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Abstract 

Thyroid cancer, including papillary thyroid carcinoma (PTC) and anaplastic thyroid carcinoma (ATC), exhibits 
distinct molecular characteristics in adult and pediatric populations. Understanding these differences is vital for 
identifying therapeutic targets and prognostic biomarkers. We performed an integrative multi-omics analysis 
combining proteomics, phosphoproteomics, metabolomics, and RNA sequencing data from adult and pediatric 
thyroid cancer cohorts. Differential expression analyses were conducted for all the multi-omics data with false 
discovery rate adjustments. Enzyme mapping of metabolites was performed using MetaBridge, while 
cross-omics integration revealed 46 key genes associated with reprogrammed energy metabolism. Clinical 
relevance was evaluated through survival analyses on cBioPortal and KM plotter platforms, and immunotherapy 
responses were assessed based on gene expression profiles. The 46 identified genes, primarily involved in 
mitochondrial energy metabolism and oxidative phosphorylation, were strongly associated with poor 
disease-free and overall survival in PTC and ATC patients. In ATC, a high tumor mutation burden correlated 
with worse outcomes, underscoring its prognostic value. Additionally, seven genes (AK2, SUCLG2, NDUFV2, 
GLUD1, HADHA, ALDH1A1, and NADSYN1) were linked to improved responses to anti-PD-1 
immunotherapy, highlighting their potential as biomarkers for treatment stratification. Furthermore, functional 
studies reveal that AK2 plays a key role in thyroid cancer progression. This study offers critical insights into 
thyroid cancer biology and provides a foundation for targeted therapies and personalized immunotherapy 
strategies to improve patient outcomes. 

Keywords: multi-omics integration, thyroid carcinoma (TC), proteomics, metabolomics, RNA sequencing (RNAseq), energy 
metabolism, immunotherapy 

Introduction 
Thyroid cancer is the most prevalent endocrine 

malignancy, encompassing a spectrum of histological 
subtypes [1], with papillary thyroid carcinoma (PTC) 
and anaplastic thyroid carcinoma (ATC) being the 
most common and aggressive forms, respectively. The 
diagnostic challenges of common biomarkers in 
pediatric vs. adult PTC arise from age-related 
differences in mutation prevalence, limitations in 

FNA cytology, and biomarker overlap with benign 
conditions [2, 3]. A comprehensive molecular 
approach integrating genomic, transcriptomic, and 
proteomic data is essential for improving diagnostic 
accuracy and tailoring risk-based management 
strategies for both populations. 

Proteomics and phosphoproteomics provide 
insights into protein expression and post-translational 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3552 

modifications, respectively, elucidating dynamic 
cellular processes [4, 5]. Metabolomics offers a 
snapshot of metabolic alterations, essential for 
understanding cancer cell metabolism [6], while RNA 
sequencing (RNAseq) reveals transcriptional changes 
that drive oncogenic pathways [7]. Despite the wealth 
of data, integrating multi-omics information to 
pinpoint critical genes and pathways remains a 
significant challenge [8]. Moreover, the identification 
of clinically relevant biomarkers that can predict 
patient outcomes and responses to therapies, such as 
immunotherapy, is paramount for advancing 
personalized medicine in thyroid cancer treatment. 

In this study, we employed an integrative 
multi-omics approach to analyze proteomic, 
phosphoproteomic, metabolomic, and transcriptomic 
data from both adult and pediatric thyroid cancer 
cohorts. By intersecting differentially expressed genes 
across these datasets, we identified a core set of 46 
genes implicated in energy metabolism 
reprogramming. Further, we investigated the clinical 
relevance of these genes through survival analyses 
and assessed their potential as biomarkers for 
immunotherapy response using publicly available 
genomic and clinical datasets. The comprehensive 
integration of multi-omics data not only enhances our 
understanding of the molecular landscape of thyroid 
cancer but also identifies novel therapeutic targets 
and prognostic markers. This study aims to bridge the 
gap between molecular alterations and clinical 
outcomes, providing a foundation for the 
development of targeted and personalized treatment 
strategies in thyroid cancer. 

Materials and Methods 
Data Sources and Study Design  

To comprehensively characterize the molecular 
landscape of papillary thyroid carcinoma (PTC), we 
utilized two independent multi-omics datasets [3, 5], 
integrating transcriptomic, metabolomic, proteomic, 
and phosphorylated (phospho)-proteomic data. The 
first dataset consisted of an integrated proteogenomic 
and metabolomic investigation of 102 Chinese PTC 
patients, which provided a detailed molecular profile 
of adult PTC [5]. Proteomic profiling was performed 
on 37 paired tumor-normal tissue samples, 
quantifying 3,147 proteins using mass spectrometry. 
This dataset allowed for a comparative analysis of 
tumor-specific proteomic alterations in adult PTC. 

To further examine the molecular differences 
between pediatric and adult PTC, we leveraged a 
publicly available pediatric PTC proteomics dataset 
[3], which included 83 pediatric benign (PB) and 85 
pediatric malignant (PM) PTC samples. This dataset 

quantified 10,426 proteins using high-resolution mass 
spectrometry, enabling a broad assessment of 
proteomic changes in pediatric thyroid cancer. The 
comparison between pediatric and adult datasets 
aimed to uncover distinct molecular signatures and 
potential age-dependent variations in tumor biology.  

Proteomic Data Processing and Statistical 
Analysis  

For the adult PTC dataset, differential expression 
analysis was conducted to compare protein abund-
ance between tumor and adjacent normal tissues. The 
Wilcoxon signed-rank test (two-sided, paired) was 
applied to identify significantly dysregulated pro-
teins. Expression differences were quantified using 
log2 fold changes (Log2FCs), and multiple hypothesis 
testing was controlled using the Benjamini–Hochberg 
method to adjust p-values and control the false dis-
covery rate (FDR). This statistical approach ensured 
robust identification of differentially expressed 
proteins associated with tumor progression. 

