA_SPECIFIED_EXALLC 67 324,650 
Multiple myeloma and malignant plasma cell neoplasms FinnGen data CD2_MULTIPLE_MYELOMA_PLASMA_CELL_EXALLC 1,337 324,650 
Multiple myeloma FinnGen data C3_MULT_MYELOMA_EXALLC 623 314,185 
Myeloproliferative diseases (CML excluded) FinnGen data MYELOPROF_NONCML 2,043 409,880 
Chronic myeloproliferative disease FinnGen data CHRONMYELOPRO 354 409,880 
Essential (haemorrhagic) thrombocythaemia FinnGen data THROMBOCYTAEMIA 1,062 313,473 
Polycythaemia vera FinnGen data POLYCYTVERA 1,004 313,577 
Eosinophilic disease (BM) FinnGen data ESOSINOPHIL_DISEASE 441 230,284 
Malignant immunoproliferative diseases  FinnGen data CD2_IMMUNOPROLIFERATIVE_EXALLC 250 324,650 
Lymphomas UK Biobank data 1,752 359,442 
Leukaemia UK Biobank data 1,260 372,016 
Lymphoid leukaemia UK Biobank data 760 372,016 
Myeloid leukaemia UK Biobank data 462 372,016 
Multiple myeloma UK Biobank data 601 372,016 
Myeloproliferative neoplasms UK Biobank data 1,086 407,155 

 

Evaluating the drug targets of the 86 
MR-prioritized proteins 

The assessment of human proteins utilizing MR 
evidence concentrated on their viability as therapeutic 
targets and their potential for drug development. We 
first compared the MR-prioritized proteins with the 
druggable genes identified by Finan et al [18]. Among 
the 86 proteins analyzed, 51 exhibited druggable 
targets, categorized as follows: 9 in tier 1, 8 in tier 2, 18 
in tier 3A, and 16 in tier 3B (Table 2). Utilizing the 
Therapeutic Target Database, a total of 26 proteins 
were identified as targets for existing or potential 
drugs. Among these, 6 were classified as successful 
targets, 13 as clinical trial targets, 6 as 
literature-reported targets, and 1 as a discontinued 
target (Table 2; Table S7).  

Discussion 
This MR study investigated the relationships 

between 3,083 plasma proteins and the risk of 33 

hematological tumors, complemented by a 
colocalization analysis. We identified 86 plasma 
proteins potentially causally associated with 33 
hematological tumors, of which 27 proteins 
demonstrated colocalization support. Function 
prediction associated with these proteins enriched 
several pathways, including the NF-kappa B signaling 
pathway, IL-17 signaling pathway, NOD-like receptor 
signaling pathway, and TNF signaling pathway. The 
therapeutic potential of 86 proteins and their 
pharmaceutical properties were assessed. 

There are a few proteins that have been found to 
be related to hematologic cancers, and these proteins 
were prioritized by our MR analysis in our research 
that used cis-pQTL. For example, BCL2, a key 
regulator of apoptosis, is frequently overexpressed in 
hematological tumors, contributing to chemotherapy 
resistance and poor prognosis [20]. Targeting BCL2 
has emerged as a promising therapeutic approach, 
with BH3 mimetics showing particular potential [21, 
22].  
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Figure 2: MR analysis on the associations of plasma protein with 33 hematological tumors. The gray squares in indicate missing data. * * * *, p < 1.62×10-5; * * *, 1.62×10-5 < p 
< 5×10-4; * *, 5×10-4 < p < 5×10-3; *, 5×10-3 < p < 5×10-2; †, P value is less than 0.05 in more than or equal to 7 hematological tumors. ‡, In more than or equal to 5 hematological 
tumors, the P value is less than 0.05, and the β value is greater than 0 or less than 0 at the same time. 
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Figure 3: Colocalization analysis between plasma protein (P value of MR < 5×10-4) 
and hematologic malignancies. 

 
Venetoclax, the first FDA-approved BCL2 

inhibitor, has demonstrated significant efficacy in 
chronic lymphocytic leukemia and other hematologic 
cancers [23]. However, response to BCL2 inhibition 
varies across different malignancies, highlighting the 
need for biomarkers to predict treatment outcomes 
[23]. Ongoing research focuses on developing new 
BCL2 family inhibitors, optimizing combination 
therapies, and understanding resistance mechanisms 
[24]. As our understanding of BCL2 biology and 
apoptosis signaling improves, targeted therapies are 
expected to play an increasingly important role in 
treating hematological tumors [22, 25]. NF-κB, a 
crucial transcription factor family including NFKB1, 
plays a significant role in hematological tumors 
through its regulation of cell proliferation, apoptosis, 
and inflammation [26]. Constitutive NF-κB activation 
is common in these malignancies, contributing to 
enhanced cell survival and proliferation [27]. This 
activation can result from genetic alterations, 
microenvironmental factors, or chronic signaling [27]. 
NF-κB's pro-survival properties rely on the expression 

