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Abstract

Emerging evidence has demonstrated that pseudouridylation regulates mRNA translation and gene expression,
yet its molecular characteristics in hepatocellular carcinoma (HCC) remain unknown. Using public databases,
we developed pseudouridylation-related molecular subtype and risk score model to assess HCC patient
prognosis and disclose their clinical feature, molecular mechanism and immune landscape. Furthermore,
quantitative polymerase chain reaction (QPCR) was performed to verify the expression of RDM1, CDCA3 and
FLVCRI. Specifically, functional enrichment analysis revealed pseudouridylation-related genes (PRGs)
predominantly regulate transcriptional and translational regulation. Prognostic PRGs stratified HCC into two
distinct subtypes, the cluster | had a poor prognosis and was characterized by high alpha fetoprotein level, poor
differentiation, advanced tumor stage, large tumor size, frequent TP53 mutation, up-regulation of cell cycle- and
mitosis-associated genes, which was similar to the aggressive proliferation subtype of HCC. In contrast, the
cluster 2 exhibited good prognosis and increased infiltration of immune cells, resembling the non-proliferation
subtype of HCC, and suggesting its potential responsiveness to immunotherapy. Survival analysis discovered
that the risk score model served as an independent prognostic factor, with high-risk group exhibiting
significantly shorter overall survival and recurrence-free survival than low-risk group. Notably, receiver
operating characteristic analysis revealed that the risk model had a powerful predictive performance for I- and
3- year survival (AUC=0.806). In addition, functional enrichment analysis suggested that upregulated genes of
high-risk group displayed an enrichment of cell cycle progression, mitotic division, and some oncogenic
signaling pathways (PLK1, FOXMI, and p53 signaling pathways). qPCR experiment confirmed the significant
overexpression of RDM1, CDCA3, and FLVCRI in HCC tissues, being consistent with public database analysis.
In conclusion, pseudouridylation related-molecular subtype and risk model may effectively predict the
prognosis and therapeutic response of HCC.

Keywords: hepatocellular carcinoma; pseudouridylation; pseudouridine; molecular subtype; prognostic risk model; RNA
modification

Introduction

Primary liver cancer is the fifth most common  Hepatocellular carcinoma (HCC) is the most common
cancer and the second leading cause of cancer-related  pathological type of liver cancer, accounting for
deaths, with its incidence and mortality ranking sixth ~ 75%-85% of cases [2]. Unfortunately, more than half of
and third among 36 «cancers, respectively [1]. HCC patients are diagnosed at the middle or

https://lwww.jcancer.org



Journal of Cancer 2025, Vol. 16

3824

advanced stages during first visit [3], and the
prognosis remains very poor with the 5-year survival
rate being lower than 20% [4]. In recent years,
immunotherapy advances show a promising role on
improving the survival of HCC [5]. However, the
heterogeneity of immunotherapy responses and the
emergence of drug resistance pose major challenges
that need to be overcome [6]. Therefore, it is necessary
to identify molecular subtype and develop new
biomarkers for predicting the immunotherapy
response and prognosis of HCC [7].

Advances in high-throughput sequencing
technologies have enabled the detection of
pseudouridine (¥) in human mRNA and are
facilitating the elucidation of its biological functions.
Y is a ubiquitous modified nucleotide and is
dynamically regulated in human mRNA [8, 9]. It has
been reported that ¥ can affect pre-mRNA processing
through pre-mRNA modification [10], suggesting its
potential role on regulating gene expression. Current
research on pseudouridylation in cancer is
progressing, with findings demonstrating that
pseudouridine modifications contribute to the
progression of various cancers by regulating
translation and gene expression [11]. For instance,
DKC1 overexpression impacts RNA pseudouri-
dylation or telomerase activity, which promotes the
synthesis of oncogenic proteins and drives tumor
progression in gastric cancer [12], colorectal cancer
[13] and uterine corpus endometrial carcinoma [14].
RPUSD1 overexpression enhances elF4E expression
via its RluA catalytic domain, and activates the
PI3BK/AKT signaling pathway to promote malignant
phenotypes of non-small cell lung cancer cells [15].
PUSI overexpression facilitates cell migration in clear
cell renal cell carcinoma by promoting mRNA
pseudouridylation and stabilizing SMOX gene
transcripts [16]. PUS7-dependent tRNA modifications
regulate the growth and proliferation of colorectal
cancer [17], pancreatic cancer [18] and gastric cancer
cell [19] by modulating the translation of key genes. In
HCC, PUSl-mediated pseudouridylation has been
reported to enhance the translation of oncogenes,
thereby promoting HCC progression [20]. A study
demonstrated PUS1 involves in HCC progression
through regulating c-MYC and mTOR signaling
pathways [21], consistent with our previous findings
[22]. However, research about pseudouridine
synthases remains limited in HCC.