In the pediatric PTC dataset, protein expression 
differences between pediatric malignant (PM) and 
pediatric benign (PB) samples were assessed using the 
Wilcoxon rank-sum test (two-sided, unpaired). A total 
of 243 significantly dysregulated proteins were 
identified based on adjusted p-values and Log2FCs. 
Further pathway enrichment analysis highlighted the 
involvement of inflammatory and immune-related 
pathways, suggesting a potential role of immune 
dysregulation in pediatric thyroid cancer progression. 
These analyses provided insights into key molecular 
mechanisms driving PTC across different age groups 
and emphasized the distinct proteomic landscape of 
pediatric and adult tumors. 

Phospho-Proteomics Analysis of PTC Tumor 
and Normal Tissues  

From the first dataset, which included 102 
Chinese PTC patients [5], we obtained phospho- 
proteomics data comprising 652 phosphoproteins, 
profiled from 37 paired tumor-normal tissue samples. 
The phosphoproteomics data were analyzed using the 
Wilcoxon signed-rank test (two-sided, paired), 
following the same approach as the proteomics 
analysis. Differentially phosphorylated proteins were 
identified based on site-specific phosphorylation 
abundance. Log2 fold changes (Log2FCs) and 
adjusted p-values (Benjamini–Hochberg correction) 
were used to prioritize statistically significant 
phosphorylation sites. 

Metabolomics Data Processing and Enzyme 
Mapping 

To utilize the available metabolomics data from 
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the first dataset [5], we obtained metabolite profiling 
of 503 metabolites from 37 paired tumor and normal 
tissue samples. The data were processed to identify 
significantly differentially expressed metabolites 
between tumor and normal conditions. To map 
metabolites to their corresponding KEGG (Kyoto 
Encyclopedia of Genes and Genomes) enzymes, we 
used the MetaBridge tool [9]. A total of 334 
differentially expressed metabolites were successfully 
linked to relevant KEGG enzymes. In brief, 
MetaBridge performs automated mapping by linking 
each metabolite to its corresponding enzyme(s) based 
on the KEGG database annotations. This process 
involves several steps. Firstly, the list of differentially 
expressed metabolites, along with their KEGG 
compound identifiers, was uploaded to the 
MetaBridge platform. Then, MetaBridge 
cross-referenced the metabolite identifiers with the 
KEGG database to identify associated enzymes. This 
step ensures that each metabolite is accurately linked 
to its relevant biochemical pathways and enzymatic 
reactions. One metabolite could be mapped to 
multiple enzymes. Lastly, we collected a 
comprehensive list of KEGG enzymes corresponding 
to the differentially expressed metabolites.  

RNA-Seq Analysis and Differential Gene 
Expression Identification 

The RNA-seq data from the first dataset [5] 
included raw read counts mapped to 16,925 genes, 
with expression levels normalized as FPKM 
(Fragments Per Kilobase of transcript per Million 
mapped reads). The dataset comprised 92 tumor 
tissue samples and 34 paired normal tissue samples, 
providing a comprehensive view of transcriptomic 
alterations in PTC. To identify differentially expressed 
genes (DEGs) between tumor and normal tissues, we 
utilized DESeq2 [10]. DEGs were filtered based on 
strict criteria, requiring an absolute log2 fold change 
(|log2FC| > 1) and a corrected P-value < 0.05, using 
the false discovery rate (FDR) method to control for 
multiple testing. These thresholds ensured that the 
identified DEGs reflected statistically significant and 
biologically meaningful changes in gene expression 
between conditions.  

Gene Set Analysis  
The intersection of gene lists was visualized 

using the VennDiagramWeb tool [11], a web 
application that generates highly customizable Venn 
and Euler diagrams. Genes present in at least three 
out of the five input lists were included. The five lists 
comprised two proteomics differentially expressed 
results, one RNAseq differentially expressed gene list, 
one differential phosphorylation result, and enzymes 

mapped based on differential metabolites. In the set 
analysis, we extracted subsets that had at least two 
additional pieces of evidence from the input lists, in 
addition to the enzymes mapped based on differential 
metabolites. This visualization highlighted 46 
intersecting genes for subsequent analysis. 

Cancer Hallmark Annotation 
To conduct a cancer hallmark analysis using 46 

genes of interest, we utilized a consensus gene set for 
cancer hallmarks to streamline data comparison and 
integration [12]. In brief, a total of 1,574 core genes are 
associated with ten cancer hallmarks. By mapping our 
46 genes to their most prominent hallmarks, we 
categorized them into relevant groups and generated 
enrichment scores for each hallmark, such as "tissue 
invasion and metastasis" and "sustained 
angiogenesis." The analysis produced statistical 
metrics, including p-values and enrichment scores, 
which highlighted potential drug targets linked to 
specific cancer hallmarks. This approach provided a 
comprehensive overview of the relationship between 
the selected genes and cancer hallmarks, aiding in the 
identification of potential biomarkers and therapeutic 
targets. 

Functional Enrichment Analysis 
To examine the functional roles of the 46 genes 

identified at the intersection of multiple omics 
analyses, we performed comprehensive functional 
annotation and pathway analyses. The analysis 
pipeline integrated multiple approaches to 
systematically characterize the biological significance 
of these genes. In this study, functional annotation 
and enrichment analyses were performed using 
ToppFun [13], a web-based tool that is part of the 
ToppGene Suite. ToppFun provides comprehensive 
gene list enrichment analysis and includes various 
annotation categories such as GO terms, KEGG 
pathways, phenotypes, drugs, and diseases. The tool 
employs hypergeometric distribution with FDR 
correction for statistical analysis of enrichment results. 

For pathway analysis, we leveraged the KEGG to 
map the genes to established biological pathways. 
This approach helped identify key molecular 
networks and signaling cascades associated with our 
gene set. In our functional enrichment analysis, we 
prioritized the Gene Ontology (GO) cellular 
component results from ToppFun, as the GO 
biological processes and molecular functions 
categories showed considerable redundancy with the 
KEGG pathway findings. This targeted approach 
allowed us to focus on the unique spatial organization 
of our genes while avoiding duplicate functional 
information. Statistical significance was assessed 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3554 

using Fisher's exact test, with p-values adjusted for 
multiple testing using the False Discovery Rate (FDR) 
method. 

