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Abstract 

The acquisition of resistance to anoikis is a critical driver of metastasis in various tumor types. 
However, the combined role of anoikis apoptosis in the progression and prognosis of hepatocellular 
carcinoma (HCC) remains largely unexplored. This study integrates known anoikis genes with 
single-cell datasets to identify differentially expressed Anoikis (DE-Anoikis) through unsupervised 
clustering, enabling the classification of samples from The Cancer Genome Atlas (TCGA). A 
prognostic risk model was constructed using univariate Cox proportional hazards regression and 
validated with external datasets from the International Cancer Genome Consortium (ICGC) and 
the Gene Expression Omnibus (GEO). The results revealed significant prognostic differences among 
DE-Anoikis-based HCC molecular subtypes, with functional enrichment analyses highlighting 
metabolic reprogramming differences. Furthermore, the anoikis-related prognostic model 
demonstrated robust predictive accuracy across multiple validation datasets. Two potential 
therapeutic drugs exhibited sensitivity in low-risk patients, offering novel insights into HCC 
treatment. Overall, this study identifies a unique subgroup of apoptosis-associated HCC and a 
prognostic model, providing further biological insights into the molecular mechanisms and 
therapeutic strategies for HCC. 
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Introduction 
Hepatocellular carcinoma (HCC) is the most 

common primary liver cancer, accounting for 90% of 
hepatic cancers [1, 2]. The high prevalence of hepatitis 
B virus (HBV) infection in East Asia and Africa has led 
to a higher incidence of HCC in these regions 
compared to other parts of the world [3, 4]. Treatment 
options for HCC depend on clinical and pathological 
staging and include liver transplantation, liver 
resection (LR), transarterial chemoembolization 
(TACE), transarterial radioembolization (TARE), 
chemotherapy, and radiation therapy [5, 6]. In recent 
years, the combination of targeted therapies and 
immunotherapy has significantly improved the 

prognosis for patients with advanced HCC, marking a 
milestone in oncology treatment [7-9]. However, the 
insidious onset and rapid progression of HCC make 
early diagnosis, metastasis prevention, and treatment 
resistance challenging. Understanding the 
mechanisms of HCC metastasis is crucial for 
identifying potential therapeutic targets. 

Metastasis is a key event in HCC progression 
and a major factor contributing to the poor prognosis 
of patients. HCC metastasis involves the separation of 
cancer cells from the primary tumor and their spread 
to other organs, primarily via the circulatory system 
[10, 11]. Normally, the detachment of cells from the 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3486 

extracellular matrix triggers a form of programmed 
cell death called apoptosis. However, tumor cells 
acquire resistance to this "anoikis" (detachment- 
induced apoptosis), enabling them to survive in an 
anchorage-independent manner [12-14]. This 
resistance extends their survival in the circulatory 
system and facilitates their colonization at secondary 
sites [15]. Acquisition of anoikis resistance is a critical 
factor in HCC metastasis. Several proteins have been 
shown to play key roles in anoikis resistance. For 
example, the 14-3-3ζ protein inhibits the intrinsic 
apoptotic pathway by attenuating Bad and p53 
activity, thereby conferring anoikis resistance to 
cancer cells. Additionally, 14-3-3σ promotes anoikis 
resistance in HCC by regulating the EGFR-ERK1/2 
pathway [16]. 

In this study, we screened key regulators of 
anoikis using single-cell sequencing data from HCC 
samples. By clustering the HCC samples based on 
these genes, we identified two distinct anoikis-related 
HCC molecular subtypes. Functional enrichment 
analysis provided further insights into potential 
biological mechanisms. We used univariate Cox 
regression, least absolute shrinkage and selection 
operator (LASSO) regression, and multivariate Cox 
regression analyses to identify prognostic genes and 
construct prognostic risk models. These models were 
then evaluated with respect to the immune 
microenvironment and chemotherapeutic drug 
sensitivity to explore potential sensitizing therapies. 
Given that the mechanisms of apoptosis in HCC are 
not fully understood, our study offers new 
perspectives on the role of apoptosis in HCC 
metastasis and provides valuable biological clues for 
future research. 