Therefore, it is meaningful and innovative to
preliminarily explore the pseudouridylation-related
transcriptomic ~ features  using  bioinformatics
approaches.

Materials and Methods

Data sources

The methodological route of this study is
summarized in Figure 1.

Genome expression profiles and clinical data of
370 tumor samples and 50 normal liver samples were
download from The Cancer Genome Atlas (TCGA;
https:/ / cancergenome.
nih.gov/) database to be a training cohort, samples
with survival time shorter than 30 days were
excluded. The International Cancer Genome
Consortium (ICGC) cohort, containing 202 normal
liver tissues and 240 HCC tissues, were downloaded
from the ICGC portal to be the validation cohort. 75%
patients of this cohort had chronic hepatitis B /C virus
infection [23]. Though the proportion of wviral
hepatitis-associated HCC cases in the TCGA cohort
was limited, the two cohorts covered the majority of
HCC populations with different etiologies.

Pseudoureoside synthase genes—including
TRUB1, TRUB2, RPUSD1, RPUSD2, RPUSD3,
RPUSD4, PUS1, PUSL1, PUS3, PUS7, PUS7L, PUS10
and DKC1 —were identified through previous studies
(22, 24].

Correlation and differential analysis

To identify pseudouridylation-related genes
(PRGs), a Pearson correlation analysis between 19937
protein-coding genes and 13 pseudoureside synthe-
tase genes was performed using the normalized
RNAseq data of TCGA cohort. Genes with p-value <
0.001 and correlation coefficient > 0.4 were defined as
PRGs in this study. Subsequently, differential
expression analysis between HCC and normal liver
samples was conducted among these PRGs using the
limma R package, genes exhibiting |log2(fold
change)| >1 and adjusted p-value <0.05 were
identified as differential PRGs (DPRGs).

Identification of prognostic DPRGs and
molecular subtypes

Univariate Cox survival analysis was performed
to identify prognostic DPRGs (PDPRGs) using
survival and survminer R packages. Subsequently, in
order to investigate the molecular subtyping of
PDPRGs, the expression data of these PDPRGs were
applied for consistent clustering analysis by the
ConsensusClusterPlus R package.

Construction of risk score model and
nomogram

Furthermore, least absolute shrinkage and
selection operatorregression analysis was performed
to reduce the collinearity of PDPRGs and build a
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prognostic risk score model using glmnet and
survival R packages. The risk score was calculated

using the following formula: risk score = (B; X
expression;) (B2 x expression,) (Bn
expression,), where [ represents the survival

coefficient for each gene. Subsequently, samples were
divided into high- and low-risk groups based on the
median risk score, and Kaplan-Meier survival
analysis was wused to analyze the prognostic
significance of risk score groups. Finally, the
predictive performance of the model was evaluated
via receiver operating characteristic (ROC) analysis.

To investigate the clinical utility of risk score, a
nomogram integrating risk score and TNM stage was
developed using the rms R package. The predictive
accuracy of the nomogram was validated through
calibration curves, and ROC analysis was conducted
to estimate the prognostic performance of nomogram,
risk score and TNM stage, respectively.

Survival and clinical characteristic analysis

Kaplan-Meier survival analysis was employed to
screen the OS-related clinical variables (p<0.05).
Multivariate Cox proportional hazards regression
analysis was then used to assess the independent
prognostic value of cluster groups and risk score
groups.

Associations between cluster groups and clinical
variables were examined using Chi-square test in R
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software. Additionally, differences of risk score across
different clinical subgroups were analyzed using
Wilcoxon test.

Functional enrichment analysis

Database for Annotation, Visualization and
Integrated  Discovery (DAVID, https://david.
ncifcrf.gov/) is bioinformatics platform that provides
functional annotation tools for researchers to mine
potential biological insights through uploading a gene
list [25]. Based on the differential expression analysis
between cluster 1 (Cl) and cluster 2 (C2), we
submitted a list of differentially expressed genes
(DEGs) on DAVID portal, and retrieved significantly
enriched functional terms.