Results were visualized using bubble plots, 
where each bubble represents an enriched term. The 
size of each bubble indicates the number of genes 
associated with that term, while the color intensity 
reflects the statistical significance (FDR-adjusted 
p-value). This visualization method effectively 
communicates both the scale and significance of the 
enriched functional categories. This analysis 
framework provided a systematic approach to 
understand the biological context of the identified 
genes, revealing their potential roles in cellular 
components and pathways relevant to thyroid cancer 
development and progression. 

Cancer Clinical and Genetic Data Mapping 
All the sample based mutational analysis were 

based on the cBioPortal [14], an online server for 
visualization, and analysis of multidimensional 
cancer genomics data. This comprehensive approach 
not only aids in elucidating the potential biological 
roles of interested genes but also provides a 
systems-level perspective on their contributions to 
cellular and molecular processes.  

Kaplan-Meier survival curves were generated 
using cBioPortal for the PTC cohort. Patients were 
grouped into altered and unaltered groups based on 
mutations in the 46 genes. Log-rank tests were 
applied to determine statistical significance for 
disease-free survival (p < 0.05). Overall survival 
analysis was conducted for ATC samples using 
cBioPortal. The altered and unaltered groups were 
defined similarly to Figure 4A. Hazard ratios were 
calculated with 95% confidence intervals, and 
statistical significance was determined using logrank 
tests with p-values indicating statistical significance. 
Survival curves were generated with numbers at risk 
displayed below each graph. 

Oncotreemap in cBioPortal was used to classify 
ATC samples based on the presence or absence of 
mutations in the 46 genes. This visualization 
highlighted the clinical relevance of these mutations 
in defining ATC subtypes. Tumor mutation burden 
(TMB) scores for ATC samples were retrieved from 
cBioPortal. TMB differences between the altered and 
unaltered groups were compared using the Wilcoxon 
rank-sum test. Results were visualized as box plots. 

The KM plotter offers a robust platform for 
survival analysis in immunotherapy cohorts, 
including a dataset of 520 patients treated with 
anti-PD-1 therapy [15]. In a word, KM plotter 
provides a comprehensive database containing both 

gene expression and clinical data. Therefore, it is 
efficient to screen multiple datasets with clinical 
response and transcriptomic data from various 
cancers, focusing on anti-PD-1 therapies like 
nivolumab and pembrolizumab. Researchers can 
input genes of interest into the platform's 
immunotherapy module to assess survival outcomes 
based on gene expression levels. The platform 
automatically divides patients into high and low 
expression groups using optimal cutoff values, 
generating Kaplan-Meier plots with associated hazard 
ratios (HR) and log-rank p-values. 

To perform the analysis, we should navigate to 
the immunotherapy section of kmplot.com and select 
"Anti-PD-1 treatment." After entering the gene 
symbol(s) of interest, the platform generates survival 
curves illustrating the relationship between gene 
expression and treatment outcomes. Results include 
key statistical metrics such as hazard ratios with 95% 
confidence intervals, log-rank p-values, and the 
number of patients at risk at various time points. This 
analysis helps identify potential biomarkers for 
immunotherapy response and provides insights into 
the relationship between gene expression and 
treatment effectiveness in cancer patients receiving 
anti-PD-1 therapy. 

Cell Proliferation and Migration Ability 
AK2 expression was silenced in CAL-62 and 

KTC-1 cells using AK2-specific small interfering RNA 
(siRNA) (Genema Gene), following the 
manufacturer's protocol with the supplied 
transfection reagent. The efficiency of gene 
knockdown was validated by quantitative real-time 
PCR (qRT-PCR). Primer sequences were as follows: 
Human AK2—Forward: 5'-TCCTACCACGAGGA 
GTTCAACC-3', Reverse: 5'-TGGTAGGCTTGCAGG 
CGGATTT-3'; Human Beta-actin (ACTB)—Forward: 
5'-CACCATTGGCAATGAGCGGTTC-3', Reverse: 
5'-AGGTCTTTGCGGATGTCCACGT-3'. For the 
CCK-8 assay, cells were trypsinized, counted, and 
plated into 96-well plates at 1,000 cells per well. Cell 
viability was measured every 24 hours by adding 
CCK-8 reagent and recording absorbance. For colony 
formation, cells were seeded in 6-well plates at 1,000 
cells per well. Media were refreshed every 2–3 days. 
Once colonies formed, they were fixed, stained, and 
counted. In the Transwell migration assay, 5,000 cells 
in serum-free medium were seeded into the upper 
chamber, while the lower chamber contained 
serum-supplemented medium. After 24 hours, cells 
on the underside of the membrane were fixed, 
stained, and visualized microscopically.  
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Figure 1. Multi-omics integration identifies therapeutic targets in thyroid cancer. This workflow combines proteomic, phosphoproteomic, transcriptomic, and metabolomic data 
from adult and pediatric papillary thyroid cancer (PTC) cohorts. Cross-omics analysis identified 46 core genes, which were clinically validated in 751 patients and functionally 
characterized through immunotherapy response profiling. Seven genes demonstrated significant immunotherapeutic relevance, with the top candidate AK2 experimentally 
confirmed in thyroid cancer cell lines. 

 

Results 
Integrative Multi-Omics Approach for 
Pediatric and Adult Thyroid Cancer Analysis  

To comprehensively investigate thyroid cancer 
progression in both pediatric and adult cohorts, we 
employed an integrative multi-omics approach by 
combining proteomics, phosphoproteomics, 
metabolomics, and RNA sequencing (RNA-seq) data 
from two recently published datasets of Chinese PTC 
patients. The first dataset included an integrated 
transcriptomic, metabolomic, proteomic, and 
phospho-proteomic analysis of 102 adult PTC patients 
[5], while the second dataset focused exclusively on 
proteomic profiling, comprising 83 pediatric benign 
(PB) and 85 pediatric malignant (PM) PTC samples 
[3]. 

As illustrated in Figure 1, the analytical 
workflow integrates five interconnected multi-omics 
components, represented by distinct modules. The 
proteomics analysis identified 1,864 differentially 
expressed proteins, phosphoproteomics revealed 391 
altered phosphorylation sites, RNA sequencing 
detected 1,674 differentially expressed genes, and 
pediatric PTC proteomics highlighted 243 
dysregulated proteins. Unlike other omics layers that 
could be mapped directly to gene symbols, 
metabolomics analysis resulted in metabolite-level 

outputs. To integrate these findings, MetaBridge was 
used to systematically map differentially expressed 
metabolites to their corresponding KEGG enzymes, 
enabling deeper insights into metabolic dysregulation 
and pathway alterations in PTC. 

