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Abstract 

Background: Fatty acid metabolism (FAM) is a crucial metabolic characteristic of tumor cells, 
playing a role in various pathological processes during tumor development. Till now, the prognostic 
role of FAM-related genes of prostate cancer (PCa) is far from fully investigation. 
Methods: The combinations of 10 machine learning algorithms were applied in this study. A reliable 
signature, FAM-related gene score (FAMRGs), was developed to predict the prognosis of patients 
with PCa. External data sets were used to verify the accuracy and robustness of the FAMRGs. Drug 
sensitivity analysis was used to predict the optimal drug for high-risk PCa patients. The underlying 
mechanism related to FAMRGs were investigated by functional enrichment analysis. A nomogram 
based on FAMRGs was developed for personalized prediction of patient prognosis.  
Results: A stable FAMRGs was construced and validated in 6 independent cohorts. FAMRGs 
accurately divided PCa patients into low and high risk group. FAMRGs showed stronger predictive 
ability compared with published prognostic signatures for PCa. Also, the androgen receptor 
signaling inhibitors (ARSI) treatment response predictive ability of FAMRGs was identified. Five 
drugs that were most suitable for patients in the high risk group of FAMRGs were screened. It was 
shown that FAMRGs involved in cell cycle-related pathways. The novel nomogram showed precisely 
predictive ability for the outcomes of patients with PCa. 
Conclusions: The FAMRGs can accurately predict the prognosis of PCa patients and is expected to 
direct the clinical treatment for PCa. 
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1. Introduction 
Prostate cancer (PCa) is the second most 

commonly diagnosed cancer and a leading cause of 
cancer-related mortality in men globally. In 2024, it is 
reported that there will be 299,010 new cases of PCa in 
the United States, representing 29% of all new male 
cancer cases, and an estimated 35,250 deaths, which 
would account for 11% of male cancer deaths [1]. The 
primary therapeutic approaches for PCa include 
surgery, radiotherapy, chemotherapy and endocrine 
therapy. However, these treatments have certain side 
effects and limitations [2-4]. Even treated with 
appropriate therapy, an increased risk of biochemical 
recurrence (BCR) remains insidious for high-risk PCa 
patients, leading to a lethal stage of the disease [5, 6]. 
At present, adjuvant treatments have been applied in 
clinical practice to improve the prognosis of PCa 
patients [7, 8]. Unfortunately, due to the limitations of 
existing testing methods, accurately predicting BCR of 
high-risk PCa patients is emergently needed [9].  

Currently, the detection of BCR mainly relies on 
the monitoring of serum prostate specific antigen 
(PSA) [10]. After a radical prostatectomy (RP), 
abnormally elevated PSA level may indicate a 
recurrence or residual tumor [5, 11]. However, 
elevated PSA levels cannot be ruled out as being 
caused by non-cancerous prostate disease, and relying 
solely on PSA level testing to assess the prognosis of 
PCa patients may lead to overdiagnosis and 
overtreatment [12]. In recent years, the utilization of 
tumor next-generation sequencing (NGS) technology 
within the realm of oncology has been expanding [13]. 
Various prognostic models based on gene expression 
have gradually become important tools to guide the 
personalized treatment of PCa and other cancers. 
However, the majority of published models face 
challenges in clinical implementation due to poor 
selection of algorithms for building models. Hence, 
the development of a prognostic model utilizing 
machine learning method still has considerable room 
for enhancement in clinical application. 

Fatty acid metabolism (FAM), as an important 
component of lipid metabolism, is involved in various 
cell biological processes, such as cell proliferation, 
energy conversion and organelle synthesis [14, 15], 
promoting the pathological processes of tumor 
formation [16]. Abnormally activated lipid 
metabolism enables most tumor cells to proliferate 
through synthesis, elongation and desaturation of 
fatty acids (FAs), leading to tumor growth, invasion 
and metastasis [17]. CD147 was found to promote 
fatty acid synthesis and inhibit fatty acid beta- 
oxidation, thus enhancing the proliferation and 
metastasis of hepatocellular carcinoma cells [18]. 