Gene Set Enrichment Analysis (GSEA) software
(version 4.3.2) is a computational method to identify
enriched gene sets associated with specific biological
processes, pathways, or diseases using RNA-seq data
and predefined gene set annotations. For both TCGA
and ICGC cohorts, GSEA was performed by
integrating RN A-seq expression profiles with sample
risk group classifications, gene sets meeting the
thresholds of p-value < 0.05 and discovery rate < 0.25
were defined as significantly upregulated or
downregulated.
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Figure 1. The graphical abstract displayed the main methods and results of our study. PRGs: pseudouridylation-related genes; DPRGs: Differential PRGs; PDPRGs:
Prognostic DPRGs; DEGs: Differentially expressed genes; PCR: Polymerase chain reaction.
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Analysis of immune microenvironment, cell
infiltration and functional states

The estimate R package utilized to calculate the
tumor microenvironment (TME) score for each
sample. The CIBERSORT algorithm was adopted to
estimate immune cell abundances in R software, and
the single-sample gene set enrichment analysis
(ssGSEA) was employed to assess immune cell
infiltration levels and immune-related functional
activity with the GSVA and GSEABase R packages.
Tumor Immune Dysfunction and Exclusion (TIDE)
scores were obtained from the TIDE portal
(http:/ /tide.dfci.harvard.edu/) to predict the
immune response in HCC. All the immune evaluation
algorithms were implemented based on gene
expression profiles of TCGA and ICGC cohorts.

Subsequently, differences of TME score, ssGSEA
score, TIDE score, and immune checkpoint gene
expression levels across cluster subgroups and risk
subgroups were analyzed using the Wilcoxon test.
Spearman correlation analysis was conducted to
evaluate the association between risk scores and
immune cell abundances.

Mutation analysis

Genome-wide somatic mutation data of TCGA
cohort was downloaded from the Genomic Data
Commons portal (https://portal.gdc.cancer.gov/).
The maftools R package was utilized to visualize and
analyze the somatic mutation landscape of molecular
subtypes C1 and C2.

Drug sensitivity prediction analysis

Drug sensitivity analysis was performed using
the oncoPredict R package. The sensitivity (IC50
values) of 367 drugs in the GDSC1 database was
predicted based on mRNA expression data of RDM1,
CDCA3 and FLVCRI1. Differences between IC50
values and risk groups were statistically compared
using the Wilcoxon test.

Verification of expression and prognostic
significance of PDPRGs

The Gene Expression Profiling Interactive
Analysis  (GEPIA;  http://gepia.cancer-pku.cn/)
platform was utilized to assess the differential
expression of RDM1, CDCA3 and FLVCRI1 between
normal liver tissues and HCC tissues, as well as across
different tumor stages. The Kaplan-Meier Plotter
database (https://www.kmplot.com/analysis/) was
employed to evaluate the prognostic significance of
these genes in terms of overall survival.

Quantitative polymerase chain reaction
(qPCR)

Twenty paired HCC and adjacent non-tumor
liver tissue samples were collected from the First
Affiliated Hospital of Guangxi Medical University.
Total RNA was isolated from tissues using TrizolTM
reagent (Invitrogen, USA), and cDNA synthesis was
performed with the PrimeScript™ RT reagent kit
(Takara, Japan). qPCR was completed using the
FastStart Universal SYBR® Green Master Mix (Roche,
Germany), Relative mRNA expression levels were
calculated via the 2-AACT method, with primer
sequences listed in Table 1.

All specimens  were derived  from
HBV-associated HCC patients with BCLC stage A or
B, and were histologically confirmed as HCC by
postoperative pathology. Written informed consent
was obtained from all patients, and this study was
approved by the Ethical Review Committee of the
First Affiliated Hospital of Guangxi Medical
University [Approval Number: 2025-E0484].

Statistical analysis

Kaplan-Meier survival analysis and Cox
proportional hazards regression analysis were
conducted using SPSS 22.0 software. Hazard ratios
(HR) and 95% confidence intervals were calculated to
quantify prognostic risks. Pearman correlation
analysis, differential expression analysis, univariate
Cox survival analysis and Wilcoxon tests were
performed in R software (version 4.3.2). Paired
Student's t-test was employed for the statistical
analysis of PCR experiment. A threshold of p < 0.05
was considered statistically significant.