Methods 
Data Collection and Processing 

RNA-Seq data from TCGA-LIHC were 
downloaded using the TCGA GDC API, while the 
ICGC-LIRI-JP dataset was obtained from the HCCDB 
database. Gene expression data and related clinical 
information for liver cancer patients in GSE43619 
were downloaded from the GEO database. The 
scRNA-seq data from GSE149614, containing 10 
primary liver cancer samples and 8 adjacent 
non-tumor liver samples, were also downloaded from 
the GEO database. 

The bulk RNA-Seq dataset was preprocessed as 
follows: (1) samples without clinical follow-up 
information were removed; (2) samples without 
survival status were excluded; (3) Ensemble IDs were 
converted to gene symbols; and (4) expression values 
for multiple gene symbols were averaged. After 

screening, a total of 370 primary tumor samples and 
50 adjacent non-tumor control samples were retained 
in TCGA-LIHC. 212 hepatocellular carcinoma 
samples were retained from the ICGC-LIRI-JP dataset, 
and 88 tumor samples were kept from GSE43619. 

Single-Cell Transcriptome Clustering and 
Identification of DE-Anoikis Genes 

For the scRNA-seq dataset, we applied filtering 
thresholds such that each gene had to be expressed in 
at least 5 cells, and each cell had to express at least 200 
genes. Cells were retained if the proportion of 
mitochondrial genes was < 15% and the number of 
genes ranged between 50 and 6000. Data were then 
normalized using the SC Transform function, and 
principal component analysis (PCA) was performed 
using the RunPCA function. Batch effects were 
removed using the harmony package. The first 30 
principal components were used for t-SNE 
dimensionality reduction. Cell subpopulations were 
clustered using the FindNeighbors and FindClusters 
functions (resolution = 0.1), and cell types were 
annotated based on marker genes from the 
CellMarker2.0 database. 

The keyword "Anoikis" was searched on the 
GeneCards website (https://www.genecards.org/), 
and 211 genes with a score ≥ 1.5 were identified. To 
analyze the role of anoikis in hepatocellular 
carcinoma, we intersected 615 differentially expressed 
markers (logFC. threshold > 0.25) with the 211 
anoikis-related genes. A total of 17 DE-Anoikis genes 
were identified. 

HCC Consistency Clustering and Functional 
Enrichment 

Based on the DE-Anoikis genes, unsupervised 
clustering was performed on the TCGA-LIHC dataset 
using the R package "ConsensusClusterPlus" (version 
1.58.0) [17]. Kaplan-Meier (KM) survival curves for 
different subgroups and clusters were analyzed and 
plotted using the R packages "survival" (version 
3.2.13) and "survminer" (version 0.4.9). Gene 
expression in different subgroups and clusters was 
visualized using the R package "ComplexHeatmap" 
(version 2.10.0). 

Modeling of Prognostic Risk Associated with 
Anoikis Resistance 

To identify genes differentially expressed 
between C1 and C2 subtypes, we used the limma 
package (FDR < 0.05 and |log2FC| > log2(2)). 
Univariate Cox regression analysis of these genes was 
then performed using the "coxph" function to identify 
genes with prognostic significance. To further refine 
key genes, we applied the Least Absolute Shrinkage 
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and Selection Operator (LASSO) algorithm using the 
R package "glmnet" (version 4.1.3) [18]. This approach 
helped construct a penalty function, providing a more 
accurate model to address the issue of 
multicollinearity in regression analysis [19]. Stepwise 
regression was performed using the Akaike 
information criterion (AIC) in the MASS package 
(version 7.3.54), starting with the most complex model 
and iteratively removing variables to reduce AIC. A 
smaller AIC value indicates a better model, 
suggesting a sufficient fit with fewer parameters. 

The "coxph" function was used to perform 
multivariate Cox analysis of the hub genes, and the 
coefficients for each gene were determined. The risk 
score for each sample was calculated as the sum of the 
product of each gene and its coefficient. TCGA-LIHC 
samples were then categorized into high-risk and 
low-risk groups based on the optimal risk score cutoff 
points, which were identified using the "surv_ 
cutpoint" function. Receiver operating characteristic 
(ROC) curve analyses were performed using the R 
package "timeROC" and nomograms were 
constructed using the "rms" package (version 6.2.0). 