Recently, most studied focused on the molecular 
mechanisms of FAM among the progression of 
malignant tumors. Additionally, prognostic models 
constructed based on FAM-related genes showed 
potential clinical value for the treatment responses of 
patients with advanced rectal cancer [19] and glioma 
[20]. Nevertheless, whether FAM-related genes can 
serve as predictive factors for PCa remains far from 
fully investigated. 

In this study, we collected and collated 6 PCa 
clinical cohorts, based on differentially expressed 
FAM-related genes in PCa, tempting to construct a 
novel prognostic signature applying comprehensive 
machine learning strategy to identify PCa patients at 
high risk of BCR. We verified the feasibility of the 
signature in the independent cohorts and predicted 
the most appropriate agents for high-risk BCR 
patients, hoping to help guide the individualized 
treatment of PCa. 

2. Materials and methods 
2.1 Data sources  

The detailed information of 7 PCa public 
datasets applied in this study were shown in 
Supplementary Table s1. The RNA-sequencing data 
and corresponding clinical data of PCa patients were 
obtained from the Cancer Genome Atlas (TCGA, 
https://cancergenome.nih.gov/), the cBioPortal for 
Cancer Genomics (https://www.cbioportal.org/), 
and Gene Expression Omnibus (GEO, https://www. 
ncbi.nlm.nih.gov/geo/). Trimmed Mean of M-values 
(TMN) method in edgeR package was applied to 
process the RNA-seq data of TCGA. Robust Multichip 
Average (RMA) method in oligo package was used to 
process the Affymetrix microarray data. The gene 
expression values were standardized through log2 
transformation. 

2.2 Identification of BCR-related FAM 
candidate genes 

Genes in fatty acid metabolism pathways were 
acquired from Molecular Signatures Database 
(MSigDB, https://www.gsea-msigdb.org/gsea/ 
msigdb). The limma package was used to identify 
differentially expressed genes (DEGs) between PCa 
and normal tissue in TCGA with thresholds of |log2 
fold change (FC)| > 1 and adjusted P < 0.05. 
Univariate Cox regression analysis (P < 0.05) was 
employed to identify FAM BCR-related genes. 

2.3 Construction of a prognostic FAM-related 
gene score (FAMRGs) for patients with PCa 

To construct a reliable FAMRGs accurately 
forecasting the outcomes of PCa patients with stable 
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performance, 117 combinations of 10 machine 
learning algorithms were intergrated. The 10 machine 
learning algorithms employed in this study included 
CoxBoost, elastic network (Enet), generalized boosted 
regression modeling (GBM), partial least squares 
regression for Cox (plsRcox), random survival forest 
(RSF), Ridge, stepwise Cox, supervised principal 
components (SuperPC), survival support vector 
machine (suvival-SVM), and the least absolute 
shrinkage and selection operator (Lasso). We 
identified the optimal algorithm combination based 
on the highest average C-index and the best predictive 
performance. 

2.4 The expression feature and prognostic role 
of genes in FAMRGs 

The mRNA expression levels of FAMRGs in 
normal prostate tissues and PCa tissues were obtained 
from TCGA and compared by Student’s t test. The 
protein expression of FAMRGs in normal prostate 
and PCa tissues were assessed by applying the 
Human Protein Atlas (HPA) database (https://www. 
proteinatlas.org/) under the citation guidelines of 
HPA. The URLs that link directly to the detailed 
information of the images on the site were displayed 
in the Supplementary Table s2. Univariate Cox 
regression and multivariate Cox regression were 
applied to assess the prognostic value of genes in 
FAMRGs. 