Table 1. Primer sequences for PCR.

Gene Primer sequences
GAPDH forward GTCAGCCGCATCTTCTTT
reverse CGCCCAATACGACCAAAT
RDM1 forward TCCGGGTCTTCCCAAATGCT
reverse GTGCCAAGACGAACCTTGACTG
CDCA3 forward TAACTTCGGGAGTTGAGCCAC
reverse CTGTTTCACCAGTGGGCTTG
FLVCR1 forward GTAGCTGGAATGGTGGGCTC
reverse GAAGAAGCCAAGCACCCCTC
Results

Identification of prognostic DPRGs in the
TCGA cohort

Through correlation analysis in the TCGA
cohort, 828 PRGs were identified (Table S1). The
co-expression network visualized the top 100 most
strongly correlated genes (Figure 2A). Functional
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enrichment analysis suggested that these PRGs were
significantly enriched in translation, ribosomal small
subunit biogenesis, mitochondrial translation, cell
cycle and PD-1 checkpoint pathway (Figure 2B).
Differential expression analysis identified 54
upregulated and 82 downregulated PRGs in HCC
tissues compared to normal liver tissues (Figure 2C,
Table S2). Subsequent wunivariate Cox survival
analysis of these 134 PRGs determined 72 genes
significantly associated with OS (Figure 2D).

Development of prognostic DPRGs-related
molecular subtype

Consistent clustering analysis stratified HCC
samples into two distinct molecular subtypes (C1 and
C2) with a ratio of 1:1.9 (Figure 3A-B). Compared to
C2, the C1 subtype exhibited significantly higher
serum alpha-fetoprotein (AFP) levels, poorer
pathological grade, larger tumor size, and more
advanced TNM stage (Figure 3C). Survival analysis
demonstrated that the C1 had markedly shorter OS
(Figure 3D) and recurrence-free survival (RFS; Figure
3E). Multivariate Cox regression confirmed the C1/C2
classification as an independent prognostic factor
(Figure 3F-G).
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To investigate the wunderlying molecular
mechanism behind these two clusters, 900 DEGs were
identified between C1 and C2 (Figure 4A-B, Table S3)
and subjected to functional enrichment analysis via
DAVID platform. Upregulated DEGs in Cl1 were
significantly enriched in cell cycle, cell proliferation,
cell division, apoptotic process and p53 signaling
pathway (Figure 4C). Conversely, downregulated
DEGs in C1 showed associations with inflammatory
response, cellular response to tumor necrosis factor,
metabolism and PPAR signaling pathway (Figure
4D).

The differences of TP53 mutation and immune
landscapes between two molecular subtypes

To validate the dysfunction of p53 signaling and
inflammatory pathways, we analyzed genomic
mutations and immune landscapes, and found that C1
subtype exhibited a significantly higher TP53
mutation rate than C2 (37% vs. 14%; Figure 4E-F),
aligning with the functional enrichment analysis
above. Immune analysis discovered that C2 appeared
higher estimate, immune and stromal score compared
to Cl1 (Figure 5A-C), indicating lower immune
infiltration level in C1 subtype.
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Figure 3. Consistency cluster analysis. A: Consistency clustering divided TCGA-LIHC samples into two clusters. B: Consensus clustering cumulative distribution functions
for k =2 to 9. C: Correlation heatmap between clinicopathologic features and clusters. D-E: Kaplan-Meier analysis of clusters for OS (D) and RFS (E). F-G: Multivariate cox

proportional hazards regression model of clusters for OS (F) and RFS (G).

In addition, ssGSEA further demonstrated lower
of cytotoxic immune cells in C1, including B cells,
CD8+ T cells, mast cells, NK cells and DCs (Figure
5D). Cl1 subtype also showed suppressed
immune-related functional activity, with diminished
checkpoint, cytolysis, inflammatory and IFN
responses (Figure 5E), suggesting the C1 subtype
exhibits an immune-cold phenotype. Moreover, some
immune checkpoint genes, such as CTLA4, LA3 and
PCCD1, were overexpressed in C1 (Figure 5F),
implying C1 subtype may have occurred immuno-
suppression. TIDE analysis confirmed higher immune
exclusion score in C1 (Figure 5G), explaining that
immune cells exclusion may be the cause of
immune-cold phenotype for C1.