At the core of the workflow, a robust data 
integration module consolidates multi-omics 
datasets—including transcriptomics, proteomics, 
phosphoproteomics, and metabolomics—to identify 
46 key genes associated with energy metabolism. To 
address confounding factors such as batch effects, 
technical variability, tumor purity, and cellular 
heterogeneity, each dataset underwent rigorous 
quality control, normalization, and independent 
differential expression analysis using statistical 
methods such as the Wilcoxon Signed-Rank Test and 
DESeq2, with adjustments for multiple testing to 
reduce bias and false positives. Enzyme mapping of 
metabolic metabolites was conducted using 
MetaBridge to standardize pathway-level 
interpretations and enhance cross-platform 
comparability. The integrated molecular signatures 
were then evaluated through clinical relevance 
assessments (mutation analysis of 751 thyroid cancer 
patients), immunotherapy response profiling 
(anti-PD-1 treatment outcomes), and functional 
enrichment analyses (cancer hallmarks, KEGG 
pathways, and GO cellular components). This 
comprehensive, stepwise approach offers a 
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biologically meaningful and scalable framework for 
multi-omics analysis in cancer research.  

A Multi-Omics Perspective on Molecular 
Alterations Across Age Groups 

To comprehensively characterize the molecular 
landscape of thyroid cancer across different biological 
levels and age groups, we performed an integrated 
multi-omics analysis comparing tumor and normal 
tissues. Figure 2 presents the results of four distinct 
analytical approaches, each revealing unique aspects 
of thyroid cancer biology. As shown in Figure 2A, our 
proteomics comparison between adult PTC tumor 
and adjacent normal tissues identified 1,864 
differentially expressed proteins (adjusted P < 0.05). 
Among the upregulated proteins, we observed 
significant elevation of extracellular matrix proteins, 
including FN1 (Fibronectin 1) and THBS1 
(Thrombospondin 1), which are established mediators 
of tumor invasion and metastasis [16]. Conversely, 
downregulation of HBA1 (Hemoglobin Subunit 
Alpha 1) and CA2 (Carbonic Anhydrase 2) suggests 
substantial metabolic reprogramming in tumor 
tissues [17, 18]. 

RNA sequencing analysis revealed 1,674 
differentially expressed genes, providing insights into 
transcriptional regulation in PTC (Figure 2B). Notable 
upregulated genes include IGF2R (Insulin-like 
Growth Factor 2 Receptor), a key regulator of cell 
proliferation associated with PTC [19]. The 
downregulation of SLC4A1 (Solute Carrier Family 4 
Member 1) indicates significant alterations in cellular 
ion transport mechanisms [20]. 

To understand post-translational modifications 
in PTC, we performed phosphoproteomic analysis in 
Figure 2C, identifying 391 significantly altered 
phosphorylation sites. Of particular interest was the 
altered phosphorylation of TNC (Tenascin C), which 
plays a crucial role in tumor microenvironment 
modulation and metastatic progression [21]. These 
findings highlight the importance of protein 
phosphorylation in cancer development. 

To identify age-specific molecular signatures, we 
compared protein expression between pediatric 
malignant and benign thyroid tissues (Figure 2D), 
revealing 243 differentially expressed proteins. Key 
upregulated proteins included LGALS3 (Galectin 3), 
an established marker of thyroid malignancy [22], and 
POSTN (Periostin), which promotes tumor metastasis 
and angiogenesis [23]. This multi-dimensional 
analysis reveals the complex interplay between 
transcriptional regulation, protein expression, and 
post-translational modifications in thyroid cancer. By 
examining both adult and pediatric cases, our study 
provides a comprehensive view of the molecular 

alterations driving thyroid cancer progression across 
age groups. These findings not only enhance our 
understanding of thyroid cancer biology but also 
identify potential therapeutic targets and biomarkers 
for further investigation. 

The 46 common genes related to cancer 
reprogramming energy metabolism 

To leverage the existing metabolomics data, we 
utilized the MetaBridge tool to map 334 differentially 
expressed metabolites to their corresponding KEGG 
(Kyoto Encyclopedia of Genes and Genomes) 
enzymes [9]. In this way, we have five gene lists, four 
from the Figure 2, which have the differentially 
expressed genes in multi-OMICs data. And the last 
one mapped enzyme from the metabolites. To 
understand the metabolic reprogramming in thyroid 
cancer and identify key metabolic regulators, we 
performed a set analysis and identified a total of the 
46 common genes identified across multiple omics 
platforms. These genes showed significant 
enrichment in energy metabolism-related pathways, 
prompting a detailed investigation of their functional 
roles and regulatory networks (Figure 3). 

Our initial overlap analysis (Figure 3A) revealed 
46 genes present in at least three of the five 
multi-omics datasets. Key metabolic regulators such 
as IDH1, PGAM1, NDUFS3, and LDHB were 
identified among these common genes, suggesting 
their central role in thyroid cancer metabolism. This 
cross-platform consistency strengthens the evidence 
for their involvement in disease progression. To 
contextualize these findings within cancer biology, we 
performed Cancer Hallmark Annotation analysis 
(Figure 3B). Several genes, including IDH1, PGAM1, 
SUCLG2, and LDHB, showed significant association 
with "Reprogramming Energy Metabolism." This 
enrichment reflects the fundamental metabolic 
alterations in cancer cells, particularly the Warburg 
effect and TCA cycle modifications. Notably, IDH1 
mutations are established cancer drivers through 
oncometabolite production, while PGAM1 enhances 
cancer cell survival by regulating glycolysis and 
biosynthesis pathways. 