2.5 Evaluation of the FAMRGs across 6 
independent cohorts 

Kaplan-Meier (K-M) survival curves of BCR 
were performed by survival package. The receiver 
opearting characteristic (ROC) curves were performed 
by survivalROC package. The survminer package was 
applied to determine the optimal cut-off value with 
the parameter 'minprop' = 0.1. Patients were stratified 
into high- and low- risk groups based on this cut-off 
for K-M analysis. Univariate Cox regression analysis 
was applied to evaluate the prognostic value of the 
signature. 

2.6 Comparison of the predictive performance 
of FAMRGs and published signatures 

To further validate the predictive performance of 
FAMRGs, we conducted a systematic search on 
PubMed and collected 51 prognostic signatures of 
PCa. These signatures were linked to multiple 
biological processes including lipid metabolism, 
glycolysis, apoptosis, ferroptosis, hypoxia, and 
inflammation. C-index of each prognostic signature in 
6 cohorts were calculated for comparison. 

2.7 Androgen receptor signaling inhibitors 
(ARSI) treatment response predictive ability 
of FAMRGs 

ARSI cohort was downloaded from the 
cBioPortal database. Specifically, 75 ARSI treatment 
samples with gene expression and prognostic data 
were acquired from the PRAD SU2C 2019 dataset. 

2.8 Calculating the potential sensitive 
therapeutic drugs for patients with high 
FAMRGs 

Drug sensitivity data were downloaded from the 
Cancer Therapeutics Response Portal (CTRP, 
https://portals.broadinstitute.org/ctrp.v2.1/). The 
IC50 values of different drugs for each sample in 
TCGA were assessed by calcPhenotype function. 
Pearson correlation analysis was applied to perform 
the correlation between risk scores and IC50 values. 

2.9 Enrichment analysis 
We downloaded h.all.v2024.1.Hs.symbols.gmt 

and c2.cp.kegg_legacy.v2024.1.Hs.symbols.gmt from 
Molecular Signatures Database (MSigDB, 
https://www.gsea-msigdb.org/gsea/msigdb). DEGs 
between the high- and low- risk groups of FAMRGs 
were identified using the R package limma and 
ranked in descending order according to the log2 fold 
change (log2FC). The ranked gene list was then 
further analyzed using the R package clusterProfiler 
for gene set enrichment analysis (GSEA) to identify 
significant enriched functional pathways. Gene 
ontology (GO) enrichment analysis was employed to 
investigate the major biological process. Gene sets 
with a q-value < 0.05 were considered significantly 
enriched. 

2.10 Establishment of a novel nomogram 
A novel nomogram for BCR, consisting of 

pathological T (pT) stage, pathological N (pN) stage, 
clinical M (cM) stage, age, gleason score, PSA value, 
and risk score of FAMRGs, was constructed by rms 
package. Decision curve analysis was performed to 
assess the clinical benefit of prediction models. ROC 
curves were applied to assess the predictive ability of 
the nomogram. The web-based BCR probability 
calculators were built using R packages DynNom and 
shiny. 

2.11 Statistical analysis 
All statistical analysis and visualizations were 

performed using R software (version 4.1.0). The 
survminer package was applied to determine the 
optimal cut-off value. Statistical significance was 
considered at P < 0.05. 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3453 