Prognostic DPRGs-based risk score model

RDM1, CDCA3 and FLVCR1 were selected
through LASSO regression analysis to construct the

risk score model (Figure 6A-B). Using the median risk
score as the cutoff, TCGA and ICGC cohorts were
stratified into high-risk and low-risk groups,
Kaplan-Meier  survival analysis demonstrated
high-risk group significantly suffered worse OS and
RFS than low-risk group (Figure 6C-E). The survival
coefficients for RDM1, CDCA3, and FLVCR1 were
0.167, 0.058, and 0.025, respectively (Figure 6F).
Scatter plots showed HCC mortality rates escalated
with increasing risk scores, while prolonged survival
times were observed in low-risk groups (Figure
6G-H). ROC curves showed robust predictive
performance, with AUC 1-/3-/5-year AUC values of
0.757/0.806/0.581 (ICGC, Figure 6I) and 0.761/0.680/
0.582 (TCGA, Figure 6]), indicating superior accuracy
for short-to-medium term survival prediction (1-3
years).
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The predictive power of nomogram was

stronger than TNM stage

predictor (Figure 7A-C).
The nomograms composed of TNM stage and
risk group (Figure 7D-E) were proved to have a good

Kaplan-Meier survival analysis identified TNM  predictive performance by calibration plots (Figure
stage, tumor size and microvascular invasion as  7F-G). Furthermore, ROC curves indicated that the

significant ~ prognostic  variables
Multivariate Cox proportional hazards regression stage (Figure 7H), and predictive ability of risk score
analysis incorporating these clinical factors confirmed = and nomogram were both better than TNM stage in

the risk-score group as an independent prognostic ~ ICGC cohort (Figure 7I).

(Table

2-4).  predictive power of nomogram was better than TNM
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Table 2. The result of univariate survival analysis in TCGA cohort.

Variables Value N Death Median (days) HR (95%CTI) P
Risk low 171 49 2131 1.00

high 172 74 1397 2.01 (1.4,2.89) <0.001
Cluster cluster2 120 36 2116 1.00

clusterl 223 87 1694 1.62 (1.09, 2.39) 0.015
Age (years) 60 178 69 1622 1.00

<60 165 54 2532 0.86 (0.6, 1.22) 0.395
Gender female 110 49 1490 1.00

male 233 74 2486 0.8 (0.56, 1.15) 0.229
AFP (ng/ml)a <400 199 56 2456 1.00

>= 400 61 21 2486 1.1 (0.66, 1.83) 0.702
Child-pughb A 204 52 3125 1.00

B+C 21 9 1005 1.85(0.91, 3.77) 0.087
MVIe no 188 54 2456 1.00

yes 101 35 2486 1.48 (0.96, 2.27) 0.071
Pathological Td T1 168 41 2456 1.00

T2 84 28 1852 1.53 (0.95, 2.48) 0.081

T3 75 43 770 2,95 (1.92, 4.54) <0.001

T4 13 10 558 6.7 (3.23,13.89) <0.001
TNM stagee I 161 37 2532 1.00

I 77 24 1852 1.52 (0.91, 2.54) 0.110

I 80 45 770 3.07 (1.98, 4.75) <0.001
Histologic gradef Gl 53 17 2116 1.00

G2 161 58 1694 1.23 (0.71, 2.11) 0.459

G3 112 39 1622 1.19 (0.67, 2.1) 0.556

G4 12 5 NA 2.04 (0.71, 5.81) 0.175

Clinical variables with missing values: a, b, ¢, d, e and f. N: number of patients; MVI: microvascular invasion; NA: not available; HR: hazard ratio; 95% CI:95% confidence
interval. HR (95%ClI): calculated by Cox proportional hazards regression model. P: calculated by log-rank test.

Table 3. The result of univariate survival analysis for recurrence in TCGA cohort.