of anti-apoptotic molecules [28]. Targeting NF-κB and 
its regulators has emerged as a promising therapeutic 
approach for hematological tumors [29, 30]. PARP1 
overexpression has been observed in various 
hematological tumors, suggesting its potential as a 
therapeutic target [31]. PARP inhibitors (PARPi) have 
shown promise in treating acute myeloid leukemia 
(AML) and other blood cancers, particularly in cases 
with specific genetic alterations such as 
RUNX1-RUNX1T1, PML-RARA, FLT3, and IDH1/2 
mutations [32]. MYC-driven multiple myeloma cells 
exhibit increased sensitivity to PARPi [33]. Combining 
PARPi with other therapies, such as HDAC inhibitors 
or chemotherapeutic agents, has demonstrated 
synergistic effects [34]. TNFRSF14 mutations and 1p36 
deletions are frequent genetic alterations in follicular 
lymphoma (FL), occurring in 18-40% of cases [35, 36]. 
These aberrations are associated with worse 
prognosis, increased risk of transformation, and 
inferior overall and disease-specific survival, 
particularly when both mutations and deletions are 
present [35, 37]. TNFRSF14 alterations reduce HVEM 
expression, enhancing the alloantigen-presenting 
capacity of lymphoma B cells and increasing the risk 
of acute graft-versus-host disease in allogeneic stem 
cell transplantation [38]. High TNFRSF14 expression 
correlates with poor outcomes and activation of the 
NF-kB pathway [37]. In contrast, high expression of 
BTLA, which interacts with TNFRSF14, is associated 
with better overall survival [37]. These findings 
highlight the importance of the BTLA-TNFRSF14 
immune modulation pathway in FL pathobiology and 
prognosis. BRD2, a member of the bromodomain and 
extra-terminal (BET) family, plays a crucial role in 
hematological tumors. It promotes B-cell expansion 
and mitogenesis by regulating cyclin A expression 
[39]. Overexpression of BRD2 in transgenic mice leads 
to B-cell lymphoma and leukemia development [40]. 
BRD2 is also a critical mediator for STAT5 activity in 
leukemias and lymphomas [41]. BET inhibitors, such 
as JQ1, show promise in treating hematological 
tumors by targeting BRD proteins, including BRD2 
and BRD4 [42]. In acute myeloid leukemia (AML), 
FABP4 promotes aggressiveness through a vicious 
loop with DNA methyltransferase 1 (DNMT1), 
enhancing aberrant DNA methylation [43, 44]. FABP4 
inhibition suppresses AML progression and induces 
leukemia regression in mouse models [45]. Bone 
marrow adipocytes support AML proliferation 
through FABP4-mediated fatty acid transfer [45]. 
FCRL1, a member of the Fc receptor-like family, is 
predominantly expressed on B cells and plays a role in 
B cell regulation and malignancies [46]. It shows high 
expression in various B-cell non-Hodgkin 
lymphomas, chronic lymphocytic leukemia (CLL), 
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and hairy cell leukemia [47]. FCRL1 has been 
identified as a potential target for immunotoxin 
therapy in these malignancies [48]. Its expression 
correlates with IGHV mutation status in CLL, making 
it a valuable prognostic marker [49]. FCRL1 promotes 
B cell proliferation and survival through the 
PI3K/AKT and NF-κB pathways [50]. Recent studies 

have highlighted the importance of IFIT family 
proteins in hematological tumors. IFIT1, IFIT2, IFIT3, 
and IFIT5 are overexpressed in acute myeloid 
leukemia (AML) patients, with higher levels of IFIT2, 
IFIT3, and IFIT5 predicting poor prognosis [51]. IFIT1 
and IFIT3 have been implicated in proptosis induction 
in myeloma and leukemia cells [52]. 

 

 
Figure 4: Protein-protein interaction networks (A) and KEGG Pathways enrichment (B) of the 86 MR-prioritized proteins. 

 

Table 2: List of the 86 MR-prioritized proteins that were drug targets or to be druggable. 