Correlation Analysis Between Risk Score and 
Drug Sensitivity 

The R package "oncoPredict" was used to predict 
drug IC50 values for the TCGA-LIHC dataset 
samples. Pearson correlation analysis was then 
conducted to evaluate the relationship between drug 
sensitivity and risk score, with p < 0.05 and |cor| > 
0.5 considered statistically significant. 

Immunohistochemistry and Quantification of 
Hub Protein Expression in HCC 

To validate the protein-level expression of the 
key protein G6PD in hepatocellular carcinoma (HCC) 
tissues, immunohistochemistry (IHC) was performed 
on formalin-fixed, paraffin-embedded (FFPE) tumor 
sections. The anti-G6PD primary antibody was 
purchased from Proteintech. Tissue preparation 
followed standard protocols established by the 
institutional pathology laboratory. Tissue samples 
were fixed in 4% paraformaldehyde, dehydrated, 
embedded in paraffin, sectioned, stained, and sealed 
according to the standard operating procedures (SOP) 
of the core facility. Quality control was ensured before 
imaging. Image analysis was conducted using 
Visiopharm (Microvis, Dangéuil) software. The 
“HDAB-DAB” color deconvolution protocol was 
applied for automated detection of the DAB-positive 
signal across whole-slide images. Area Density 
(Integrated Optical Density/Area) was computed, 
reflecting both the extent and intensity of 

G6PD-positive staining. This metric is independent of 
tissue area and thus provides a robust quantification. 
All regions of interest (ROIs) were manually defined 
to include the full tissue area. Positive staining 
thresholds were calibrated and standardized across 
all samples using a fixed color segmentation model to 
ensure consistency in quantification. After image 
analysis, area density and average optical density 
values were extracted and further visualized using R 
for statistical comparison between groups. 

Results 
Identification of DE-Anoikis 

After cell filtering and normalization, subcluster 
analysis of the single-cell transcriptomes in 
GSE149614 was performed and visualized using the 
t-distributed stochastic neighbor embedding (t-SNE) 
approach. Quality Control of Single Cell Sequencing 
Data was showed in Supplementary Figure 1A total of 
60,496 cells were retained and divided into 10 cell 
clusters. Based on the expression of classical marker 
genes, these clusters were annotated as T/NK cells, 
Myeloid cells, Endothelial cells, Fibroblasts, B cells, 
Hepatocytes, and Plasma cells (Fig. 1A-B). The 
proportions of various cell types in different samples 
are shown in Fig. 1C. To analyze the role of anoikis in 
hepatocellular carcinoma, 615 differentially expressed 
cell markers (logfc.threshold > 0.25) were intersected 
with 211 anoikis-related genes. A total of 17 
DE-Anoikis genes were identified. The expression 
patterns of these 17 DE-Anoikis in individual cells are 
shown in Fig. 1D. MCL1, LGALS1, MTDH, and 
CXCR4 were widely distributed among various cell 
clusters, while SOD2 was predominantly expressed in 
myeloid cells, and FN1 was highly expressed in 
fibroblasts. These genes may act synergistically 
among different cell types to promote 
hepatocarcinogenesis. 

Consistent Clustering of HCC Based on DE- 
Anoikis with Prognostic Significance 

We explored differences in anoikis resistance 
features between tumor and adjacent non-tumor 
tissues using the ssGSEA algorithm. DE-Anoikis- 
based enrichment scores indicated that tumor tissues 
had significantly lower DE-Anoikis scores compared 
to normal tissues, suggesting downregulation of 
anoikis regulation in tumor tissues (Fig. 2A). We 
subsequently analyzed the gene expression of 
DE-Anoikis in relation to prognosis and identified 10 
DE-Anoikis genes significantly correlated with 
prognosis (p < 0.05), namely, CXCL8, LGALS3, BSG, 
PRDX6, NQO1, MMP9, LGALS1, CTTN, MTDH, and 
PIK3R1 (Fig. 2B). 
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Figure 1. (A) Annotated t-SNE plot showing cell subpopulations. (B) Bubble plot of classical marker gene expression in different cell subpopulations. (C) Percentage of cell 
subpopulations in each sample. (D) Violin plots showing the expression levels of 17 DE-Anoikis genes in each cell type. 

