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Abstract 

Emerging evidence has demonstrated that pseudouridylation regulates mRNA translation and gene expression, 
yet its molecular characteristics in hepatocellular carcinoma (HCC) remain unknown. Using public databases, 
we developed pseudouridylation-related molecular subtype and risk score model to assess HCC patient 
prognosis and disclose their clinical feature, molecular mechanism and immune landscape. Furthermore, 
quantitative polymerase chain reaction (qPCR) was performed to verify the expression of RDM1, CDCA3 and 
FLVCR1. Specifically, functional enrichment analysis revealed pseudouridylation-related genes (PRGs) 
predominantly regulate transcriptional and translational regulation. Prognostic PRGs stratified HCC into two 
distinct subtypes, the cluster 1 had a poor prognosis and was characterized by high alpha fetoprotein level, poor 
differentiation, advanced tumor stage, large tumor size, frequent TP53 mutation, up-regulation of cell cycle- and 
mitosis-associated genes, which was similar to the aggressive proliferation subtype of HCC. In contrast, the 
cluster 2 exhibited good prognosis and increased infiltration of immune cells, resembling the non-proliferation 
subtype of HCC, and suggesting its potential responsiveness to immunotherapy. Survival analysis discovered 
that the risk score model served as an independent prognostic factor, with high-risk group exhibiting 
significantly shorter overall survival and recurrence-free survival than low-risk group. Notably, receiver 
operating characteristic analysis revealed that the risk model had a powerful predictive performance for 1- and 
3- year survival (AUC=0.806). In addition, functional enrichment analysis suggested that upregulated genes of 
high-risk group displayed an enrichment of cell cycle progression, mitotic division, and some oncogenic 
signaling pathways (PLK1, FOXM1, and p53 signaling pathways). qPCR experiment confirmed the significant 
overexpression of RDM1, CDCA3, and FLVCR1 in HCC tissues, being consistent with public database analysis. 
In conclusion, pseudouridylation related-molecular subtype and risk model may effectively predict the 
prognosis and therapeutic response of HCC. 

Keywords: hepatocellular carcinoma; pseudouridylation; pseudouridine; molecular subtype; prognostic risk model; RNA 
modification 

Introduction
Primary liver cancer is the fifth most common 

cancer and the second leading cause of cancer-related 
deaths, with its incidence and mortality ranking sixth 
and third among 36 cancers, respectively [1]. 

Hepatocellular carcinoma (HCC) is the most common 
pathological type of liver cancer, accounting for 
75%-85% of cases [2]. Unfortunately, more than half of 
HCC patients are diagnosed at the middle or 
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advanced stages during first visit [3], and the 
prognosis remains very poor with the 5-year survival 
rate being lower than 20% [4]. In recent years, 
immunotherapy advances show a promising role on 
improving the survival of HCC [5]. However, the 
heterogeneity of immunotherapy responses and the 
emergence of drug resistance pose major challenges 
that need to be overcome [6]. Therefore, it is necessary 
to identify molecular subtype and develop new 
biomarkers for predicting the immunotherapy 
response and prognosis of HCC [7]. 

Advances in high-throughput sequencing 
technologies have enabled the detection of 
pseudouridine (Ψ) in human mRNA and are 
facilitating the elucidation of its biological functions. 
Ψ is a ubiquitous modified nucleotide and is 
dynamically regulated in human mRNA [8, 9]. It has 
been reported that Ψ can affect pre-mRNA processing 
through pre-mRNA modification [10], suggesting its 
potential role on regulating gene expression. Current 
research on pseudouridylation in cancer is 
progressing, with findings demonstrating that 
pseudouridine modifications contribute to the 
progression of various cancers by regulating 
translation and gene expression [11]. For instance, 
DKC1 overexpression impacts RNA pseudouri-
dylation or telomerase activity, which promotes the 
synthesis of oncogenic proteins and drives tumor 
progression in gastric cancer [12], colorectal cancer 
[13] and uterine corpus endometrial carcinoma [14]. 
RPUSD1 overexpression enhances eIF4E expression 
via its RluA catalytic domain, and activates the 
PI3K/AKT signaling pathway to promote malignant 
phenotypes of non-small cell lung cancer cells [15]. 
PUS1 overexpression facilitates cell migration in clear 
cell renal cell carcinoma by promoting mRNA 
pseudouridylation and stabilizing SMOX gene 
transcripts [16]. PUS7-dependent tRNA modifications 
regulate the growth and proliferation of colorectal 
cancer [17], pancreatic cancer [18] and gastric cancer 
cell [19] by modulating the translation of key genes. In 
HCC, PUS1-mediated pseudouridylation has been 
reported to enhance the translation of oncogenes, 
thereby promoting HCC progression [20]. A study 
demonstrated PUS1 involves in HCC progression 
through regulating c-MYC and mTOR signaling 
pathways [21], consistent with our previous findings 
[22]. However, research about pseudouridine 
synthases remains limited in HCC. 

