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Abstract 

Cancer prognosis relies not only on genetic and molecular biomarkers but also on the spatial organization 
of tumor and immune cells within the tumor microenvironment. Recent advances in spatial biology, 
particularly hyperplex immunofluorescence (IMF) imaging, have enabled high-dimensional, quantitative 
assessment of cell-cell interactions at the protein level. Nearest neighbor analysis (NNA) and proximity 
analysis have emerged as crucial computational methods for quantifying spatial distributions of tumor, 
stromal, and immune cells in hyperplex IMF datasets, providing insights into tumor heterogeneity, 
immune infiltration, and treatment response. 
This review explores the current state of nearest neighbor and proximity analysis in cancer research, 
focusing on their applications in prognosis using single-cell spatial proteomics data generated by 
hyperplex IMF imaging. We summarize key computational approaches, including nearest neighbor 
distance metrics, Ripley’s K-function, Voronoi tessellation, and graph-based models, that characterize 
spatial architecture within the tumor microenvironment. We highlight recent applications of hyperplex 
IMF in cancers showcasing how spatial proteomic signatures improve prognostic models. Furthermore, 
we discuss the integration of machine learning and AI-driven methods to leverage these spatial features 
for predictive modeling. Despite significant progress, challenges remain, including standardization of 
methodologies, variability in imaging technologies, and the need for large-scale, high-quality datasets. 
Addressing these challenges could lead to more accurate risk stratification and personalized treatment 
strategies. 
By providing a comprehensive overview of nearest neighbor and proximity analysis in the context of 
hyperplex IMF-based spatial proteomics, this review aims to bridge the gap between computational 
methodologies and clinical applications, offering new perspectives on how spatial organization at the 
protein level influences cancer prognosis. 

Keywords: hyperplex IMF-based spatial proteomics, spatial biology, proximity analysis, cancer, precision oncology, cancer 
prognosis 

Introduction 
Cancer prognosis has traditionally relied on 

molecular and genetic biomarkers, such as driver 
mutations, gene expression profiles, and protein 
markers. However, recent advances in spatial biology 
have demonstrated that tumor progression is not only 
driven by intrinsic genetic alterations but also by the 
spatial organization of tumor cells, immune cells, and 
stromal components within the tumor 

microenvironment (TME). In particular, hyperplex 
immunofluorescence (IMF) imaging now enables 
highly multiplexed, spatially resolved proteomic 
profiling, allowing for comprehensive single-cell 
protein analysis within intact tissues. 

Nearest neighbor analysis (NNA) and proximity 
analysis have emerged as powerful computational 
techniques for quantifying spatial relationships 
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between cells, enabling researchers to study 
tumor-immune interactions [1], clonal evolution [2], 
and microenvironmental influences on therapy 
response [3] (Table 1). These spatial analyses provide 
a quantitative framework for understanding how 
cellular positioning influences prognosis, offering 
new avenues for precision oncology [4]. 

 

Table 1. Computational methods for measuring cell spatial 
connections in order to examine tumor-immune interactions 

Method Description Typical Application 
Nearest Neighbor 
Distance 

Measures closest cell 
distances 

Immune infiltration, tumor 
heterogeneity 

Voronoi Tessellation Divides tissue into polygons Cellular niche analysis 
Ripley’s K-function Measures 

clustering/dispersion 
Clonal expansion, immune 
exclusion 

Graph-based Models Networks of cell-cell 
interactions 

Immune-tumor interplay, 
spatial niches 

 
The concept that spatial patterns within the TME 

influence prognosis has been supported by several 
studies [5-17]. For example, the spatial proximity of 
CD8⁺ T cells to tumor cells has been associated with 
improved survival in multiple cancer types, including 
colorectal [18] and lung cancer [19]. Tumors with high 
infiltration of cytotoxic T cells (tumor-infiltrating 
lymphocytes, TILs) in close proximity to cancer cells 
often have a better prognosis. Conversely, exclusion 
of cytotoxic T cells from the tumor core is typically 
linked to poor prognosis and resistance to immune 
checkpoint blockade therapy [20]. Tumors with 
spatially segregated immune populations may exhibit 
immune evasion mechanisms that contribute to worse 
clinical outcomes. Similarly, the presence and 
organization of macrophages [21], fibroblasts [22], 
and endothelial cells [23] can determine whether the 
TME supports tumor growth or acts as a barrier to 
progression. 