 
 Based on these 10 DE-Anoikis genes, HCC 

patients in the TCGA-LIHC dataset were subjected to 
molecular subtyping. The two optimal clusters 
identified were named C1 and C2 (Fig. 2C, 
Supplementary Table 1). 

To explore the impact of anoikis resistance on the 
prognostic characteristics of HCC patients, 
clinicopathological features were compared between 
the C1 and C2 subtypes. The C1 subtype had higher 
clinical stage and grade (Fig. 2D). Kaplan-Meier (KM) 
analysis showed that patients in the C1 subtype had 
significantly worse overall survival compared to the 
C2 subtype (p < 0.05, Fig. 2E). Differentially expressed 
genes between the clusters were identified (FDR < 
0.05 and |log2FC| > log2(2), Supplementary Table 2), 
and the top 10 up- and down-regulated genes were 
visualized using radar plots (Fig. 2F). To further 
verify the tissue origin of the differentially expressed 
genes (DEGs) between the C1 and C2 subtypes, we 
performed enrichment analysis at the single-cell level 

using the AUCell algorithm. The enrichment scores of 
the DEG set were predominantly distributed in 
hepatocyte populations in the single-cell RNA-seq 
dataset GSE149614, indicating that these genes are 
mainly derived from resident liver cells within the 
tumor tissue rather than detached cells 
(Supplementary Fig. 2). Furthermore, KEGG 
enrichment analysis revealed that these DEGs were 
significantly enriched in pathways such as the PPAR 
signaling pathway, Glycolysis/Gluconeogenesis, 
Carbon metabolism, and IL−17 signaling pathway, all 
of which are closely associated with liver cell function 
and metabolic reprogramming. These findings 
strongly support the notion that the DEGs originate 
from functional hepatocytes within tumor tissues. 

We then used 161 differentially expressed genes 
from the HCC subtypes for functional enrichment 
analysis to clarify differential biological functions and 
pathways. Interestingly, many metabolism-related 
pathways, such as carbon metabolism, IL-17 signaling 
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pathway, glycolysis, and amino acid metabolism, 
were significantly enriched (Fig. 3A-D). These 
findings suggest that differential regulation of anoikis 
resistance may be linked to metabolic reprogramming 
in tumor tissues. 

Construction and Validation of a Clinical 
Prognostic Model 

To further clarify the prognostic significance of 
anoikis resistance in HCC, we constructed a clinical 
prognostic model based on differentially expressed 
genes (DEGs). First, 161 DEGs were analyzed using 
univariate Cox regression, and 111 genes with 
significant prognostic value were identified (p < 0.05). 
LASSO regression was then used to reduce the 
number of prognostic genes for risk modeling. The 
trajectory of lambda for each independent variable is 
shown in Fig. 4A-B. Ten-fold cross-validation was 
performed, and confidence intervals were analyzed 
for each lambda. The model reached its optimum at 
lambda = 0.0739, and six genes were selected. We then 
used stepwise multivariate regression analysis to 
further refine the model, resulting in the identification 
of four influential prognostic genes and their 
coefficients (Fig. 4C). The RiskScore for each sample 
was calculated using the following formula: RiskScore 

= 0.188 * G6PD + 0.093 * AKR1B15 + 0.079 * S100A9 - 
0.059 * ADH4, where G6PD, AKR1B15, and S100A9 
are risk factors, and ADH4 is a protective factor. 

Based on the optimal cutoff point, LIHC patients 
were categorized into high-risk and low-risk groups. 
The classification efficiency for prognostic prediction 
at one, three, and five years was analyzed, with the 
RiskScore reaching 0.76, 0.68, and 0.67, respectively, 
for survival prediction (Fig. 4D). KM analysis showed 
that the overall survival rate of high-RiskScore 
patients was significantly lower than that of 
low-RiskScore patients. The clinical prognostic model 
was validated using the ICGC-LIRI-JP (Fig. 4E) and 
GSE43619 (Fig. 4F) validation sets, where similar 
results were observed as in the training set. 