Therefore, it is meaningful and innovative to 
preliminarily explore the pseudouridylation-related 
transcriptomic features using bioinformatics 
approaches. 

Materials and Methods 
Data sources 

The methodological route of this study is 
summarized in Figure 1.  

Genome expression profiles and clinical data of 
370 tumor samples and 50 normal liver samples were 
download from The Cancer Genome Atlas (TCGA; 
https://cancergenome. 
nih.gov/) database to be a training cohort, samples 
with survival time shorter than 30 days were 
excluded. The International Cancer Genome 
Consortium (ICGC) cohort, containing 202 normal 
liver tissues and 240 HCC tissues, were downloaded 
from the ICGC portal to be the validation cohort. 75% 
patients of this cohort had chronic hepatitis B /C virus 
infection [23]. Though the proportion of viral 
hepatitis-associated HCC cases in the TCGA cohort 
was limited, the two cohorts covered the majority of 
HCC populations with different etiologies. 

Pseudoureoside synthase genes—including 
TRUB1, TRUB2, RPUSD1, RPUSD2, RPUSD3, 
RPUSD4, PUS1, PUSL1, PUS3, PUS7, PUS7L, PUS10 
and DKC1—were identified through previous studies 
[22, 24]. 

Correlation and differential analysis 
To identify pseudouridylation-related genes 

(PRGs), a Pearson correlation analysis between 19937 
protein-coding genes and 13 pseudoureside synthe-
tase genes was performed using the normalized 
RNAseq data of TCGA cohort. Genes with p-value < 
0.001 and correlation coefficient > 0.4 were defined as 
PRGs in this study. Subsequently, differential 
expression analysis between HCC and normal liver 
samples was conducted among these PRGs using the 
limma R package, genes exhibiting |log2(fold 
change)| >1 and adjusted p-value <0.05 were 
identified as differential PRGs (DPRGs). 

Identification of prognostic DPRGs and 
molecular subtypes 

Univariate Cox survival analysis was performed 
to identify prognostic DPRGs (PDPRGs) using 
survival and survminer R packages. Subsequently, in 
order to investigate the molecular subtyping of 
PDPRGs, the expression data of these PDPRGs were 
applied for consistent clustering analysis by the 
ConsensusClusterPlus R package. 

Construction of risk score model and 
nomogram 

Furthermore, least absolute shrinkage and 
selection operatorregression analysis was performed 
to reduce the collinearity of PDPRGs and build a 
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prognostic risk score model using glmnet and 
survival R packages. The risk score was calculated 
using the following formula: risk score = (β₁ × 
expression₁) + (β₂ × expression₂) + … + (βₙ × 
expressionₙ), where β represents the survival 
coefficient for each gene. Subsequently, samples were 
divided into high- and low-risk groups based on the 
median risk score, and Kaplan-Meier survival 
analysis was used to analyze the prognostic 
significance of risk score groups. Finally, the 
predictive performance of the model was evaluated 
via receiver operating characteristic (ROC) analysis. 

To investigate the clinical utility of risk score, a 
nomogram integrating risk score and TNM stage was 
developed using the rms R package. The predictive 
accuracy of the nomogram was validated through 
calibration curves, and ROC analysis was conducted 
to estimate the prognostic performance of nomogram, 
risk score and TNM stage, respectively. 

Survival and clinical characteristic analysis  
Kaplan-Meier survival analysis was employed to 

screen the OS-related clinical variables (p<0.05). 
Multivariate Cox proportional hazards regression 
analysis was then used to assess the independent 
prognostic value of cluster groups and risk score 
groups. 

Associations between cluster groups and clinical 
variables were examined using Chi-square test in R 

software. Additionally, differences of risk score across 
different clinical subgroups were analyzed using 
Wilcoxon test. 

Functional enrichment analysis 
Database for Annotation, Visualization and 

Integrated Discovery (DAVID, https://david. 
ncifcrf.gov/) is bioinformatics platform that provides 
functional annotation tools for researchers to mine 
potential biological insights through uploading a gene 
list [25]. Based on the differential expression analysis 
between cluster 1 (C1) and cluster 2 (C2), we 
submitted a list of differentially expressed genes 
(DEGs) on DAVID portal, and retrieved significantly 
enriched functional terms. 

Gene Set Enrichment Analysis (GSEA) software 
(version 4.3.2) is a computational method to identify 
enriched gene sets associated with specific biological 
processes, pathways, or diseases using RNA-seq data 
and predefined gene set annotations. For both TCGA 
and ICGC cohorts, GSEA was performed by 
integrating RNA-seq expression profiles with sample 
risk group classifications, gene sets meeting the 
thresholds of p-value < 0.05 and discovery rate < 0.25 
were defined as significantly upregulated or 
downregulated. 