To determine the subcellular localization of these 
metabolic regulators, we performed Gene Ontology 
cellular component analysis (Figure 3C). The results 
revealed significant enrichment in mitochondrial 
compartments, particularly the inner membrane and 
matrix, highlighting the importance of oxidative 
phosphorylation and TCA cycle regulation. 
Additionally, enrichment in catalytic and 
oxidoreductase complexes emphasizes their crucial 
role in cellular redox balance and energy production. 
Further pathway analysis using KEGG (Figure 3D) 
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identified significant enrichment in key metabolic 
processes. These included glycolysis/ 
gluconeogenesis, citrate cycle, oxidative 
phosphorylation, and purine metabolism pathways. 
The visualization of these enrichments through 

bubble plots, where size indicates gene count and 
color represents statistical significance, clearly 
demonstrates the central role of these pathways in 
supporting tumor growth and adaptation. 

 

 
Figure 2. Multi-omics differential expression analysis of thyroid cancer subtypes. (A) Volcano plot comparing protein expression profiles between papillary thyroid cancer (PTC) 
and matched adjacent normal tissues (n=37 pairs). Analysis identified 1,864 significantly altered proteins (adjusted p-value < 0.05), with red dots indicating up-regulated and blue 
dots showing down-regulated proteins in PTC. (B) Transcriptome-wide differential expression analysis between PTC and normal tissues, revealing 1,674 significantly changed 
genes (adjusted p-value < 0.05). (C) Phosphoproteomic profiling of PTC versus normal tissues, identifying 391 differentially phosphorylated proteins (adjusted p-value < 0.05). (D) 
Proteomic comparison between pediatric malignant (PM, n=15) and pediatric benign (PB, n=12) thyroid tissues, showing 243 significantly altered proteins (adjusted p-value < 
0.05). In all panels, the x-axis represents log2 fold change (FC), and the y-axis shows -log10(adjusted p-value FDR). Red dots indicate significantly up-regulated molecules, while 
blue dots represent significantly down-regulated molecules. Dashed horizontal lines indicate the significance threshold (adjusted p-value < 0.05). 
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Figure 3. Integration of multi-omics data and functional characterization of overlapping genes in thyroid cancer. (A) Venn diagram illustrating the overlap among five gene/protein 
lists derived from multi-omics analyses: enzyme, phosphorylation, proteomics, RNA, and pediatric malignant versus pediatric benign (PM/PB) comparisons. The analysis includes 
data from papillary thyroid cancer (PTC) patients (n=37 pairs of tumor and adjacent normal tissues) and pediatric thyroid tissue samples (PM, n=15; PB, n=12). A total of 46 genes 
were identified as shared across at least three datasets. (B) Cancer Hallmark analysis of the 46 overlapping genes, highlighting significant enrichment in pathways related to 
metabolic reprogramming. The radial plot displays adjusted p-values for each hallmark category, with lower values indicating stronger enrichment. (C) Bubble plot showing Gene 
Ontology (GO) cellular component enrichment among the intersecting genes. Bubble size corresponds to the number of genes in each GO term, and color intensity reflects 
statistical significance (FDR-adjusted p-value). (D) Bubble plot of enriched KEGG pathways for the overlapping genes. Bubble size represents the gene ratio (proportion of genes 
in each pathway), and color intensity indicates statistical significance (FDR-adjusted p-value, shown as -log10 values).  

 
Collectively, our multi-dimensional analysis 

provides compelling evidence for the fundamental 
role of metabolic reprogramming in thyroid cancer 
development. The identification of these 46 genes and 
their associated pathways not only enhances our 
understanding of thyroid cancer metabolism but also 
suggests potential therapeutic targets for future 
investigation. These findings provide a strong 

foundation for developing metabolism-targeted 
therapeutic strategies in thyroid cancer treatment. 

Mutational and Clinical Analysis of Public 
Genomics Data 

To investigate the mutational landscape and 
clinical implications of 46 key genes using publicly 
available genomic data, we combined the PTC dataset 
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(500 samples) with the two ATC datasets (190 + 117 
samples) and conducted survival analyses across 751 
patients. By integrating these mutations with survival 
outcomes, we aimed to identify biomarkers with 
potential prognostic and therapeutic relevance.  

The mutation frequencies and types in the 46 
genes are provided in Figure S1 and Table S2, 
Mutation types include single-nucleotide variants 
(MUT), amplifications (AMP), homozygous deletions 
(HOMDEL), and gene fusions (FUSION). The 
"Percent Samples Altered" column represents the 
percentage of samples exhibiting any mutation in 
each gene, while "Num Samples Altered" indicates the 
absolute number of samples affected. Notably, genes 
such as B4GALT1, ALDH1A1, NDUFV2, and ACO1 
had mutations in 6% of samples, making them 
frequent mutational targets in thyroid cancer. Among 
these, NDUFV2 and its closely related family member 
NDUFS3 highlight the potential involvement of 
mitochondrial dysfunction in cancer 
pathophysiology. Similarly, ALDH1A1, alongside 
other aldehyde dehydrogenase family members such 
as ALDH4A1 and ALDH3A2, underscores the role of 
metabolic dysregulation in thyroid cancer 
progression. 

In addition, genes implicated in mitochondrial 
metabolism, such as GLUD1, SUCLG2, and HADHA, 
demonstrated alterations in 4%-5% of samples. This 
observation supports the broader theme of metabolic 
reprogramming in thyroid cancer, particularly in 
energy production and oxidative stress responses. 
The consistent mutation patterns across these genes 
suggest their potential as candidates for therapeutic 
intervention and biomarkers for disease stratification. 

 To provide a comprehensive perspective, we 
conducted survival analyses across 751 patients 
(Figure S2). For overall survival (OS), 93 patients were 
classified into the altered group and 658 into the 
unaltered group. The median OS for the altered group 
was significantly shorter at 5.59 months (95% CI: 4.11–
9.33), compared to an undefined median OS for the 
unaltered group due to prolonged survival (p < 
0.0001, q < 0.0001). For disease-free survival (DFS), 
355 patients were analyzed, with 4 patients in the 
altered group and 351 in the unaltered group. The 
altered group again showed a trend toward reduced 
DFS, although the median survival could not be 
calculated due to limited events (p = 0.0345, q = 
0.0345). These results reinforce the consistent 
association between mutations in the 46 genes and 
adverse clinical outcomes across thyroid cancer 
subtypes. 