Protein Druggability tier Target type Protein Druggability tier Target type 
ADK Tier 2 Clinical trial Target HYOU1 Tier 3B / 
ADM Tier 3A Clinical trial Target IFNGR2 Tier 1 Successful Target 
AGER Tier 3A Clinical trial Target IGFBP1 Tier 2 Discontinued Target 
AIF1 / Literature-reported target INSL4 Tier 3A / 
APOE Tier 3A Clinical trial Target ITGB7 Tier 1 Successful Target 
BCL2 Tier 1 Successful Target KEL Tier 3B / 
BOLA1 Tier 3A / KLB / Clinical trial Target 
BRD2 Tier 2 Clinical trial Target LGALS7 Tier 3B / 
BTN1A1 Tier 3A / LGALS7B Tier 3B / 
BTN3A1 Tier 3B / LTBR Tier 1 Clinical trial Target 
CD244 Tier 3A / MGP Tier 3B / 
CILP2 Tier 3A / NFKB1 Tier 1 Successful Target 
CLUL1 Tier 3B Literature-reported target NOTCH3 Tier 3B Clinical trial Target 
CNTN1 Tier 3A / PARP1 Tier 1 Successful Target 
CXCL1 Tier 3B Literature-reported target PPIE Tier 2 / 
DEFB104A Tier 3B / PSMB9 Tier 3B Literature-reported target 
DEFB104B Tier 3B / QPCT Tier 2 Clinical trial Target 
DKKL1 Tier 3A / RPN1 Tier 3A / 
EPHB6 Tier 1 Literature-reported target RSPO3 Tier 3A Clinical trial Target 
ERP29 Tier 3A / SECTM1 Tier 3B / 
F2 Tier 1 Successful Target SFTA2 Tier 3A / 
FABP4 Tier 2 / SIGLEC12 Tier 3B / 
FCRL1 Tier 3A / ST3GAL1 Tier 3B / 
HAPLN4 Tier 3A / TEX101 Tier 3B / 
HLA-DQA2 Tier 3A / TNF Tier 1 Clinical trial Target 
HSPA1A Tier 2 Clinical trial Target TNFRSF14 Tier 3A Literature-reported target 
HSPA1B Tier 2 Clinical trial Target    
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In addition to some proteins that have been 
identified with hematological tumors, our research 
also found some plasma proteins that are related to 
most hematological tumors. For example, ISOC1 is 
causally associated with 14 hematological tumors. 
While ISOC1 promotes cell proliferation and tumor 
growth in pancreatic cancer [53] and lung cancer [54], 
it acts as a tumor suppressor in hepatocellular 
carcinoma [55]. ADK is causally associated with 14 
hematological tumors. Dysregulation of ADK 
isoforms, particularly overexpression of the nuclear 
long isoform (ADK-L), has been observed in breast 
cancers, contributing to tumor growth and metastasis 
[56]. ADK deficiency increases susceptibility to 
carcinogens in the liver [57]. ADK's involvement in 
DNA methylation suggests an epigenetic role in 
cancer pathology [58]. FKBPL is causally associated 
with 11 hematological tumors. FKBPL, a novel 
member of the immunophilin family, has emerged as 
a potential cancer biomarker and therapeutic target. It 
plays crucial roles in steroid receptor signaling, 
particularly for estrogen, androgen, and 
glucocorticoid receptors [59]. High levels of FKBPL 
are associated with increased survival and improved 
response to endocrine therapy in breast cancer 
patients [60].  

Our study highlights key targets like BCL2, 
NFKB1, and TNFRSF14, which regulate apoptosis, 
inflammation, and immune responses. While 
promising, their systemic inhibition poses toxicity 
risks. For example, BCL2 inhibitors (e.g., venetoclax) 
show efficacy in hematologic malignancies but cause 
severe neutropenia due to broad lymphoid 
dependency [61]. Similarly, NF-κB suppression may 
impair antimicrobial immunity [62], and PARP 
inhibitors induce hematologic toxicity from 
ubiquitous DNA repair roles [63]. Resistance remains 
a major hurdle. BCL2-targeted therapies fail via 
mutations (e.g., G101V) or compensatory MCL1 
upregulation [64], while PARP inhibitor resistance 
arises through BRCA/PALB2 mutation reversal [65]. 
Combinatorial approaches (e.g., PARP + ATR 
inhibitors) could overcome escape mechanisms [66]. 
TNFRSF14 exemplifies context-dependency: loss 
drives lymphoma progression yet may enhance 
immunogenicity in specific subtypes, necessitating 
biomarker-driven stratification [38]. Emerging 
strategies (PROTACs, nanobodies) may bypass these 
limitations. Future work should: 1) Validate lead 
targets (PARP1, TNFRSF14) using PDX models and 
CRISPR screens; 2) Develop companion diagnostics 
via multi-omic profiling; 3) Optimize delivery 
systems (nanoparticles) to enhance specificity. Drug 
repurposing (e.g., NF-κB inhibitors) offers accelerated 
translation potential. 

In conclusion, following the MR findings, we 
performed a series of subsequent analyses. Our study 
indicates that fewer than 50% of the associations 
demonstrate robust evidence of colocalization that 
supports causality. The assumption in Bayesian 
colocalization approaches that only one association 
signal exists per region may not accurately reflect 
reality, potentially leading to an underestimation of 
colocalization. Protein-protein interaction and 
pathway enrichment analyses were performed to 
investigate the relationships and functions of the 
identified proteins. Evaluation of drug targets was 
conducted for proteins with MR evidence, aiming to 
priorities drug discovery and facilitate the 
repurposing of existing drugs for hematological 
tumors.  
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