 

 

 
Figure 1. The graphical abstract displayed the main methods and results of our study. PRGs: pseudouridylation-related genes; DPRGs: Differential PRGs; PDPRGs: 
Prognostic DPRGs; DEGs: Differentially expressed genes; PCR: Polymerase chain reaction. 
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Analysis of immune microenvironment, cell 
infiltration and functional states 

The estimate R package utilized to calculate the 
tumor microenvironment (TME) score for each 
sample. The CIBERSORT algorithm was adopted to 
estimate immune cell abundances in R software, and 
the single-sample gene set enrichment analysis 
(ssGSEA) was employed to assess immune cell 
infiltration levels and immune-related functional 
activity with the GSVA and GSEABase R packages. 
Tumor Immune Dysfunction and Exclusion (TIDE) 
scores were obtained from the TIDE portal 
(http://tide.dfci.harvard.edu/) to predict the 
immune response in HCC. All the immune evaluation 
algorithms were implemented based on gene 
expression profiles of TCGA and ICGC cohorts. 

Subsequently, differences of TME score, ssGSEA 
score, TIDE score, and immune checkpoint gene 
expression levels across cluster subgroups and risk 
subgroups were analyzed using the Wilcoxon test. 
Spearman correlation analysis was conducted to 
evaluate the association between risk scores and 
immune cell abundances. 

Mutation analysis 
Genome-wide somatic mutation data of TCGA 

cohort was downloaded from the Genomic Data 
Commons portal (https://portal.gdc.cancer.gov/). 
The maftools R package was utilized to visualize and 
analyze the somatic mutation landscape of molecular 
subtypes C1 and C2. 

Drug sensitivity prediction analysis 
Drug sensitivity analysis was performed using 

the oncoPredict R package. The sensitivity (IC50 
values) of 367 drugs in the GDSC1 database was 
predicted based on mRNA expression data of RDM1, 
CDCA3 and FLVCR1. Differences between IC50 
values and risk groups were statistically compared 
using the Wilcoxon test. 

Verification of expression and prognostic 
significance of PDPRGs 

The Gene Expression Profiling Interactive 
Analysis (GEPIA; http://gepia.cancer-pku.cn/) 
platform was utilized to assess the differential 
expression of RDM1, CDCA3 and FLVCR1 between 
normal liver tissues and HCC tissues, as well as across 
different tumor stages. The Kaplan-Meier Plotter 
database (https://www.kmplot.com/analysis/) was 
employed to evaluate the prognostic significance of 
these genes in terms of overall survival.  

Quantitative polymerase chain reaction 
(qPCR) 

Twenty paired HCC and adjacent non-tumor 
liver tissue samples were collected from the First 
Affiliated Hospital of Guangxi Medical University. 
Total RNA was isolated from tissues using TrizolTM 
reagent (Invitrogen, USA), and cDNA synthesis was 
performed with the PrimeScript™ RT reagent kit 
(Takara, Japan). qPCR was completed using the 
FastStart Universal SYBR® Green Master Mix (Roche, 
Germany), Relative mRNA expression levels were 
calculated via the 2-∆∆CT method, with primer 
sequences listed in Table 1. 

All specimens were derived from 
HBV-associated HCC patients with BCLC stage A or 
B, and were histologically confirmed as HCC by 
postoperative pathology. Written informed consent 
was obtained from all patients, and this study was 
approved by the Ethical Review Committee of the 
First Affiliated Hospital of Guangxi Medical 
University [Approval Number: 2025-E0484].  

Statistical analysis 
Kaplan-Meier survival analysis and Cox 

proportional hazards regression analysis were 
conducted using SPSS 22.0 software. Hazard ratios 
(HR) and 95% confidence intervals were calculated to 
quantify prognostic risks. Pearman correlation 
analysis, differential expression analysis, univariate 
Cox survival analysis and Wilcoxon tests were 
performed in R software (version 4.3.2). Paired 
Student's t-test was employed for the statistical 
analysis of PCR experiment. A threshold of p < 0.05 
was considered statistically significant. 

 

Table 1. Primer sequences for PCR. 

Gene Primer sequences 
GAPDH forward GTCAGCCGCATCTTCTTT 
 reverse CGCCCAATACGACCAAAT 
RDM1 forward TCCGGGTCTTCCCAAATGCT 
 reverse GTGCCAAGACGAACCTTGACTG 
CDCA3 forward TAACTTCGGGAGTTGAGCCAC 
 reverse CTGTTTCACCAGTGGGCTTG 
FLVCR1 forward GTAGCTGGAATGGTGGGCTC 
 reverse GAAGAAGCCAAGCACCCCTC 

 

Results 
Identification of prognostic DPRGs in the 
TCGA cohort 

Through correlation analysis in the TCGA 
cohort, 828 PRGs were identified (Table S1). The 
co-expression network visualized the top 100 most 
strongly correlated genes (Figure 2A). Functional 
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enrichment analysis suggested that these PRGs were 
significantly enriched in translation, ribosomal small 
subunit biogenesis, mitochondrial translation, cell 
cycle and PD-1 checkpoint pathway (Figure 2B). 
Differential expression analysis identified 54 
upregulated and 82 downregulated PRGs in HCC 
tissues compared to normal liver tissues (Figure 2C, 
Table S2). Subsequent univariate Cox survival 
analysis of these 134 PRGs determined 72 genes 
significantly associated with OS (Figure 2D). 