Variables Value Ns& Recurrence Median (days) HR (95%CI) P
Risk low 151 60 1117 1.00

high 150 79 491 1.78 (1.27, 2.49) 0.001
Cluster cluster2 105 40 1453 1.00

clusterl 196 99 598 1.78 (1.23, 2.57) 0.002
Age (years) 60 155 74 776 1.00

<60 146 65 1509 0.89 (0.64, 1.24) 0.488
Gender female 94 45 893 1.00

male 207 94 875 0.98 (0.69, 1.4) 0.919
AFP (ng/ml)a <400 172 77 912 1.00

>= 400 51 21 1509 0.94 (0.58, 1.52) 0.788
Child-pughb A 180 83 990 1.00

B+C 16 8 1286 1.54 (0.74,3.2) 0.242
MVIe no 167 64 1279 1.00

yes 87 43 644 1.54 (1.05, 2.27) 0.028
Pathological Td T1 144 47 2028 1.00

T2 75 38 754 2.02(1.31,3.1) 0.001

T3 67 45 301 3.81 (252,5.78) <0.001

T4 12 7 289 5.56 (2.41,12.83) <0.001
TNM stagee 1 138 45 1509 1.00

I 69 34 754 1.93 (1.23,3.01) 0.003

11 72 47 297 3.67 (2.42, 5.56) <0.001
Histologic gradef Gl 50 21 990 1.00

G2 141 64 754 1.23 (0.75, 2.02) 0.408

G3 97 48 828 1.25 (0.75, 2.09) 0.393

G4 8 2 NA 0.61 (0.14, 2.61) 0.500

Clinical variables with missing values: a, b, ¢, d, e and f. g: 42 patients lack data of recurrence. N: number of patients; MVI: microvascular invasion; NA: not available; HR:
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hazard ratio; 95% CI:95% confidence interval. HR (95%ClI): calculated by Cox proportional hazards regression model. P: calculated by log-rank test.

Table 4. The result of univariate survival analysis in ICGC cohort.

Variables Value N Events Median (years) HR (95%CI) P
TMNstage 1 37 1 NA 1.00
1I 109 18 NA 6.5(0.87,48.71) 0.036
1II 73 15 NA 9.28 (1.22,70.32) 0.009
v 21 9 3.29 21.75 (2.74,172.42) <0.001
HR: calculated by Cox proportional hazards regression model. P: calculated by log-rank test. NA: not available.
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.. .. . atients were stratified into four subgroups b
The f:llmcal cltaracterlstolc of risk score and &tegrating risk group with dichotomizifﬂl gl)inica}i
stratified survival analysis variables. Univariate survival analysis manifested
Clinical characteristic analyses showed that  high-risk patients with AFP >= 400 ng/ml, age<60
elevated risk scores were significantly associated with ~ years, grade G3/G4 or TNM stage III/IV had the
adverse clinicopathological features, including AFP  worst poorest survival outcomes (Figure 8G-L).
>= 400 ng/ml, age<60 years, poor pathological grade,
larger tumor size and advanced TNM stage (Figure
8A-F). To delineate synergistic prognostic effects, GSEA of the TCGA cohort identified significant

Functional enrichment analysis of risk group
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upregulation of some gene sets in high-risk group,
including positive regulation of cell cycle process,
mitotic nuclear division, regulation of signal
transduction by p53 class mediator, positive
regulation of cell cycle arrest and methylation (Figure
9A). Furthermore, KEGG pathway analysis further
revealed significant enrichment of oncogenic
pathways in high-risk group, such as PLK1 pathway,
FOXM1 pathway, E2F pathway, MYC pathway and
p53 regulation pathway (Figure 9B). Particularly,
these pro-tumorigenic enriched gene sets were
verified in the ICGC cohort (Figure 9C, D). In low-risk
group, some metabolic and immune-related gene sets
were significantly enriched, which be same with the
C2 subtype (Figure 9E, F).

Immune-related and drug sensitivity analysis

Correlation analysis revealed risk score was
positively related to the infiltration of macrophages
MO cells, dendritic cells, T cells CD4 memory
activated and T cells regulatory (Tregs) cells, but
negatively related to macrophages M2 cells (Figure
10A-B). Low-risk group exhibited a higher stromal
and estimate score compared to high-risk group
(Figure 10C-D). Furthermore, ssGSEA analysis
displayed type I IFN response, type II IFN response,
and cytolytic activity were more active in low-risk
group (Figure 10E-F).
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Figure 8. The difference and prognosis of risk score in different clinical feature. A-F: The differences of risk score were compared in AFP (A), age (B), pathological
grade (C), tumor size (D) and TNM stage subgroups (E: TCGA, F: ICGC). G-L.: Survival analysis of risk group combined with AFP (G), age (H), pathological grade (l), tumor size

(J) and TNM stage subgroups (K: TCGA, L: ICGC).