To determine whether RiskScore was 
independent of other clinical factors, univariate and 
multivariate Cox regression analyses were performed 
in the TCGA-LIHC dataset (Fig. 5A-B). Univariate 
analyses showed that T stage, M stage, overall stage, 
and RiskScore were all significant prognostic factors. 
Multivariate analysis confirmed that RiskScore was an 
independent risk factor for HCC prognosis, with the 
highest hazard ratio (HR = 2.79). 

 

 
Figure 2. (A) Boxplot showing ssGSEA results, indicating significantly lower DE-Anoikis scores in cancer tissues compared to normal tissues. (B) One-way Cox analysis of 
DE-Anoikis in the TCGA-LIHC dataset, identifying 10 genes with p < 0.05. (C) Consensus clustering heatmap of the TCGA-LIHC dataset. (D) Clinicopathological characteristics 
of the two molecular subtypes in the TCGA-LIHC dataset. (E) Kaplan-Meier (KM) curves illustrating overall survival (OS) prognosis of the two molecular subtypes. (F) Radar plot 
showing the top 10 differentially expressed genes between C1 and C2 subtypes, where red dots represent upregulated genes and green dots represent downregulated genes. 
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Figure 3. A: Bubble plot of KEGG pathway enrichment analysis, with bubble size representing the number of genes and color representing significance (p-value). B: Bubble plot 
of GO Biological Process (GO_BP) enrichment analysis. C: Bubble plot of GO Cellular Component (GO_CC) enrichment analysis. D: Bubble plot of GO Molecular Function 
(GO_MF) enrichment analysis. The significance of each entry is represented by the color, increasing sequentially from blue to red. 

 
To quantify the risk assessment and survival 

probability of patients in the TCGA-LIHC dataset, a 
nomogram combining T stage, N stage, M stage, and 
RiskScore was created (Fig. 5C). The nomogram 
indicated that RiskScore had the greatest impact on 
survival prediction. Calibration curves showed good 
predictive accuracy for one-, three-, and five-year 

survival, as they closely aligned with standard curves 
(Fig. 5D). Decision curve analysis (DCA) indicated 
that the nomogram offered significant benefits 
compared to extreme curves, demonstrating strong 
predictive ability compared to other individual 
clinical features (Fig. 5E).  
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Figure 4. (A) Trajectory of each independent variable with different lambda values during LASSO regression. (B) Confidence intervals under each lambda value. (C) Prognostic 
model constructed based on selected genes. (D) Clinical prognostic model and KM survival curves for the TCGA-LIHC dataset, shown from left to right. (E) Validation of the 
clinical prognostic model and KM survival curves for the ICGC-LIRI-JP dataset, shown from left to right. (F) Validation of the clinical prognostic model and KM survival curves for 
the GSE43619 dataset, shown from left to right. 

 
Evaluation and IHC validation of classical 
apoptotic resistance pathway 

To elucidate the relationship between classical 

apoptosis and anoikis resistance, we examined the 
expression levels of key apoptosis markers (e.g., BAX, 
BCL2, CASP3) between tumor and normal tissues, as 
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well as between the C1 and C2 subtypes. Significant 
differential expression was observed (Supplementary 
Fig. 3). Additionally, we analyzed the activity of key 
signaling pathways involved in anoikis resistance, 
including the PI3K-Akt signaling pathway, ECM- 
receptor interaction, and MAPK signaling pathway, 
as defined in the KEGG database. Single-sample gene 
set enrichment analysis (ssGSEA) revealed that these 
pathways were significantly more active in the C1 
subtype (p < 0.05). Correlation analysis showed that 
the expression of G6PD and S100A9 was positively 
associated with pathway activity scores, while ADH4 

expression was negatively associated. These findings 
suggest that the biomarkers defined in our model are 
closely linked to canonical anoikis resistance 
mechanisms and may contribute to apoptotic 
dysregulation in HCC (Fig. 6A-C). Furthermore, we 
conducted IHC on the G6PD risk factor in HCC and 
adjacent tissues. The results showed that the 
expression of G6PD was significantly increased in 
HCC tissues compared to adjacent tissues (Fig. 6D). 
The Area Density of G6PD staining for all 
pathological sections also showed significant high 
expression in HCC tissues (Fig. 6E). 