Development of prognostic DPRGs-related 
molecular subtype  

Consistent clustering analysis stratified HCC 
samples into two distinct molecular subtypes (C1 and 
C2) with a ratio of 1:1.9 (Figure 3A-B). Compared to 
C2, the C1 subtype exhibited significantly higher 
serum alpha-fetoprotein (AFP) levels, poorer 
pathological grade, larger tumor size, and more 
advanced TNM stage (Figure 3C). Survival analysis 
demonstrated that the C1 had markedly shorter OS 
(Figure 3D) and recurrence-free survival (RFS; Figure 
3E). Multivariate Cox regression confirmed the C1/C2 
classification as an independent prognostic factor 
(Figure 3F-G).  

To investigate the underlying molecular 
mechanism behind these two clusters, 900 DEGs were 
identified between C1 and C2 (Figure 4A-B, Table S3) 
and subjected to functional enrichment analysis via 
DAVID platform. Upregulated DEGs in C1 were 
significantly enriched in cell cycle, cell proliferation, 
cell division, apoptotic process and p53 signaling 
pathway (Figure 4C). Conversely, downregulated 
DEGs in C1 showed associations with inflammatory 
response, cellular response to tumor necrosis factor, 
metabolism and PPAR signaling pathway (Figure 
4D).  

The differences of TP53 mutation and immune 
landscapes between two molecular subtypes 

To validate the dysfunction of p53 signaling and 
inflammatory pathways, we analyzed genomic 
mutations and immune landscapes, and found that C1 
subtype exhibited a significantly higher TP53 
mutation rate than C2 (37% vs. 14%; Figure 4E-F), 
aligning with the functional enrichment analysis 
above. Immune analysis discovered that C2 appeared 
higher estimate, immune and stromal score compared 
to C1 (Figure 5A-C), indicating lower immune 
infiltration level in C1 subtype.  

 
 

 
Figure 2. Identification of prognostic and differential pseudouridylation-related genes (PRGs). A: Co-expression network of top 100 genes ranked with correlation 
coefficients. B: Gene ontology terms and KEGG pathways of PRGs. C: Differential expression analysis for PRGs between HCC and normal liver tissues. D: Univariate cox survival 
analysis of differential PRGs. 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3828 

 
Figure 3. Consistency cluster analysis. A: Consistency clustering divided TCGA-LIHC samples into two clusters. B: Consensus clustering cumulative distribution functions 
for k = 2 to 9. C: Correlation heatmap between clinicopathologic features and clusters. D-E: Kaplan-Meier analysis of clusters for OS (D) and RFS (E). F-G: Multivariate cox 
proportional hazards regression model of clusters for OS (F) and RFS (G). 

 
In addition, ssGSEA further demonstrated lower 

of cytotoxic immune cells in C1, including B cells, 
CD8+ T cells, mast cells, NK cells and DCs (Figure 
5D). C1 subtype also showed suppressed 
immune-related functional activity, with diminished 
checkpoint, cytolysis, inflammatory and IFN 
responses (Figure 5E), suggesting the C1 subtype 
exhibits an immune-cold phenotype. Moreover, some 
immune checkpoint genes, such as CTLA4, LA3 and 
PCCD1, were overexpressed in C1 (Figure 5F), 
implying C1 subtype may have occurred immuno-
suppression. TIDE analysis confirmed higher immune 
exclusion score in C1 (Figure 5G), explaining that 
immune cells exclusion may be the cause of 
immune-cold phenotype for C1. 

Prognostic DPRGs-based risk score model 
RDM1, CDCA3 and FLVCR1 were selected 

through LASSO regression analysis to construct the 

risk score model (Figure 6A-B). Using the median risk 
score as the cutoff, TCGA and ICGC cohorts were 
stratified into high-risk and low-risk groups, 
Kaplan-Meier survival analysis demonstrated 
high-risk group significantly suffered worse OS and 
RFS than low-risk group (Figure 6C-E). The survival 
coefficients for RDM1, CDCA3, and FLVCR1 were 
0.167, 0.058, and 0.025, respectively (Figure 6F). 
Scatter plots showed HCC mortality rates escalated 
with increasing risk scores, while prolonged survival 
times were observed in low-risk groups (Figure 
6G-H). ROC curves showed robust predictive 
performance, with AUC 1-/3-/5-year AUC values of 
0.757/0.806/0.581 (ICGC, Figure 6I) and 0.761/0.680/ 
0.582 (TCGA, Figure 6J), indicating superior accuracy 
for short-to-medium term survival prediction (1-3 
years).  
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Figure 4. Molecular mechanism of different clusters. A: Differential expression analysis between cluster1 and cluster2. B: Heatmap of top 25 up-regulated genes and 
down-regulated genes. C-D: Functional enrichment analysis of up-regulated genes (C) and down-regulated genes (D). E-F: Mutation landscape of cluster1 (E) and cluster2 (F). 