In addition to immune infiltration, tumor 
heterogeneity—a hallmark of cancer—can also be 
captured using spatial proteomics. Tumors with 
highly heterogeneous spatial cell distributions tend to 
be more aggressive and resistant to treatment. Cancer 
is inherently a spatially heterogeneous disease, 
characterized by regions of varying cellular density, 
differential immune cell infiltration, and diverse 
tumor subclones that evolve under selective 
pressures. The spatial distribution of cancer cells and 
their microenvironmental components can directly 
influence tumor aggressiveness, metastatic potential, 
and therapy response [24]. 

Several landmark studies have recently 
leveraged single-cell and spatial transcriptomics to 
map tumor-immune architectures across cancer types 
[25-29]. These studies have revealed how spatial 
organization of tumor-associated fibroblasts, 

immune-suppressive niches, and clonal expansions 
impact prognosis and treatment response. While these 
findings underscore the power of spatially resolved 
single-cell data, the potential of spatial proteomics, 
particularly using hyperplex IMF, to capture 
protein-level interactions in situ has been less 
extensively reviewed. Our review therefore 
complements and extends this body of work by 
focusing on spatial proteomic profiling of the tumor 
microenvironment in cancer prognosis. 

Hyperplex IMF-based spatial proteomics offers a 
powerful approach to deciphering these complex 
spatial patterns by enabling quantitative, 
high-dimensional mapping of protein expression 
across thousands of individual cells within their 
native tissue architecture. This review explores how 
nearest neighbor and proximity analysis frameworks 
can be applied to hyperplex IMF data to decode the 
spatial proteomic architecture of tumors and its 
impact on prognosis. We highlight recent studies 
leveraging hyperplex IMF to reveal spatial 
heterogeneity in cancers such as breast, lung, and 
colorectal cancer, and discuss emerging 
computational tools and challenges in integrating 
spatial features into predictive models (Figure 1). By 
synthesizing current methodologies and clinical 
implications, we aim to provide a comprehensive 
overview of how single-cell spatial proteomics can 
inform cancer risk stratification and precision 
oncology. 

Multiplexed Imaging and Neighborhood 
Analysis 

Artificial intelligence (AI) and machine learning 
(ML) approaches have been integrated into spatial 
analysis workflows. AI models can detect subtle 
spatial patterns that may not be apparent to human 
observers, improving prognostic accuracy. Deep 
learning techniques applied to histopathology slides, 
coupled with nearest neighbor and proximity-based 
spatial features, have demonstrated potential in 
predicting response to immunotherapy and 
chemotherapy [30]. 

Nearest neighbor analysis (NNA) [31] is a 
statistical method used to assess the spatial 
relationships between objects in a given space. In 
cancer research, NNA is commonly applied to 
quantify the distance between tumor cells, immune 
cells, and stromal components, allowing for a detailed 
characterization of the tumor microenvironment. 
Proximity analysis [32] expands on this concept by 
incorporating a broader range of spatial features, 
including cell clustering, cellular niches, and local 
density variations. Nearest neighbor and proximity 
analysis provide powerful tools for studying the 
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spatial organization of tumors and their 
microenvironments. By quantifying how tumor and 
immune cells are arranged within tissue, these 
methods offer valuable prognostic insights and have 
the potential to inform precision medicine strategies. 
The integration of spatial proteomics, high-resolution 
imaging, and AI-driven computational approaches 
will likely enhance our ability to predict cancer 
progression and response to treatment.  

By applying spatial statistics such as Voronoi 
tessellation [33] and Ripley’s K-function [34], it is 
possible to assess clonal expansion, regional 
differences in biomarker expression, and 
microenvironmental influences on tumor evolution. 
However, addressing challenges related to data 
standardization, biological interpretation, and clinical 
validation will be critical for translating these 
methods into routine clinical practice. 