 

 
Figure 5. (A) Results of univariate Cox analysis. (B) Results of multivariate Cox analysis. (C) Column plot combining RiskScore with clinical characteristics. (D) Calibration 
curves for the column plot. (E) Decision curve analysis (DCA) for the column plot. 
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Figure 6. Association of anoikis resistance pathways with model genes and validation of G6PD expression via immunohistochemistry. (A–C) ssGSEA was used to assess the 
activity of canonical anoikis resistance-related pathways, including the PI3K-Akt signaling pathway, ECM-receptor interaction, and MAPK signaling pathway, based on KEGG gene 
sets. (D) Immunohistochemical staining of G6PD in paired HCC and adjacent non-tumor tissues demonstrated markedly higher expression of G6PD in tumor tissues. (E) 
Quantitative analysis of the Area Density from IHC staining confirmed that G6PD protein levels were significantly upregulated in HCC tissues compared to adjacent non-tumor 
controls (p < 0.05). 

 

Sensitivity analysis of chemotherapy drugs 
based on risk score 

To elucidate the relationship between RiskScore 
and the immune microenvironment, we used the 
TIMER software to assess immune cell profiles. The 
results showed significant differences in immune cell 
infiltration between high-risk and low-risk groups 
(Fig. 7A). Unexpectedly, immune cell infiltration was 
significantly higher in the high-risk group compared 
to the low-risk group. We speculate that the 

acquisition of anoikis resistance makes tumor cells 
more likely to detach from the extracellular matrix, 
which elicits a response from the immune surveillance 
system. Although immune cell infiltration may 
enhance the anti-tumor response in the tumor 
microenvironment (TME), the highly metastatic 
nature of this tumor type still results in a poor 
prognosis. 

We further explored the relationship between 
RiskScore and drug sensitivity by calculating the 
half-maximal inhibitory concentration (IC50) values 
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for each drug in the TCGA-LIHC samples. We 
identified a significant correlation between two drugs 
and RiskScore (FDR < 0.05 and |cor| > 0.5). 
RiskScore, ADH4, G6PD, and S100A9 were 
significantly correlated with the IC50 values of 
SB505124_1194 and Doramapimod_1024 (Fig. 7B). 
Among these, the IC50 value of SB505124_1194 was 
higher in the high-RiskScore group, indicating that 
patients with a high RiskScore were resistant to this 
drug, while those in the low-risk group were more 
sensitive (Fig. 7C-D). Among the screened 
compounds using the oncoPredict algorithm, 
SB505124_1194 (corresponding to SB505124) exhibited 
a strong inverse correlation with the anoikis-related 
RiskScore, indicating that patients in the low-risk 
group may be more responsive to this compound. 

SB505124 is a selective inhibitor of the TGF-β type I 
receptors ALK4/5/7, which blocks the 
phosphorylation of Smad2/3 and downstream TGF-β 
signaling. In advanced hepatocellular carcinoma, 
TGF-β signaling contributes to epithelial- 
mesenchymal transition (EMT), metastasis, and 
anoikis resistance. By inhibiting this pathway, 
SB505124 may enhance sensitivity to anoikis and 
promote apoptosis in tumor cells, aligning with the 
core mechanisms explored in this study. Although 
SB505124 is currently in preclinical development and 
not yet in clinical use, the integration of its sensitivity 
profile with our prognostic model suggests potential 
therapeutic value for low-risk HCC patients and 
highlights avenues for personalized treatment 
strategies. 