 

The predictive power of nomogram was 
stronger than TNM stage  

Kaplan-Meier survival analysis identified TNM 
stage, tumor size and microvascular invasion as 
significant prognostic variables (Table 2-4). 
Multivariate Cox proportional hazards regression 
analysis incorporating these clinical factors confirmed 
the risk-score group as an independent prognostic 

predictor (Figure 7A-C).  
The nomograms composed of TNM stage and 

risk group (Figure 7D-E) were proved to have a good 
predictive performance by calibration plots (Figure 
7F-G). Furthermore, ROC curves indicated that the 
predictive power of nomogram was better than TNM 
stage (Figure 7H), and predictive ability of risk score 
and nomogram were both better than TNM stage in 
ICGC cohort (Figure 7I). 
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Table 2. The result of univariate survival analysis in TCGA cohort. 

Variables Value N Death Median (days) HR (95%CI) P 
Risk low 171 49 2131 1.00 

 
 

high 172 74 1397 2.01 (1.4, 2.89) < 0.001 
Cluster cluster2 120 36 2116 1.00 

 
 

cluster1 223 87 1694 1.62 (1.09, 2.39) 0.015 
Age (years) 60 178 69 1622 1.00 

 
 

< 60 165 54 2532 0.86 (0.6, 1.22) 0.395 
Gender female 110 49 1490 1.00 

 

  male 233 74 2486 0.8 (0.56, 1.15) 0.229 
AFP (ng/ml)a < 400 199 56 2456 1.00  
 >= 400 61 21 2486 1.1 (0.66, 1.83) 0.702 
Child-pughb A 204 52 3125 1.00  
 B+C 21 9 1005 1.85 (0.91, 3.77) 0.087 
MVIc no 188 54 2456 1.00  
 yes 101 35 2486 1.48 (0.96, 2.27) 0.071 
Pathological Td T1 168 41 2456 1.00  
 T2 84 28 1852 1.53 (0.95, 2.48) 0.081 
 T3 75 43 770 2.95 (1.92, 4.54) < 0.001 
 T4 13 10 558 6.7 (3.23, 13.89) < 0.001 
TNM stagee I 161 37 2532 1.00  
 II 77 24 1852 1.52 (0.91, 2.54) 0.110 
 III 80 45 770 3.07 (1.98, 4.75) <0.001 
Histologic gradef G1 53 17 2116 1.00  
 G2 161 58 1694 1.23 (0.71, 2.11) 0.459 
 G3 112 39 1622 1.19 (0.67, 2.1) 0.556 
 G4 12 5 NA 2.04 (0.71, 5.81) 0.175 

Clinical variables with missing values: a, b, c, d, e and f. N: number of patients; MVI: microvascular invasion; NA: not available; HR: hazard ratio; 95% CI:95% confidence 
interval. HR (95%CI): calculated by Cox proportional hazards regression model. P: calculated by log-rank test. 

 
 

Table 3. The result of univariate survival analysis for recurrence in TCGA cohort. 

Variables Value Ng Recurrence Median (days) HR (95%CI) P 
Risk low 151 60 1117 1.00 

 
 

high 150 79 491 1.78 (1.27, 2.49) 0.001 
Cluster cluster2 105 40 1453 1.00 

 
 

cluster1 196 99 598 1.78 (1.23, 2.57) 0.002 
Age (years) 60 155 74 776 1.00 

 
 

< 60 146 65 1509 0.89 (0.64, 1.24) 0.488 
Gender female 94 45 893 1.00 

 

  male 207 94 875 0.98 (0.69, 1.4) 0.919 
AFP (ng/ml)a < 400 172 77 912 1.00  
 >=  400 51 21 1509 0.94 (0.58, 1.52) 0.788 
Child-pughb A 180 83 990 1.00  
 B+C 16 8 1286 1.54 (0.74, 3.2) 0.242 
MVIc no 167 64 1279 1.00  
 yes 87 43 644 1.54 (1.05, 2.27) 0.028 
Pathological Td T1 144 47 2028 1.00  
 T2 75 38 754 2.02 (1.31, 3.1) 0.001 
 T3 67 45 301 3.81 (2.52, 5.78) < 0.001 
 T4 12 7 289 5.56 (2.41, 12.83) < 0.001 
TNM stagee I 138 45 1509 1.00  
 II 69 34 754 1.93 (1.23, 3.01) 0.003 
 III 72 47 297 3.67 (2.42, 5.56) < 0.001 
Histologic gradef G1 50 21 990 1.00  
 G2 141 64 754 1.23 (0.75, 2.02) 0.408 
 G3 97 48 828 1.25 (0.75, 2.09) 0.393 
 G4 8 2 NA 0.61 (0.14, 2.61) 0.500 
Clinical variables with missing values: a, b, c, d, e and f. g: 42 patients lack data of recurrence. N: number of patients; MVI: microvascular invasion; NA: not available; HR: 
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hazard ratio; 95% CI:95% confidence interval. HR (95%CI): calculated by Cox proportional hazards regression model. P: calculated by log-rank test. 
 