TIDE analysis revealed that the high-risk group
exhibited significantly lower TIDE and immune
dysfunction scores, yet higher immune exclusion
scores compared to the low-risk group (Figure
11A-D), suggesting diminished immunotherapeutic

responsiveness in high-risk patients. Furthermore,
drug sensitivity analysis demonstrated lower IC50
values for alectinib, bortezomib, brivanib, crizotinib,
dasatinib, docetaxel, gemcitabine and paclitaxel in the
high-risk group (Figure 11E-L), indicating enhanced
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therapeutic response to these drugs. Conversely,
low-risk group displayed preferential sensitivity to
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Verification of PDPRGs overexpression and
prognostic significance in HCC

Results of GEPIA and PCR experiment
confirmed that RDM1, CDCA3 and FLVCR1 were
significantly upregulated in HCC tissues compared to
normal liver tissues (Figure 12A-F). Similarly, there
were significant expression differences for RDM1,
CDCA3 and FLVCR1 within different tumor stages.
Patients with stage III emerged a higher expression of
RDM1, CDCA3 and FLVCRI1 than stage I and stage 1I

(Figure 12G-I). Kaplan-Meier analysis demonstrated
overexpression of RDM1, CDCA3 and FLVCR1 had
significantly worse OS and RFS compared to
low-expression group (Figure 12J-O).

Discussion

Genes usually function together within
biological networks to execute complex cellular
processes [26]. Using genome-wide correlation
analysis of 13 pseudouridine synthase genes, we
identified 828 PRGs. Functional enrichment analysis
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revealed these PRGs mainly participate in translation,
positive regulation of transcription, RNA polymerase,
the activity of protein and RNA binding, suggesting
PRGs may affect gene expression and protein
expression in HCC. Besides, we discovered PRGs

A group [T hign [ tow

B group [] tign [ tow

enriched in cell cycle, HIF-1 signaling pathway,
PD-L1 expression and PD-1 checkpoint pathway,
implying PRGs may affect cell growth, anaerobic
metabolism and immune function in HCC [27-29].
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experiments. G-I: Differences of gene expression in tumor stage. J-L: K-M survival analyses for OS. M-O: K-M survival analyses for RFS. *: p<0.05, **: p<0.01, ***: p<0.001.

Among these PRGs, differential analysis and
survival analyses identified 72 core PDPRGs.
Consensus clustering analysis of these PDPRGs
stratified HCC into C1 and C2 subtypes.

Survival analysis revealed that C1 had
significantly shorter OS and RFS than the C2.
Correlation analysis between clinical variables and
molecular clusters indicated that C1 was predom-

inantly associated with advanced TNM stage, higher
AFP, poor pathological grade, and larger tumor size,
suggesting its more malignant characteristics.
Functional enrichment analysis demonstrated
upregulated genes of C1 involved in p53 signaling
pathway, cell cycle, cell proliferation, apoptotic
process and cell division. As previously reported,
dysfunction of the p53 pathway promotes tumor
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progression by disrupting cell cycle, apoptosis, and
proliferation [30, 31]. The mutation analysis
confirmed a higher TP53 mutation frequency in C1,
implying p53 signaling pathway may play a role in
C1. It is well known that the molecular classification
of HCC is widely recognized to two mainly subtypes:
the proliferation and non-proliferation subtypes [32,
33]. The proliferation subtype, characterized by high
AFP levels, poor differentiation, frequent TP53
mutations, up-regulation of cell cycle and mitosis,
vascular invasion and unfavorable prognosis [34],
closely aligns with the molecular features of C1 in our
study.