3. Results 
3.1 Construction of a prognostic signature 
consisting of 13 FAM genes (FAMRGs) 
predicting BCR of PCa 

This study was carried out in adherence to the 
workflow charted in Figure 1A. 3,200 DEGs were 
identified between normal and Pca tissue in TCGA 
with P < 0.05 and |log2FC| > 1 (Figure 1B). Then, 
univariate Cox regression analysis was performed, 
utilizing a p-value threshold of 0.05, to identify 140 
BCR-related FAM genes. Venn plot revealed that a 
total of 24 marker genes were intersected between 
DEGs and BCR-related FAM genes, and these genes 
served as the basis for the subsequent analysis (Figure 
1C). Then, a integration approach based on machine 
learning was employed to develop an accurate and 
reliable FAMRGs. Using 10 different machine 
learning algorithms, we integrated 117 types of 
prediction models (Supplementary Table s3). The 
C-index for each model in the TCGA training cohort 
and 5 external validation cohorts (Cambridge, 
CancerMap, CPC-Gene, DKFZ, and Taylor) were 
calculated and ranked. The top 20 combinations were 
presented in Figure 1D, the combination of Lasso and 
RSF algorithms exhibited the highest average C-index 
of 0.746 and was selected as the optimal model. In the 
Lasso regression, the optimal lambda was identified 
when the partial likelihood of deviance reached the 
minimum value, resulting in the selection of 13 genes 
of utmost value (Figures 1E and F). These genes were 
subsequently optimized using the RSF algorithm, 
which improved the performance of the model and 
led to the enhancement of a highly robust prognostic 
model named FAMRGs. The prediction error rate 
remained low and stable when constructing 1000 
survival trees (Figure 1G). The variable importance 
(VIMP) of each gene indicated its contribution to the 
prediction of BCR. Finally, a gene set of 13 core genes 
(ACOX2, TWIST1, ABCC4, APOE, SLC5A8, PLP1, 
GSTM4, SLC27A2, PLA2G2C, HMGCLL1, PTGS2, 
SLC45A3, and PLA2G4D) was identified (Figure 1H) 
and predict function was applied to score each 
sample.  

Compared with mRNA expression in normal 
prostate tissue, SLC27A2, TWSIT1, SLC45A3, APOE 
and ABCC4 were upregulated, while ACOX2, 
GSTM4, PLA2G2C, PLP1, PTGS2, HMGCLL1, 
PLA2G4D and SLC5A8 were downregulated in PCa 
tissue (Figure s1A). Immunohistochemical 
information from the HPA database showed that 
higher staining of GSTM4, PLP1, and PTGS2 was 
found in normal prostate tissue, while higher staining 
of SLC27A2, SLC45A3, APOE, and ABCC4 was 
observed in prostate cancer tissue (Figure s1B). 

Futhermore, univariate Cox regression analysis found 
that all genes in FAMRGs were prognostic factors in 
PCa (Figure s1C), and two genes (TWIST1 and APOE) 
were indentified as independent prognostic factors by 
multivariate Cox regression analysis (Figure s1D). 

3.2 The prognostic significance of FAMRGs 
To assess the prognostic significance of the 

FAMRGs, we categorized the samples within each 
cohort into high and low risk groups using the 
optimal cutoff value. K-M survival analysis revealed a 
significant difference in BCR rates between high and 
low risk groups in the training cohort TCGA (N = 463, 
P < 0.0001) and the validation cohorts, including 
Cambridge (N = 111, P < 0.0001), CancerMap (N = 
127, P = 0.00059), CPC-Gene (N = 99, P = 0.0034), 
DKFZ (N = 105, P<0.0001), and Taylor (N = 140, P < 
0.0001), indicating that patients in the high risk group 
were more likely to develop BCR (Figure 2A). 

Univariate Cox regression analysis (Figures 
2B-G) showed that FAMRGs could act as a predictive 
indicator for BCR in TCGA (HR = 1.131, P = 0.000), 
Cambridge (HR = 1.085, P = 0.001), CancerMap (HR = 
1.060, P = 0.000), CPC-Gene (HR = 1.034, P = 0.025), 
DKFZ (HR = 1.093, P = 0.000), and Taylor (HR = 1.072, 
P = 0.000). In contrast to clinical factors like age, PSA, 
Gleason score and TMN, FAMRGs was identified as a 
reliable independent prognostic factor for BCR in all 
cohorts. 