In recent years, advances in multiplexed imaging 
and single-cell analysis have facilitated the study of 
spatial relationships within tumors at unprecedented 
resolution. Technologies such as multiplex 
immunohistochemistry (mIHC) [35], multiplex 
immunofluorescence (mIF) [36], Imaging Mass 
Cytometry (IMC) [37], and spatial transcriptomics [38] 
allow researchers to map cellular interactions in situ, 
revealing how spatial positioning influences tumor 
biology. Multiplexed imaging techniques such as 
CODEX (CO-Detection by Indexing) [39] and 
CELLDive [40] allow researchers to simultaneously 
measure dozens of proteins in tissue sections while 
preserving spatial information [41]. These methods 
provide an unprecedented opportunity to study how 
different cell types interact within the TME and how 

these interactions contribute to patient outcomes and 
the integration of computational spatial analysis 
methods, such as nearest neighbor distance 
calculations, graph-based approaches, and clustering 
algorithms, has further enhanced our ability to 
interpret spatial data in the context of prognosis [41]. 

It is important to recognize that the spatial 
patterns identified through nearest neighbor and 
proximity analysis can have distinct features and 
consequences in differentiated versus stem-like cell 
populations. In differentiated cells, nearest neighbor 
interactions often reflect the structural and functional 
organization of the tumor microenvironment, such as 
the spatial segregation of immune cell subsets or the 
clustering of tumor cells with supportive stroma. In 
contrast, in stem-like or progenitor cell populations, 
spatial interactions may indicate niches that support 
self-renewal, therapy resistance, and metastatic 
potential. For instance, cancer stem cells that are 
closely associated with specific stromal or immune 
cell types may exhibit unique survival advantages, 
driving disease progression and recurrence. 
Accounting for these differences is crucial for 
interpreting the prognostic relevance of spatial 
patterns and for designing targeted therapeutic 
strategies [42]. 

Despite significant progress, challenges remain 
in applying nearest neighbor and proximity analysis 
in clinical oncology. One of the major obstacles is the 
lack of standardization in computational pipelines. 
Different studies use varying definitions of spatial 
metrics, making it difficult to compare results across 
datasets. Furthermore, spatial analysis is highly 
dependent on data quality, including the resolution of 

 
Figure 1. By providing quantitative, high-dimensional mapping of protein expression across thousands of individual cells within the natural tissue architecture, hyperplex 
IMF-based spatial proteomics might help unravel complicated spatial patterns. In order to decipher the spatial proteomic architecture of tumors and its influence on prognosis, 
the pipeline investigates the use of closest neighbor and proximity analysis frameworks to hyperplex IMF data. 
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imaging techniques and the accuracy of cell 
segmentation algorithms. Another challenge is the 
interpretation of spatial data in a biological context. 
While computational methods can identify 
statistically significant spatial patterns, their 
functional relevance is not always clear. For example, 
does clustering of a particular immune cell type 
indicate an active anti-tumor response, or does it 
reflect immune exhaustion? [20].  

Addressing these questions will be essential for 
translating spatial proteomic insights into meaningful 
clinical applications. 

Prognosis and Spatial Analysis 
The spatial distribution of immune cells and 

their proximity to each other can significantly impact 
cancer prognosis because immune cells play a key role 
in tumor surveillance, suppression, and progression 
[43]. The concept of hot versus cold tumors is crucial 
in understanding cancer prognosis and response to 
immunotherapy. This classification is based on the 
level of immune cell infiltration, particularly cytotoxic 
CD8+ T cells, within the tumor microenvironment 
(TME) [44]. 

Hot tumors are characterized by high levels of 
immune infiltration, particularly CD8+ T cells, and an 
inflamed microenvironment with active immune 
signaling [45]. These tumors often express immune 
checkpoint molecules such as PD-L1, making them 
more responsive to immune checkpoint inhibitors 
(ICIs) like anti-PD-1/PD-L1 therapies [46]. 

Patients with hot tumors generally have better 
survival outcomes, as their immune systems are 
actively recognizing and attacking cancer cells [47-51]. 
These tumors often have a high tumor mutational 
burden (TMB), leading to more neoantigens that 
immune cells can recognize [52-56]. 

Because these tumors already have infiltrating T 
cells, treatments such as checkpoint blockade therapy 
further enhance the immune response, improving 
prognosis [57-62]. 

Cold tumors, lack significant immune cell 
infiltration, making them immunologically "silent" or 
non-inflamed. These tumors often have a low TMB, 
meaning they produce fewer neoantigens, reducing 
immune recognition. Patients with cold tumors 
typically have worse survival outcomes, as their 
tumors evade immune detection and are resistant to 
immunotherapy [63-65]. 