In contrast, we found that the C2 subtype
characterized by favorable clinical features and better
prognosis, and exhibited the molecular signatures
which metabolic and immune processes-related genes
were distinctly upregulated. Specifically, these
included metabolic pathways, bile secretion,
oxidoreductase activity, PPAR signaling pathway,
inflammatory response and response to tumor
necrosis factor. The PPAR signaling pathway is
known to regulate metabolic homeostasis and
inflammatory responses in HCC [35, 36], and
modulates immune cell function and infiltration by
influencing metabolic reprogramming, oxidative
stress, and inflammatory cytokine production [37].
Through a series of immune-related analysis, our
study revealed that the C2 emerged a higher immune
cell infiltration and more active of immune function.
These findings align with the reported molecular
signatures of non-proliferation subtype, which
characterized by metabolic reprogramming, positive
prognosis, and enhanced immune microenvironment
activity [34].

Furthermore, we developed a prognostic risk
score signature, included RDM1, CDCA3 and
FLVCR1, to predict clinical outcomes in HCC.
Multivariate Cox regression analysis confirmed this
signature as an independent prognostic factor.
Notably, the nomogram model integrating with risk
score and TNM stage achieved decent predictive
performance with higher specificity and sensitivity
than TNM stage alone, suggesting its potential as a
clinical tool for predicting HCC prognosis.

Regarding the molecular features of high-risk
and low-risk groups, we observed that elevated risk
scores were predominantly observed in HCC patients
with age<60 vyears, advanced TNM stage, poor
pathological grade, larger tumor size or AFP>=400
ng/ml. Survival analysis further confirmed a
significantly poorer prognosis when high-risk
patients equipped with one of above-mentioned
clinical features. From a molecular mechanistic
perspective, GSEA showed that gene expression

levels of cell cycle, mitotic division-related biological
processes and several cancer-related pathways
remarkably increased in high-risk group. Notably,
dysregulation of PLK1 and MYC pathways was
previously — reported to drive uncontrolled
proliferation and hepatocarcinogenesis [38, 39].
Up-regulation of E2F and FOXM1 pathways were
reported to promote cell proliferation and restrain
apoptosis [40, 41]. These results implied that high-risk
group may regulate cell cycle, mitotic division, cell
proliferation to accelerate HCC development. Indeed,
available literatures had demonstrated CDCA3
overexpression was associated with poor prognosis of
HCC and enhanced the migration and invasion of
HCC cell via E2F pathway activation [42, 43]. RDM1
and FLVCR1 overexpression was found to be
correlated with poor OS and PFS in HCC [44, 45],
though their functional roles in HCC remain unclear.

Tumor progression is closely associated with the
dynamic composition of stromal cells, tumor cells and
immune cells within the TME [46]. Among these
components, immune infiltration critically influences
immune surveillance and anti-tumor responses [47].
Traditionally, high immune infiltration coupled with
favorable prognosis are classified as the "hot" immune
subtype [48]. This subtype is more likely to benefit
from immunotherapy [49], particularly in cases with
abundant CD8+ T cell infiltration [50]. Through
immune-related analyses, we observed that C2
displayed significantly higher immune cell infiltration
compared to C1, including CD8+ T cells, mast cells,
NK cells, B cells and DCs. Additionally, C2 exhibited
higher activity scores of immune checkpoints,
cytolysis, inflammation and IFN response, suggesting
greater potential sensitivity to immune checkpoint
inhibitors in C2 subgroup. Conversely, Cl1
demonstrated lower immune infiltration alongside
upregulated immune checkpoint gene expression,
which is an immunosuppressive TME type
characterized by immune exhaustion [51, 52].
Interestingly, no marked differences in overall
immune infiltration were detected between risk
groups. The low-risk group showed significantly
stronger cytolytic activity and type 1/II IFN responses
compared to the high-risk group, implying more
robust innate immune activation [53]. Furthermore,
the risk score positively correlated with dendritic cell
density, MO macrophage infiltration, activated CD4+
memory T cells, and Tregs cells, but inversely
associated with M2 macrophage abundance. Given
that Tregs cells suppress effector T cell function [54]
and resting dendritic cells or M0 macrophages may
facilitate immune evasion [55]. These findings nearly
align with the aggressive clinical phenotype observed
in CI.
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To our knowledge, this study provides the first
systematic characterization of the molecular profiles
and prognostic value of PDPRGs in HCC. However,
several limitations should be acknowledged. First, the
mechanisms of pseudouridylation remain poorly
characterized due to limited research in cancer, a gap
that will be the focus of our subsequent investigations.
Furthermore, while our findings were derived from
robust bioinformatics analyses, the absence of
experimental validation represents a critical limitation
that warrants resolution in future studies.
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