To explore the PTC specific feature, 
Kaplan-Meier survival analysis was performed using 
data from 336 PTC patients included in the TCGA 

pan-cancer dataset as shown in Figure 4A. Among 
these patients, 3 were in the altered group, defined by 
mutations in the 46 genes, and 333 were in the 
unaltered group. The median disease-free survival 
(DFS) for both groups could not be calculated due to 
insufficient events in the altered group. However, the 
altered group demonstrated significantly reduced 
DFS compared to the unaltered group (p = 0.022, q = 
0.0439). Additionally, an overall survival analysis of 
478 PTC samples (8 in the altered group and 470 in the 
unaltered group) showed no significant difference 
between the groups (p = 0.692). These findings 
suggest that while mutations in the 46 genes are 
associated with recurrence risks in PTC, they may not 
significantly affect overall survival outcomes. This 
dataset underscores the importance of these genetic 
alterations in influencing early disease recurrence 
while highlighting the need for further studies to 
assess their impact on long-term survival. 

Building on these findings, we extended the 
analysis to ATC, an aggressive subtype of thyroid 
cancer, to explore whether these genes exhibit a 
similar prognostic significance. The ATC cohort 
comprised data from two datasets: (1) 190 samples 
analyzed by whole-genome or whole-exome 
sequencing, representing ATC and co-occurring 
differentiated thyroid carcinoma (DTC), and (2) 117 
samples subjected to targeted sequencing of 341 
cancer genes from patient-derived poorly 
differentiated thyroid carcinoma (PDTC) and ATC 
samples. 

More interesting, Figure 4B classified ATC 
samples based on the presence or absence of 
mutations in the 46 genes. The x-axis represents 
oncotrack classifications, while the y-axis indicates the 
proportion of samples within each group. A 
substantial proportion of ATC samples were 
categorized as altered, demonstrating a strong 
correlation between mutations in these genes and 
aggressive ATC subtypes. This classification 
underscores the heterogeneity within ATC and 
highlights the potential utility of these genes in 
refining molecular subtypes and predicting clinical 
behavior. 

To further explore the clinical implications of 
these mutations in ATC, we analyzed overall survival 
(Figure 4C) and tumor mutation burden (TMB, Figure 
4D), two critical indicators of disease aggressiveness 
and therapeutic potential. Survival analysis revealed 
stark differences between the altered and unaltered 
groups. The x-axis denotes OS time (in months), and 
the y-axis represents survival probability. The altered 
group exhibited a dramatically shorter OS compared 
to the unaltered group (log-rank test, p = 4.59 × 10−14). 
Among the 84 patients in the altered group, 69 events 
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(deaths) occurred, with a median overall survival of 
4.34 months (95% CI: 3.52–7.62). Conversely, the 
unaltered group, consisting of 161 patients with 83 
events, exhibited a significantly longer median overall 
survival of 43.78 months (95% CI: 27.17–116.68). These 
results underscore the potential of these mutations as 
prognostic markers, as their presence is strongly 
associated with poorer outcomes and more aggressive 
disease phenotypes in ATC. This finding is consistent 
with the hypothesis that mutations in the 46 genes 
play a critical role in ATC progression. The findings 

from all the survival analyses highlight the clinical 
relevance of the 46-gene panel in thyroid cancer. 
Specifically, these genetic alterations are associated 
with poorer survival outcomes and increased 
recurrence risks in both PTC and ATC, with a more 
pronounced impact observed in ATC. By integrating 
genomic and clinical data, this study provides a 
robust foundation for further exploration of these 
mutations as potential biomarkers or therapeutic 
targets in thyroid cancer. 

 
 
 

 
Figure 4. Clinical outcome and molecular characterization of PTC and ATC cohorts of the 46 genes. (A) Disease-free survival analysis for PTC patients stratified by gene 
alteration status, presented as Kaplan-Meier curves. (B) Proportional representation of altered and unaltered cases across ATC subtypes using Oncotreemap visualization. (C) 
Overall survival comparison between altered and unaltered ATC patient groups using Kaplan-Meier analysis. (D) Comparative analysis of tumor mutation burden between 
altered and unaltered ATC groups, displayed as box plots. 
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A box plot analysis compared the TMB in Figure 
4D, defined as the number of nonsynonymous 
mutations per megabase, between the altered and 
unaltered groups in the ATC cohort. The x-axis shows 
the group classification, while the y-axis displays 
TMB scores. The altered group demonstrated 
significantly higher TMB, a feature often linked to 
poor prognosis and increased immunogenicity in 
cancer. These findings suggest that mutations in the 
46 genes contribute to the mutational landscape of 
ATC, emphasizing their potential as biomarkers for 
immunotherapy responsiveness and personalized 
treatment strategies. 

Collectively, these findings provide a 
comprehensive understanding of the mutational 
landscape of the 46 genes in thyroid cancer. By 
integrating clinical and genomic data, this study 
highlights the importance of these genes in shaping 
disease outcomes, offering promising avenues for 
further research and clinical application. 

Immunotherapy Analysis of Key Genes in 
Thyroid Cancer  

To assess the potential application of 46 clinically 
significant genes in immunotherapy for thyroid 
cancer, we analyzed their expression in a publicly 
available anti-PD1 gene expression dataset (Table S3). 
The analysis revealed a robust stratification of the 46 
genes based on their statistical significance in relation 
to immunotherapy response. Genes with the seven 
most significant p-values (<1.0E-04) and false 
discovery rates (FDR ≤ 1%) include AK2, SUCLG2, 
NDUFV2, GLUD1, HADHA, ALDH1A1, NADSYN1, 
marking them as the most promising candidates for 
further exploration. A subset of genes, such as CHKB, 
GCDH, and OPA1, exhibited moderate significance 
(FDR = 10%), suggesting their roles may be context 
dependent. Genes with higher p-values (FDR > 50%), 
including PPA2, UGDH, and CRAT, may contribute 
indirectly to immunotherapy response through 
secondary or complementary pathways. 

Among these genes, 40 were successfully 
mapped to the dataset, with 30 demonstrating 
significant associations with immunotherapy 
response (P-value < 0.05). The top four genes 
exhibiting the most significant associations—AK2, 
SUCLG2, NDUFV2, and GLUD1—are highlighted 
and described below (Figure 5A–D). 