 

Table 4. The result of univariate survival analysis in ICGC cohort. 

Variables Value N Events Median (years) HR (95%CI) P 
TMNstage I 37 1 NA 1.00 

 
 

II 109 18 NA 6.5 (0.87, 48.71) 0.036  
III 73 15 NA 9.28 (1.22, 70.32) 0.009 

  IV 21 9 3.29 21.75 (2.74, 172.42) < 0.001 

HR: calculated by Cox proportional hazards regression model. P: calculated by log-rank test. NA: not available. 
 
 
 

 
Figure 5. Immune analysis of different clusters. A-C: Differences of estimate score (A), immune score (B) and stromal score (C) between different clusters. D: 
Differences of immune cell infiltration between different clusters. E: Differences of immune function between different clusters. F: Expression differences of immune checkpoint 
genes between different clusters. G: Difference of exclusion score between different clusters. *: p<0.05, **: p<0.01, ***: p<0.001, ns: no significance. 
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Figure 6. Identification and validation of risk score signature. A: Cross-validation of PDPRGs in the LASSO regression. B: LASSO coefficients of PDPRGs. C-D: Survival 
curves of risk groups in ICGC (C) and TCGA (D) cohorts. E: Recurrence curves of risk groups in TCGA cohort. F: LASSO regression coefficient of RDM1, CDCA3 and 
FLVCR1. G-H: Risk scores, survival status and gene expression heatmap of ICGC (G) and TCGA (H) cohorts. I-J: Prognostic ROC of risk score in ICGC (I) and TCGA (J) 
cohorts. 

 

The clinical characteristic of risk score and 
stratified survival analysis 

Clinical characteristic analyses showed that 
elevated risk scores were significantly associated with 
adverse clinicopathological features, including AFP 
>= 400 ng/ml, age<60 years, poor pathological grade, 
larger tumor size and advanced TNM stage (Figure 
8A-F). To delineate synergistic prognostic effects, 

patients were stratified into four subgroups by 
integrating risk group with dichotomized clinical 
variables. Univariate survival analysis manifested 
high-risk patients with AFP >= 400 ng/ml, age<60 
years, grade G3/G4 or TNM stage III/IV had the 
worst poorest survival outcomes (Figure 8G-L). 

Functional enrichment analysis of risk group 
GSEA of the TCGA cohort identified significant 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3833 

upregulation of some gene sets in high-risk group, 
including positive regulation of cell cycle process, 
mitotic nuclear division, regulation of signal 
transduction by p53 class mediator, positive 
regulation of cell cycle arrest and methylation (Figure 
9A). Furthermore, KEGG pathway analysis further 
revealed significant enrichment of oncogenic 
pathways in high-risk group, such as PLK1 pathway, 
FOXM1 pathway, E2F pathway, MYC pathway and 
p53 regulation pathway (Figure 9B). Particularly, 
these pro-tumorigenic enriched gene sets were 
verified in the ICGC cohort (Figure 9C, D). In low-risk 
group, some metabolic and immune-related gene sets 
were significantly enriched, which be same with the 
C2 subtype (Figure 9E, F). 

Immune-related and drug sensitivity analysis 
Correlation analysis revealed risk score was 

positively related to the infiltration of macrophages 
M0 cells, dendritic cells, T cells CD4 memory 
activated and T cells regulatory (Tregs) cells, but 
negatively related to macrophages M2 cells (Figure 
10A-B). Low-risk group exhibited a higher stromal 
and estimate score compared to high-risk group 
(Figure 10C-D). Furthermore, ssGSEA analysis 
displayed type I IFN response, type II IFN response, 
and cytolytic activity were more active in low-risk 
group (Figure 10E-F).  

 

 
Figure 7. Construction of cox proportional hazards regression model and nomogram. A-C: Multivariate cox proportional hazards regression models in TCGA (A 
and B) and ICGC (C) cohorts. D-E: Nomograms of TCGA (D) and ICGC (E) cohorts. F-G: Calibration curves of nomogram in TCGA (F) and ICGC (G) cohorts. H-I: 
Prognostic ROC of nomograms, risk score and clinical variables in TCGA (H) and ICGC (I) cohorts. 
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Figure 8. The difference and prognosis of risk score in different clinical feature. A-F: The differences of risk score were compared in AFP (A), age (B), pathological 
grade (C), tumor size (D) and TNM stage subgroups (E: TCGA, F: ICGC). G-L: Survival analysis of risk group combined with AFP (G), age (H), pathological grade (I), tumor size 
(J) and TNM stage subgroups (K: TCGA, L: ICGC). 