 

 
Figure 7. (A) Differences in immune cell scores between high and low-risk groups in the TCGA-LIHC cohort. (B) Correlation analysis between RiskScore in the TCGA-LIHC 
dataset and the expression of key genes in the model and drug IC50. (C) Comparison of IC50 values of SB505124_1194 drug between high and low-risk groups. (D) The 
relationship between the IC50 and risk score of SB505124_1194 drug relevance. 
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Discussion 
It has been shown that when cancer cells detach 

from the extracellular matrix (ECM), they must 
overcome several obstacles to survive [10, 20]. One 
critical step in this process is acquiring resistance to 
anoikis [21, 22]. Different pathways drive anoikis, 
ultimately converging on cysteine asparaginase 
activation, nucleic acid endonuclease activation, and 
DNA fragmentation, leading to cell death [23, 24]. 
This process can be triggered by mitochondrial 
perturbation or cell surface death receptors [25]. ECM 
detachment sends signals to induce cell death through 
multiple mechanisms [26]. Resistance to anoikis 
occurs via various mechanisms, including changes in 
integrins, overexpression or mutation of growth 
factor receptors, ECM stiffness, production of 
pro-survival soluble factors, epithelial-mesenchymal 
transition (EMT), and metabolic dysregulation [27]. 
Although many studies have preliminarily clarified 
the role of anoikis in various cancers, including HCC, 
new perspectives are needed to better understand the 
comprehensive prognostic role of anoikis in HCC, 
given the wide range of pathways involved and its 
critical role in tumor metastasis. 

In this study, using a single-cell dataset and 
multiple HCC transcriptome cohorts, we established 
the significant prognostic value of anoikis resistance 
in HCC. We identified molecular subtypes of HCC 
based on anoikis features, revealing clear prognostic 
and functional differences among the subtypes. 
Metabolic reprogramming of tumor cells appeared to 
be significantly correlated with the acquisition of 
anoikis resistance. Huakan Zhao et al. demonstrated 
that STIM1 stabilized the Snail1 protein during tumor 
growth by activating the CaMKII/AKT/GSK-3β 
pathway. Subsequently, upregulated Snail1 inhibited 
STIM1/SOE during metastasis, while STIM1 repair 
significantly reduced Snail1-induced anoikis 
resistance and metastasis. Thus, STIM1 plays a role in 
coordinating invasion and metastasis by 
reprogramming HCC metabolism [28]. Updated 
studies have shown that ECM isolation promotes the 
accumulation of single-carbon metabolites, induces 
anoikis regulatory pathway genes, and increases total 
DNA methylation [29]. This is consistent with our 
findings. Our results also indicated that sugar 
metabolism and amino acid metabolism, along with 
carbon metabolism, are involved in anoikis resistance 
acquisition, suggesting a complex metabolic network 
that still requires further investigation. 

Based on differentially expressed genes 
associated with anoikis resistance and prognostic 
significance, we identified key hub genes for this 
process: G6PD, AKR1B15, S100A9, and ADH4. It has 

been shown that G6PD expression is regulated by the 
GLV9-AMPK axis, leading to glycolipid metabolism 
reprogramming, disrupting redox homeostasis, and 
inducing anoikis [30]. The roles of AKR1B15, S100A9, 
and ADH4 in anoikis are less established. Notably, 
ADH4 expression and its regulation of NAD+, 
NAD+/NADH ratio, and ATP concentrations are 
important in redox homeostasis in HCC, potentially 
contributing to anoikis resistance in HCC [31]. Our 
clinical prognostic model, constructed based on 
anoikis-related hub genes, demonstrated good 
prognostic efficacy in multiple validation sets, 
corroborating the role of anoikis resistance in HCC 
progression. These results provide further insight into 
the role of anoikis in HCC. However, more studies are 
needed to clarify the comprehensive anoikis 
regulatory network in HCC and to determine whether 
this biological signature could be a potential 
therapeutic target for advanced HCC. 

Conclusion 
This study characterized the gene panel of 

DE-Anoikis and defined anoikis resistance-associated 
HCC molecular subtypes, revealing significant 
metabolic differences across anoikis resistance traits. 
We identified four anoikis-associated signatures using 
LASSO and constructed a clinical prognostic model 
with good efficacy. The model also identified two 
drugs associated with risk scores, which could 
contribute to personalized cancer medicine. 
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