As shown in Figure 5A, AK2 (Adenylate Kinase 
2) demonstrated the most significant association with 
immunotherapy outcomes (HR = 0.43, p = 4.5E-09). As 
a regulator of cellular energy homeostasis, AK2 plays 
a critical role in maintaining mitochondrial function, 
which is essential for immune cell activation [24]. Its 
high expression is strongly correlated with improved 

immunotherapy response, potentially due to its role 
in sustaining energy balance under immune stress 
conditions. 

SUCLG2 (Succinate-CoA Ligase GDP-Forming 
Beta Subunit) was the second most significant gene 
(Figure 5B, HR = 0.51, p = 2.9E-08). This gene is a key 
component of the tricarboxylic acid (TCA) cycle and is 
involved in mitochondrial energy metabolism. High 
SUCLG2 expression is associated with enhanced 
immunotherapy response [25], potentially by 
modulating succinate metabolism, a process 
implicated in immune cell activation and tumor 
microenvironment reprogramming. 

Interestingly, NDUFV2 (NADH: Ubiquinone 
Oxidoreductase Core Subunit V2) also exhibited 
significant association with immunotherapy efficacy 
(HR = 0.47, p = 7.3E-07) in Figure 5C. As a component 
of Complex I in the mitochondrial electron transport 
chain, NDUFV2 contributes to energy production and 
redox balance [26]. This function is critical for 
immune cell metabolism and tumor immune 
surveillance. Additionally, the related gene NDUFS3 
(HR = 0.55, p = 7.0e-03) underscores the importance of 
mitochondrial function in modulating the immune 
response, further supporting the role of the NDUFV 
gene family in immunotherapy outcomes. 

The fourth gene GLUD1 (Glutamate 
Dehydrogenase 1) was also significantly associated 
with improved immunotherapy response as depicted 
in Figure 5D (HR = 0.54, p = 5.1E-06). GLUD1 is 
integral to glutamine metabolism, a process critical for 
cancer cell survival and immune cell function [27]. Its 
high expression suggests a dual role in modulating 
tumor metabolism and enhancing the anti-tumor 
immune response. 

Additional genes showing significant 
associations include ALDH1A1 (HR = 0.56, p = 
9.6e-05) and HADHA (HR = 0.53, p = 1.5e-05), which 
emphasize the importance of metabolic pathways in 
immunotherapy response. ALDH1A1 is involved in 
cellular detoxification and retinoic acid signaling, 
which may contribute to immune modulation, while 
HADHA’s role in fatty acid β-oxidation influences 
tumor microenvironment reprogramming. Genes 
involved in mitochondrial function and energy 
metabolism, such as NADSYN1, GPD1, and IARS2, 
also demonstrated significant correlations with 
immunotherapy outcomes. These genes collectively 
highlight the centrality of mitochondrial integrity and 
metabolic adaptability in shaping immune responses. 

In sum, this systematic categorization 
underscores the pivotal role of mitochondrial energy 
metabolism, glutamine metabolism, and redox 
homeostasis in the efficacy of anti-PD1 therapies in 
thyroid cancer.  
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Figure 5. Kaplan-Meier survival analysis of key metabolic gene expression in relation to anti-PD-1 immunotherapy response in thyroid cancer. (A–D) Kaplan-Meier survival 
curves illustrating the association between expression levels of four metabolic genes—AK2 (A), SUCLG2 (B), NDUFV2 (C), and GLUD1 (D)—and overall survival in patients 
treated with anti-PD-1 immunotherapy (total n = 520). Patients were stratified into high (red) and low (black) expression groups based on median gene expression values. The 
x-axis represents time in months, and the y-axis indicates the probability of survival. Hazard ratios (HR) with 95% confidence intervals and log-rank test p-values are displayed in 
each panel to assess statistical significance. The number of patients at risk at each time point is shown below each plot. 

 
Validating the oncogenic role of AK2 in thyroid 
cancer cell lines  

To validate one of the top seven prognostic gene 
candidates, we selected AK2 to investigate its 
potential as a biomarker for stratifying thyroid cancer 
progression and treatment. To this aim, we used 
CAL-62 and KTC-1 cells, which are well-established 
human thyroid cancer cell lines commonly used to 
model anaplastic and papillary thyroid carcinomas, 
respectively. CAL-62 originates from an 

undifferentiated thyroid carcinoma and exhibits 
aggressive, mesenchymal-like features, while KTC-1 
derives from papillary carcinoma and retains 
characteristics of differentiated thyroid cancer.  

As shown in Figure 6A, AK2 mRNA expression 
was significantly reduced in CAL-62 and KTC-1 cells 
following siRNA-mediated knockdown. Cell viability 
assays revealed that AK2 knockdown significantly 
inhibited the proliferation of both cell lines (Figure 
6B). Consistently, colony formation assays showed a 
marked reduction in colony-forming ability (Figure 
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6C). Transwell migration assays further demonstrated 
that AK2 silencing substantially impaired cell 
migration, with CAL-62 cells exhibiting 
near-complete loss of migratory capacity (Figure 6D). 
These findings suggest that AK2 plays a critical role in 
thyroid cancer cell proliferation and migration, 
supporting its potential as a biomarker and 
therapeutic target for personalized treatment 
strategies. 

Discussion 
Our study aimed to identify conserved pathways 

and genes across multiple omics platforms in both 

adult and pediatric thyroid cancer cohorts, with a 
focus on integrating proteomics, phosphoproteomics, 
metabolomics, and transcriptomics datasets. By 
employing a comprehensive cross-platform analysis, 
we identified 46 genes consistently altered across 
multiple molecular dimensions. These genes were 
predominantly associated with mitochondrial energy 
metabolism [28], underscoring the significance of 
metabolic adaptations in thyroid cancer progression. 
This multi-layered approach provided robust 
validation of these molecular signatures across 
diverse experimental conditions and patient 
populations. 