Cold tumors often create a physical or 
biochemical barrier that prevents T cells from 
entering, such as fibrotic stroma, immunosuppressive 
cytokines (e.g., TGF-β), or regulatory T cells (Tregs) 
[66, 67]. Since these tumors lack pre-existing immune 
activation, ICIs are often ineffective without 

additional interventions. 
To turn cold tumors into hot tumors, therapeutic 

strategies aim to reduce the physical barriers and 
attract T cells into the tumor microenvironment 
(TME). Approaches such as vascular normalization, 
TGF-β inhibition, and stromal remodeling can 
enhance T-cell infiltration. Additionally, immune 
checkpoint blockade therapies, such as 
anti-PD-1/PD-L1 and anti-CTLA-4, help reinvigorate 
exhausted T cells and improve their spatial 
distribution. Spatial computational tools can quantify 
changes in T-cell proximity to tumor cells before and 
after such treatments, providing insights into the 
effectiveness of therapeutic interventions. Turning 
cold tumors into hot tumors by improving T-cell 
infiltration is directly related to spatial proximity and 
nearest-neighbor analysis [68]. 

The fundamental challenge in cold tumors is the 
lack of functional immune cell infiltration, which 
results in immune evasion and resistance to 
immunotherapies [69]. Spatial analysis techniques 
help in understanding and quantifying the 
distribution of immune cells in tumors, allowing for 
strategies to improve T-cell proximity to cancer cells 
and ultimately enhance anti-tumor responses. One of 
the primary mechanisms behind cold tumors is the 
formation of an immunosuppressive 
microenvironment, which includes physical and 
biochemical barriers preventing T-cell infiltration. 
Hence, the spatial organization of immune cells is a 
key determinant of tumor immunogenicity, and 
nearest-neighbor analysis provides a valuable 
framework for studying T-cell infiltration dynamics. 
By leveraging these spatial insights, therapeutic 
strategies can be designed to reshape the tumor 
microenvironment, enhancing immune cell proximity 
and transforming cold tumors into hot tumors for 
better clinical outcomes [70]. 

Another key aspect is the interaction between 
antigen-presenting cells (APCs) and T cells [71-77]. 
Dendritic cells (DCs) play a crucial role in recruiting 
and activating T cells, and their proximity to T-cell 
populations within the tumor predicts better immune 
responses. Nearest-neighbor analysis can reveal 
whether DCs are optimally positioned to stimulate 
T-cell responses or whether their spatial arrangement 
limits immune activation. Enhancing the recruitment 
of activated DCs to tumors using cancer vaccines or 
adjuvants can improve T-cell infiltration and 
conversion of cold tumors into hot tumors. 

The spatial proximity of CD8+ T cells to cancer 
cells further refines this classification. Even within hot 
tumors, if T cells are excluded from the tumor core 
and trapped at the tumor margin, their effectiveness is 
reduced. Nearest-neighbor analysis helps quantify 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3658 

these interactions, showing that a shorter distance 
between CD8+ T, CD4+ Tcells and tumor cells 
correlates with better survival outcomes [18].  

This study by Azimi et al. [18], identifies the 
median distance between CD8+ T cells, CD4+ T cells, 
and tumor cells as a crucial spatial biomarker 
associated with patient survival after treatment. 
Lower distances between these immune cells and 
tumor cells correlate with better prognosis, as 
demonstrated through Kaplan-Meier survival 
analyses using disease-free survival (DFS) data. The 
data differentiates cancer cores into "Isolated" (greater 
distances) and "Non-Isolated" (smaller distances) 
groups. Cancer cores in the Non-Isolated group 
exhibit higher expression of Caspase-3, cleaved 
Caspase-3, Caspase-8, Ki67, and HLA-1, suggesting 
these biological markers are linked to closer 
immune-tumor interactions. It also illustrates a 
ClusterMap for the discovery cohort, highlighting 
expression patterns of key tumor biomarkers 
(Caspase-3, Ki67, C-myc, GLUT-1, HLA-1) and their 
spatial relationships with cytotoxic and regulatory T 
cells. This visualization underscores the significance 
of spatial immune-tumor interactions. Data shows 
that patients grouped into two distinct risk clusters 
(Cluster 1: high risk; Cluster 2: low risk) based on 
these spatial and biological markers demonstrate 
substantial differences in survival outcomes, further 
supporting the prognostic value of these spatial 
features. 