 
TIDE analysis revealed that the high-risk group 

exhibited significantly lower TIDE and immune 
dysfunction scores, yet higher immune exclusion 
scores compared to the low-risk group (Figure 
11A-D), suggesting diminished immunotherapeutic 

responsiveness in high-risk patients. Furthermore, 
drug sensitivity analysis demonstrated lower IC50 
values for alectinib, bortezomib, brivanib, crizotinib, 
dasatinib, docetaxel, gemcitabine and paclitaxel in the 
high-risk group (Figure 11E-L), indicating enhanced 
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therapeutic response to these drugs. Conversely, 
low-risk group displayed preferential sensitivity to 

capivasertib, dabrafenib, motesanib and palbociclib 
with lower IC50 values (Figure 11M-P). 

 

 
Figure 9. Functional enrichment analysis of risk group. A-B: Upregulated gene sets of high-risk group in TCGA cohort based on the official c5. (A) and c2 
(B) files. C-D: Upregulated gene sets of high-risk group in ICGC cohort based on the official c5 (C) and c2 (D) files. E-F: Downregulated gene sets of high-risk group in TCGA 
(E) and ICGC (F) cohorts. 
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Figure 10. Immune-related analyses. A-B: Correlation of risk score and immune cells in TCGA (A) and ICGC (B) cohorts. C-D: Differences of TME score in TCGA (C) 
and ICGC (D) cohorts. E-F: Differences of immune function in TCGA (E) and ICGC (F) cohorts. *: p<0.05, **: p<0.01, ***: p<0.001. 

 

Verification of PDPRGs overexpression and 
prognostic significance in HCC 

Results of GEPIA and PCR experiment 
confirmed that RDM1, CDCA3 and FLVCR1 were 
significantly upregulated in HCC tissues compared to 
normal liver tissues (Figure 12A-F). Similarly, there 
were significant expression differences for RDM1, 
CDCA3 and FLVCR1 within different tumor stages. 
Patients with stage III emerged a higher expression of 
RDM1, CDCA3 and FLVCR1 than stage I and stage II 

(Figure 12G-I). Kaplan–Meier analysis demonstrated 
overexpression of RDM1, CDCA3 and FLVCR1 had 
significantly worse OS and RFS compared to 
low-expression group (Figure 12J-O). 

Discussion 
Genes usually function together within 

biological networks to execute complex cellular 
processes [26]. Using genome-wide correlation 
analysis of 13 pseudouridine synthase genes, we 
identified 828 PRGs. Functional enrichment analysis 
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revealed these PRGs mainly participate in translation, 
positive regulation of transcription, RNA polymerase, 
the activity of protein and RNA binding, suggesting 
PRGs may affect gene expression and protein 
expression in HCC. Besides, we discovered PRGs 

enriched in cell cycle, HIF−1 signaling pathway, 
PD−L1 expression and PD−1 checkpoint pathway, 
implying PRGs may affect cell growth, anaerobic 
metabolism and immune function in HCC [27-29].  

 

 
Figure 11. Immune-related analyses. A-D: The scores of TIDE (A), MSI (B), immune immune exclusion (C), and dysfunction (D) were compared between the high- and 
low-risk groups. E-P: Drug sensitivity analysis identified preferential drugs for high-risk group (E-L) and low-risk group (M-P). **: p<0.01, ***: p<0.001, ns: no significance. 
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Figure 12. The expression and prognostic value of RDM1, CDCA3 and FLVCR1. A-C: Differential expression analysis in GEPIA platform. D-F: Results of PCR 
experiments. G-I: Differences of gene expression in tumor stage. J-L: K-M survival analyses for OS. M-O: K-M survival analyses for RFS. *: p<0.05, **: p<0.01, ***: p<0.001. 

 
Among these PRGs, differential analysis and 

survival analyses identified 72 core PDPRGs. 
Consensus clustering analysis of these PDPRGs 
stratified HCC into C1 and C2 subtypes.  

Survival analysis revealed that C1 had 
significantly shorter OS and RFS than the C2. 
Correlation analysis between clinical variables and 
molecular clusters indicated that C1 was predom-

inantly associated with advanced TNM stage, higher 
AFP, poor pathological grade, and larger tumor size, 
suggesting its more malignant characteristics. 
Functional enrichment analysis demonstrated 
upregulated genes of C1 involved in p53 signaling 
pathway, cell cycle, cell proliferation, apoptotic 
process and cell division. As previously reported, 
dysfunction of the p53 pathway promotes tumor 
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progression by disrupting cell cycle, apoptosis, and 
proliferation [30, 31]. The mutation analysis 
confirmed a higher TP53 mutation frequency in C1, 
implying p53 signaling pathway may play a role in 
C1. It is well known that the molecular classification 
of HCC is widely recognized to two mainly subtypes: 
the proliferation and non-proliferation subtypes [32, 
33]. The proliferation subtype, characterized by high 
AFP levels, poor differentiation, frequent TP53 
mutations, up-regulation of cell cycle and mitosis, 
vascular invasion and unfavorable prognosis [34], 
closely aligns with the molecular features of C1 in our 
study. 