 

 
Figure 6. AK2 functions as an oncogene and promotes proliferation and migration in thyroid cancer cell lines. (A) Quantitative PCR analysis of AK2 mRNA expression in 
CAL-62 (anaplastic thyroid cancer) and KTC-1 (papillary thyroid cancer) cells following transfection with AK2-targeting siRNA, confirming effective knockdown. (B) Cell 
proliferation was assessed using the CCK-8 assay in AK2-knockdown CAL-62 and KTC-1 cells, showing reduced viability compared to controls. (C) Colony formation assay 
demonstrated a significant decrease in the long-term proliferative capacity of both cell lines after AK2 knockdown. (D) Transwell migration assay revealed that suppression of 
AK2 markedly inhibited the migratory ability of CAL-62 and KTC-1 cells, with near-complete loss of migration observed in CAL-62. 
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A significant strength of our study lies in its 
comparative analysis of adult and pediatric PTC 
datasets, revealing shared molecular mechanisms 
between these age-distinct presentations of thyroid 
cancer [3]. Our integrative analysis of the 46 genes 
identified across multiple omics layers revealed 
notable correlations between changes in protein 
expression and other molecular features, which reveal 
their functional roles in thyroid cancer biology. For 
example, several genes such as IDH1, PGAM1, and 
LDHB demonstrated consistent upregulation at both 
the transcript and protein levels, underscoring their 
enhanced activity in metabolic reprogramming 
pathways like glycolysis and the TCA cycle. These 
coordinated changes suggest that alterations at the 
mRNA level translate into increased protein 
abundance, potentially amplifying their effects on 
energy production and redox balance within tumor 
cells. Moreover, phosphorylation state modifications 
of proteins like TNC, which is involved in metastasis 
and microenvironment modulation, further indicate 
post-translational regulation that could influence 
tumor progression and metastatic potential. 

Given the complexity inherent in multi-OMICs 
data integration, our study employed several 
strategies to mitigate potential confounders such as 
batch effects, technical variability, tumor purity, and 
cellular heterogeneity. Rigorous normalization 
procedures and statistical corrections, including false 
discovery rate adjustments, were applied across 
datasets to reduce technical biases and improve 
comparability between different omics layers, such as 
proteomics, phosphoproteomics, metabolomics, and 
transcriptomics. Additionally, enzyme mapping of 
metabolites using tools like MetaBridge helped 
standardize pathway-level interpretations, further 
minimizing confounding due to disparate data 
sources. Where available, clinical metadata such as 
tumor cellularity estimates were incorporated to 
account for heterogeneity, and pathway enrichment 
analyses helped focus on biological processes likely to 
be genuine rather than artifacts of sample variation. 
These methodologies collectively enhanced the 
robustness of the integrated analyses, although 
residual confounding cannot be eliminated, 
underscoring the importance of continued refinement 
with prospective, carefully controlled datasets. 

Furthermore, the observed multi-OMICs 
relationships, especially those involving key genes 
implicated in energy metabolism, suggest that the 
coordinated changes across different molecular layers 
are likely reflective of true biological mechanisms 
rather than technical artifacts. For instance, several 
genes such as IDH1 and PGAM1 displayed consistent 
alterations at the transcript, protein, and metabolite 

levels, indicating their critical role in reprogramming 
energy pathways like glycolysis and the TCA cycle in 
thyroid cancer. Changes in phosphorylation states of 
proteins such as TNC further implicate post- 
translational modifications in functional regulation 
during tumor progression. These multi-OMICs 
relationships highlight the interconnected nature of 
gene expression, enzyme activity, and metabolite 
dynamics, which collectively influence tumor growth, 
immune evasion, and response to therapy. The 
functional consequences of these integrated molecular 
alterations underscore potential vulnerabilities that 
can be targeted therapeutically, for example, through 
drugs that inhibit key metabolic enzymes or modulate 
post-translational modifications, thereby disrupting 
cancer cell metabolism and microenvironment 
interactions. 

Reflecting on this investigation, several 
limitations warrant consideration. The reliance on a 
specific cohort may restrict the generalizability of the 
findings, as biological variability can differ widely in 
broader populations. One notable limitation is the 
disparity in cohort sizes between adult and pediatric 
thyroid cancer samples, as well as between different 
subtypes such as PTC and ATC. Although our 
integrated multi-omics approach allowed for robust 
identification of key molecular signatures, the smaller 
size of certain cohorts, particularly pediatric samples, 
may limit the statistical power and the ability to detect 
less prominent alterations. Larger, more diverse 
cohorts would help validate and extend these 
findings, ensuring the generalizability across different 
patient populations. Furthermore, while the 
integrative multi-omics approach provides a 
comprehensive dataset, the complexity of data 
interpretation poses challenges, potentially 
overlooking significant interactions among molecular 
pathways [29].  

The analysis of anti-PD-1 immunotherapy 
response in 520 patients further highlighted several 
genes significantly associated with treatment efficacy, 
particularly those involved in metabolic processes. 
Notable genes, including AK2, SUCLG2, NDUFV2, 
GLUD1, and HADHA, emerged as potential 
biomarkers for predicting immunotherapy response. 
These findings suggest actionable targets for 
enhancing immunotherapeutic strategies and 
overcoming treatment resistance in aggressive 
thyroid cancers [30]. 

The association of the 46-gene panel with poorer 
survival outcomes reinforces their potential as 
prognostic markers, aiding in risk stratification and 
personalized treatment approaches. By bridging 
molecular research with clinical practice, our study 
not only provides a foundation for precision medicine 
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but also highlights actionable pathways for 
therapeutic intervention. Ultimately, the integrative 
multi-omics approach presented here offers valuable 
insights into thyroid cancer biology, paving the way 
for the development of targeted therapies and 
personalized treatment strategies aimed at improving 
patient outcomes. 

Conclusions 
This integrative multi-omics study significantly 

advances our understanding of thyroid cancer by 
uncovering critical metabolic pathways and 
identifying prognostic biomarkers. The consistent 
alterations in key genes across proteomics, 
phosphoproteomics, metabolomics, and 
transcriptomic data underscore the importance of 
energy metabolism reprogramming in thyroid cancer 
progression. Moreover, the associations between 
specific gene mutations and clinical outcomes, 
including survival and immunotherapy response, 
highlight the potential for these genes to serve as 
actionable targets in personalized medicine. Future 
research should focus on experimental validation of 
these findings and the development of targeted 
therapies to improve patient outcomes in thyroid 
cancer. 
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