By mapping the nearest-neighbor relationships 
between immune cells and tumor cells, it is possible to 
identify spatial patterns associated with treatment 
response and resistance. For example, in successful 
immunotherapy responses, CD8+ T cells move closer 
to tumor cells, reducing the average nearest-neighbor 
distance, whereas in resistant tumors, immune cells 
remain spatially distant. These insights can guide the 
development of combination therapies that optimize 
T-cell positioning within tumors. 

The hot vs. cold tumor paradigm is a powerful 
framework for predicting cancer prognosis and 
response to immunotherapy. While hot tumors 
generally indicate a better prognosis, cold tumors 
require targeted interventions to enhance immune 
infiltration and improve patient outcomes. The spatial 
distribution of immune cells is a crucial factor in 
determining whether a tumor can effectively be 
turned from cold to hot, shaping treatment strategies 
in precision oncology. 

Nearest Neighborhood Analysis, 
Cell-Cell Interaction Map and Prognosis 

Nearest Neighbor Analysis (NNA) and Cell-Cell 
Interaction Maps (CCIM) offer deeper insights into 

immune-tumor dynamics by quantifying the spatial 
relationships between tumor cells, immune cells, and 
stromal components. These methods enable 
researchers to measure key parameters such as 
immune cell clustering, tumor cell proximity to T 
cells, and the presence of immune-privileged niches 
within tumors. By integrating these spatial metrics 
with clinical outcomes, researchers can derive 
prognostic signatures that predict disease progression 
and therapeutic response more accurately than 
conventional molecular biomarkers. 

The interactions between epithelial and stromal 
cells are fundamental to tissue homeostasis and 
cancer progression. Epithelial cells, which form 
continuous sheets lining surfaces, rely on direct 
cell-cell adhesions to maintain barrier integrity and 
polarity. In contrast, stromal cells—including 
fibroblasts, pericytes, and extracellular 
matrix-producing cells—engage in dynamic, often 
paracrine-mediated interactions that provide 
structural scaffolding and modulate epithelial 
behavior. These differences in interaction modes yield 
distinct consequences: epithelial cell contacts 
predominantly regulate tissue architecture and 
proliferation control, while stromal cell interactions 
shape the biochemical and mechanical landscape of 
the tumor microenvironment, influencing invasion 
and metastasis [78]. 

The spatial interactions of epithelial and 
hematogenous cell populations exhibit distinct 
biological and functional features. Epithelial cells 
maintain stable junctional complexes that regulate 
tissue integrity and polarity, while hematogenous 
(blood-derived) cells, such as circulating immune 
cells, engage in transient interactions for immune 
surveillance and infiltration. These differences 
manifest in diverse consequences: epithelial cell 
interactions primarily influence structural 
homeostasis and local signaling networks, whereas 
hematogenous cells dynamically shape the tumor 
microenvironment through trafficking and immune 
modulation. Recognizing these distinctions is crucial 
to understanding how tumor progression exploits 
these divergent interaction paradigms [79]. 

Interactions between tumor cells and 
immunoreactive cells, such as T cells or natural killer 
cells, embody critical crosstalk in the tumor 
microenvironment. While tumor cells typically 
leverage direct cell-cell interactions to promote 
immune evasion, immunoreactive cells utilize these 
interactions to mount cytotoxic or regulatory 
responses. The balance of these interactions 
determines immune suppression or activation within 
the tumor niche. Understanding these nuanced 
interactions underscores the potential of targeting 
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cell-cell contacts for immunotherapeutic interventions 
[80]. 

Beyond binary cell interactions, the tumor 
microenvironment is defined by a rich interplay 
among epithelial, stromal, hematogenous, and 
immune cells. Each cell type contributes unique 
molecular cues and mechanical properties that 
collectively shape tumor behavior. For instance, 
stromal fibroblasts provide structural support and 
paracrine signals, while immune and vascular cells 
regulate infiltration and angiogenesis. By 
differentiating these multifaceted interactions, we 
gain a clearer picture of the ecosystem-level dynamics 
of cancer progression[81]. 