In contrast, we found that the C2 subtype 
characterized by favorable clinical features and better 
prognosis, and exhibited the molecular signatures 
which metabolic and immune processes-related genes 
were distinctly upregulated. Specifically, these 
included metabolic pathways, bile secretion, 
oxidoreductase activity, PPAR signaling pathway, 
inflammatory response and response to tumor 
necrosis factor. The PPAR signaling pathway is 
known to regulate metabolic homeostasis and 
inflammatory responses in HCC [35, 36], and 
modulates immune cell function and infiltration by 
influencing metabolic reprogramming, oxidative 
stress, and inflammatory cytokine production [37]. 
Through a series of immune-related analysis, our 
study revealed that the C2 emerged a higher immune 
cell infiltration and more active of immune function. 
These findings align with the reported molecular 
signatures of non-proliferation subtype, which 
characterized by metabolic reprogramming, positive 
prognosis, and enhanced immune microenvironment 
activity [34]. 

Furthermore, we developed a prognostic risk 
score signature, included RDM1, CDCA3 and 
FLVCR1, to predict clinical outcomes in HCC. 
Multivariate Cox regression analysis confirmed this 
signature as an independent prognostic factor. 
Notably, the nomogram model integrating with risk 
score and TNM stage achieved decent predictive 
performance with higher specificity and sensitivity 
than TNM stage alone, suggesting its potential as a 
clinical tool for predicting HCC prognosis. 

Regarding the molecular features of high-risk 
and low-risk groups, we observed that elevated risk 
scores were predominantly observed in HCC patients 
with age<60 years, advanced TNM stage, poor 
pathological grade, larger tumor size or AFP>=400 
ng/ml. Survival analysis further confirmed a 
significantly poorer prognosis when high-risk 
patients equipped with one of above-mentioned 
clinical features. From a molecular mechanistic 
perspective, GSEA showed that gene expression 

levels of cell cycle, mitotic division-related biological 
processes and several cancer-related pathways 
remarkably increased in high-risk group. Notably, 
dysregulation of PLK1 and MYC pathways was 
previously reported to drive uncontrolled 
proliferation and hepatocarcinogenesis [38, 39]. 
Up-regulation of E2F and FOXM1 pathways were 
reported to promote cell proliferation and restrain 
apoptosis [40, 41]. These results implied that high-risk 
group may regulate cell cycle, mitotic division, cell 
proliferation to accelerate HCC development. Indeed, 
available literatures had demonstrated CDCA3 
overexpression was associated with poor prognosis of 
HCC and enhanced the migration and invasion of 
HCC cell via E2F pathway activation [42, 43]. RDM1 
and FLVCR1 overexpression was found to be 
correlated with poor OS and PFS in HCC [44, 45], 
though their functional roles in HCC remain unclear. 

Tumor progression is closely associated with the 
dynamic composition of stromal cells, tumor cells and 
immune cells within the TME [46]. Among these 
components, immune infiltration critically influences 
immune surveillance and anti-tumor responses [47]. 
Traditionally, high immune infiltration coupled with 
favorable prognosis are classified as the "hot" immune 
subtype [48]. This subtype is more likely to benefit 
from immunotherapy [49], particularly in cases with 
abundant CD8+ T cell infiltration [50]. Through 
immune-related analyses, we observed that C2 
displayed significantly higher immune cell infiltration 
compared to C1, including CD8+ T cells, mast cells, 
NK cells, B cells and DCs. Additionally, C2 exhibited 
higher activity scores of immune checkpoints, 
cytolysis, inflammation and IFN response, suggesting 
greater potential sensitivity to immune checkpoint 
inhibitors in C2 subgroup. Conversely, C1 
demonstrated lower immune infiltration alongside 
upregulated immune checkpoint gene expression, 
which is an immunosuppressive TME type 
characterized by immune exhaustion [51, 52]. 
Interestingly, no marked differences in overall 
immune infiltration were detected between risk 
groups. The low-risk group showed significantly 
stronger cytolytic activity and type I/II IFN responses 
compared to the high-risk group, implying more 
robust innate immune activation [53]. Furthermore, 
the risk score positively correlated with dendritic cell 
density, M0 macrophage infiltration, activated CD4+ 
memory T cells, and Tregs cells, but inversely 
associated with M2 macrophage abundance. Given 
that Tregs cells suppress effector T cell function [54] 
and resting dendritic cells or M0 macrophages may 
facilitate immune evasion [55]. These findings nearly 
align with the aggressive clinical phenotype observed 
in C1. 
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To our knowledge, this study provides the first 
systematic characterization of the molecular profiles 
and prognostic value of PDPRGs in HCC. However, 
several limitations should be acknowledged. First, the 
mechanisms of pseudouridylation remain poorly 
characterized due to limited research in cancer, a gap 
that will be the focus of our subsequent investigations. 
Furthermore, while our findings were derived from 
robust bioinformatics analyses, the absence of 
experimental validation represents a critical limitation 
that warrants resolution in future studies. 
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