Using surgical specimens, a retrospective 
examination of 22 pleural mesothelioma patients 
treated with nivolumab in various institutions was 
carried out in study by Yin et al. [82]. The response 
group's density of CD8+ T cells and total T cells was 
noticeably greater than that of the nonresponse group. 
While regulatory T cells were found farther away 
from tumor cells in the response group than in the 
nonresponse group, CD8+ T cells were more grouped 
and situated nearer to tumor cells. While regulatory T 
cells' proximity to tumor cells was linked to a worse 
response to nivolumab, CD8+ T cells' high density 
and spatial proximity to tumor cells were linked to a 
better response. This suggests that the unique TME 
landscape may be a potential predictor of immune 
checkpoint inhibitors (ICIs) efficacy in pleural 
mesothelioma. 

Sorin et all. [83] spatially analyzed the tumor 
immune microenvironment (TIME) of lung 
adenocarcinoma (LUAD) using imaging mass 
cytometry (IMC), finding characteristics that were 
significantly predictive of recurrence in early-stage 
disease6. Notably, we found that enhanced survival in 
LUAD patients was linked to certain interactions 
between B cells and CD4+ T cells. However, when 
regulatory T cells were discovered near B cells and 
CD4+ T cells, this survival benefit was eliminated. 
Furthermore, they found that patient-specific 
variables like age, sex, or smoking status had an 
impact on a number of TIME parameters, especially 
within the myeloid compartment. 

In order to quantify 14 TIIC subgroups in situ, 
the authors [84] used multiplex 
immunohistochemistry staining technique on 190 
colorectal (CRC) samples. The computational process 
phenoptr was used to calculate the separation 
between immune and cancer cells. Myeloid lineage 
cells were found closest to tumor cells, and the 
epithelial compartment was enriched in MPO+ 
neutrophils and CD68+IDO1+ tumor-associated 
macrophages (TAMs). All other cells, with the 

exception of CD68+CD163+ TAMs, were positively 
correlated with a good prognosis. The distance 
between TIICs and tumor cells has a significant 
impact on their prognostic predictive capacity. 
Correlation analysis demonstrated the cooperation of 
B cells, CD68+IDO1+TAMs, and T lineage cells in 
generating an efficient immune response, whereas 
unsupervised clustering analysis separated colorectal 
cancer into three categories with different prognostic 
outcomes. 

In a study by Ebia et al. [85], two groups of 22 
stage I/II PDAC patients were created: Standard 
responders (n = 11) whose overall survival (OS) was 
greater than two years, and poor responders (n = 11) 
whose OS was less than two years. To determine cell 
phenotypes, multiplex IHC was used on tissues 
utilizing several biomarkers (CD8, CXCR4, CD66b, 
FAK, FAP, CD68, CSF1R, and EPCAM). According to 
the study, the spatial distance between tumor 
microenvironment immune cells in pancreatic ductal 
adenocarcinoma (PDAC) may have an impact on 
clinical outcomes. CD8+ T cells that were further from 
M2 and M1 macrophages and closer to FAK+ tumor 
cells, CXCR4+ TANs, and CAFs had longer survival 
times. The biological and prognostic relevance of cell 
distance among TME phenotypes may be better 
understood by larger cohort investigations, which 
might potentially affect how well immunotherapy 
works. 

The effectiveness of neoadjuvant treatment 
(NAT) for breast cancer (BC) is significantly 
influenced by the spatial proximity of cytotoxic T 
lymphocytes to tumor cells according to the study by 
Liang et al. [86]. In this work, the authors assessed 
whether treatment results for different BC subtypes 
may be predicted by the presence of CD8+ T cells and 
other immune cells close to cancer cells. Using 
multiplex immunofluorescence (mIF) and 
immunohistochemistry (IHC), they examined pre- 
and post-NAT biopsies from 104 BC patients to 
evaluate the distribution of immunological markers, 
including as CD8+ T cells, CD68+ macrophages, and 
FoxP3+ regulatory T cells. Regardless of tumor 
subtype or NAT regimen, our results showed that a 
larger percentage of CD8+ T cells within 20 µm of 
cancer cells (N20-CD8+ T cells) was highly associated 
with enhanced pathological complete response (pCR), 
disease-free survival (DFS), and overall survival (OS). 

In a different study [87], researchers created a 
multiplex immunohistochemistry (mIHC) antibody 
panel to quantitatively examine leukocyte lineages, 
with a particular emphasis on NK cells and their 
characteristics, in two separate cohorts of patients 
with breast cancer (n = 26 and n = 30). Spatial analysis 
showed different NK cell characteristics in relation to 
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their proximity to neoplastic tumor cells that were 
connected with HER2 status, although NK cell density 
and phenotype did not seem to be affected by HER2 
status. Multiple distinct neighborhood compositions 
surrounding NK cells were identified by spatial 
cellular neighborhood analysis. NK cells from 
HER2-tumors were more commonly found proximal 
to neoplastic tumor cells, while NK cells from HER2+ 
tumors were more frequently found proximal to 
CD3+ T cells. 

Multiplex immunofluorescence was used to stain 
single sections of diagnostic biopsies from 72 
oropharyngeal squamous cell carcinoma (OPSCC) 
patients (CD8, PD1, PD-L1, CD68) in study by 
Tsakiroglou et al [88]. After automated 
regions-of-interest selection and multispectral 
scanning, the Hypothesised Interaction Distribution 
(HID) approach measured the spatial proximity of 
cells. The predictive importance of co-localized cells 
(within 30 μm) in patients stratified by HPV status 
was examined in order to assess the method's 
applicability. In patients with HPV negative OPSCC 
(n = 31), high frequencies of proximal CD8+ and 
PD-L1+ (HR 2.95, p = 0.025) and PD1+ and PD-L1+ 
(HR 2.64, p = 0.042) cells were predictive of poor 
overall survival. 

According to the authors [89], TILs have been 
linked to a lower chance of recurrence in cases with 
HPV(+)OPSCC, or human papillomavirus-associated 
oropharyngeal squamous cell carcinoma. Imaging 
mass cytometry was used to examine primary and 
lymph node (LN) tumor tissues that were 
paraffin-embedded and formalin-fixed from ten 
progressors (cases) and ten matched non-progressors 
(controls). Machine learning was used to quantify 
immune, stromal, and tumor cells from specific areas 
of interest (ROIs). Analysis of niches, cell-cell 
interactions, and nearest neighbors were done. The 
proportion of T cells, CD8+ T cells, innate cells, 
immune cells, and lymphocytes was considerably 
higher in controls in primary ROIs. In primary tissues 
under control, the average distances between T cells 
and the closest B cells as well as between lymphocytes 
and the closest tumor cells were reduced. 

Ten recurrent cellular neighborhoods—a group 
of local TME features with distinct cell 
components—were found through spatial analysis in 
a study by Mi et al.[90]. Positive clinical outcomes 
were substantially linked with the relative spatial 
colocalization of SMAhi fibroblasts and tumor cells as 
opposed to B cells. The authors predicted the response 
of a different cohort of patients in the NeoTRIP 
clinical trial to treatment based on baseline TME 
features with high accuracy (mean area under the 
receiver operating characteristic curve of 5-fold 

cross-validation = 0.71) by using a deep learning 
model trained on engineered spatial data. In addition 
to suggesting new imaging-based biomarkers for the 
development of treatments in the setting of TNBC, 
these findings further support the idea that the TME 
architecture is organized in cellular compositions, 
spatial structures, vascular biology, and molecular 
profiles. 

The authors in the study [91] profiled spatial 
interactions in non-small cell lung cancer (NSCLC) 
patients who later underwent PD1 axis treatment 
using an analytical pipeline for highly multiplexed 
CODEX data. In line with their placement inside 
stromal and peripheral tumor-margins, they 
discovered that regulatory T cells (Tregs) are 
abundant in non-responding patients. While 
macrophages were more commonly identified in close 
proximity to HLADR+ tumor cells (p = 0.01) in 
responding patients, proximity-based interactions 
between Tregs and both monocytes (p = 0.009) and 
CD8+ T cells (p = 0.009) were more common in 
non-responding patients. Analysis of cellular 
neighborhoods revealed that CD8+ T cells (p = 0.03) in 
HLADR+ tumor neighborhoods and macrophages (p 
= 0.003) and effector CD4+ T cells (p = 0.01) in mixed 
tumor neighborhoods were linked to positive clinical 
outcomes. 

The authors in [92] investigate the effects of 
endoplasmic reticulum (ER) stress on tumor-related 
cells, including immune cells, endothelial cells, and 
cancer associated fibroblasts (CAFs), on patient 
outcomes in clinical specimens. The study showed 
that CAFs and immune cells mostly experience ER 
stress when they are close to tumor cells in PDAC 
patient tissue. Poor patient survival was associated 
with immune cells expressing high levels of CHOP. 
When CAFs and immune cells were near tumor cells 
(< 20 μm), they were more likely to express BiP or 
CHOP. Better patient survival was associated with 
higher levels of CHOP expression in CAFs around 
tumor cells. 

The authors in the study [93] used multiplex 
immunohistochemistry to examine the main tumors 
and lymph nodes of 271 non-small cell lung cancer 
(NSCLC) patients. The results indicated that there 
were four activation states for CD8+TRM. The 
densities of PD-1−TIM-3+CD8+TRM3 and 
PD-1+TIM-3+CD8+TRM4 were significantly greater 
in the invasive margins of locally progressed 
non-small cell lung cancer. In more advanced lesions, 
there were fewer interactions between CD8+TRM and 
tumor cells. In patients with early lung 
adenocarcinoma and squamous carcinoma, 
respectively, recurrence was independently linked to 
decreased PD-1+TIM-3−CD8+TRM2 contacts with 
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tumor cells and enhanced PD-1+TIM-3+CD8+TRM4 
interactions with tumor cells. These findings highlight 
the significance of CD8+TRM spatial dynamics in 
prognosis by indicating a relationship between 
recurrence risk and CD8+TRM activation state and 
distribution in early-stage NSCLC. 

Conclusions 
Cancer is a complex and heterogeneous disease, 

influenced not only by genetic mutations but also by 
the spatial organization of cells within the tumor 
microenvironment (TME). The arrangement and 
interactions between tumor cells, stromal cells, and 
immune infiltrates can significantly impact disease 
progression, response to therapy, and overall patient 
prognosis. As a result, understanding the spatial 
architecture of tumors has become a crucial area of 
research in oncology. Traditional histopathology has 
long recognized the prognostic value of tumor 
architecture, but recent advancements in 
computational pathology and spatial biology have 
provided more precise and quantitative methods to 
study these spatial relationships.  

Several key metrics are used in spatial analysis 
for cancer prognosis: 

• Nearest Neighbor Distance (NND): One such 
approach is nearest neighbor analysis (NNA), a 
statistical method used to quantify the spatial 
distribution of cells in tissue samples. NNA measures 
the distances between a given cell and its closest 
neighboring cells, allowing researchers to assess 
patterns of clustering, dispersion, or randomness. 
This method is particularly useful in oncology, where 
the spatial arrangement of immune cells relative to 
tumor cells can provide key insights into immune 
evasion mechanisms, treatment resistance, and 
patient survival outcomes. This metric is useful for 
evaluating immune cell infiltration, tumor cell 
clustering, and spatial dispersion of different cell 
types. 

• Ripley’s K-Function: A statistical measure used 
to analyze clustering patterns at different spatial 
scales. It helps determine whether cells are randomly 
distributed, clustered, or dispersed within a tumor 
sample. 

• Voronoi Tessellation: A computational 
approach that partitions space into regions based on 
proximity to a set of points. In cancer research, 
Voronoi diagrams help identify tumor cell niches and 
assess the spatial dominance of specific cell 
populations. 

• Graph-Based Methods: These methods 
construct spatial graphs where nodes represent cells 
and edges reflect their spatial relationships. Graph 
theory is particularly useful for modeling complex 

tumor architectures and analyzing immune-tumor 
interactions. 

Proximity analysis, a broader category of spatial 
statistics, extends beyond individual neighbor 
distances to examine the overall spatial organization 
and interaction networks within the tumor 
microenvironment. Proximity analysis has been 
widely used to explore tumor-immune interactions 
and their prognostic implications. For instance, 
studies have shown that the spatial positioning of 
cytotoxic CD8+ T cells relative to tumor cells is a 
strong predictor of survival in multiple cancer types, 
including colorectal, breast, and lung cancer. Tumors 
with a high density of T cells in close proximity to 
cancer cells often exhibit better immune surveillance 
and improved patient outcomes. 

By leveraging these spatial insights, therapeutic 
strategies can be designed to reshape the tumor 
microenvironment, enhancing immune cell proximity 
and transforming cold tumors into hot tumors for 
better clinical outcomes.  

These analyses enable researchers to define 
tumor-immune spatial niches and predict their 
functional implications. 
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