3.3 Evaluation of the accuracy and robustness 
of FAMRGs 

The accuracy and robustness of FAMRGs were 
further confirmed through ROC analysis. The AUC 
values in each cohort were used to evaluate the 
predictive accuracy of FAMRGs and clinical factor. 
The 1-, 3-, and 5-year AUC values of FAMRGs were 
0.981, 0.990, and 0.963 in TCGA (Figure 3A); 0.797, 
0.639, and 0.609 in Cambridge (Figure 3B); 0.634, 
0.680, and 0.769 in CancerMap (Figure 3C); 0.674, 
0.656, and 0.657 in CPC-Gene (Figure 3D); 0.808, 0.863, 
and 0.919 in DKFZ (Figure 3E); and 0.799, 0.718, and 
0.665 in Taylor (Figure 3F), respectively. Overall, the 
AUC values of FAMRGs had better performance than 
clinical characteristics in most cohorts, except Taylor, 
indicating the accurate and robust predictive 
performance of FAMRGs. 

3.4 Comparison of predictive significance 
between FAMRGs and 51 published signatures 

To further validate the prognostic value of 
FAMRGs in comparison to various published 
predictive signatures for PCa, we complied 51 
published signatures associated with diverse 
biological characteristics, including lipid metabolism, 
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glycolysis, cell apoptosis, ferroptosis, hypoxia, and 
inflammation. We then computed the C-index for the 
51 signatures across the six cohorts. In the comparison 
of C-index among the 51 signatures and FAMRGs, the 
top 30 of each cohort were shown in Figure 4A. In 
addition, FAMRGs significantly outperformed other 

signatures in the overall average C-index (Figure 4B) 
and ranking (Figure 4C). These results suggested that 
FAMRGs exhibited robust predictive and 
generalization capabilities when compared with other 
signatures. 

 

 
Figure 1. Construction of a signature consisting of 13 FAM genes (FAMRGs) predicting BCR of PCa. (A) Flow chart of this study. (B) The volcano plot indicating 
the DEGs between normal and tumor tissues. Thresholds include a P value < 0.05 and log2FC > 1. (C) The venn diagram of DEGs between normal and tumor tissues and 
BCR-related FAM genes. (D) The C-indexes of the top 20 of 117 machine-learning algorithm combinations in the six cohorts. (E) The coefficients in Lasso regression analysis. 
(F) Selection of lambda in the Lasso regression model. The error rate curve of the RSF algorithm (G) and the variable importance of the 13 core genes (H). 
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Figure 2. The prognostic significance of FAMRGs. (A) The K-M survival curves for the patients from TCGA, Cambridge, CancerMap, CPC-Gene, DKFZ and Taylor 
cohorts. (B-G) Univariate Cox regression analysis of riskscore and pathological clinical characteristics of the six cohorts, respectively. 

 

3.5 The performance of FAMRGs in predicting 
the efficacy of ARSI treatment for patients 
with PCa 

To better evaluate the clinical value of FAMRGs, 
we observed the ability of the FAMRGs in forecasting 

the response to ARSI therapy. Patients with low 
FAMRGs presented a more favorable overall survival 
and progression-free survival than those with high 
FAMRGs (Figures 5A and B). 
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Figure 3. Evaluation of the accuracy and robustness of FAMRGs. (A-F) The ROC curves of 1-year, 3-year and 5-year BCR prediction for the TCGA, Cambridge, 
CancerMap, CPC-Gene, DKFZ and Taylor cohorts, respectively. 
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Figure 4. Comparison of prognostic value between FAMRGs and 51 published signatures. (A) The top 30 C-indexes of FAMRGs and 51 published signatures are 
presented in TCGA, Cambridge, CancerMap, CPC-Gene, DKFZ and Taylor cohorts. (B) The average C-index of FAMRGs and 51 published signatures in the six cohorts. (C) 
The average rank of FAMRGs and 51 published signatures in the six cohorts. The error bars indicate the 95% confidence interval (CI). 
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Figure 5. FAMRGs in ARSI and sensitivity therapeutic agents prediction. (A) The K-M survival analysis of overall survival for patients from ARSI cohort. (B) The K-M 
survival analysis of progression-free survival for patients from ARSI cohort. (C-H) Potential pharmaceutical compounds are presented in the high FAMRGs group. 

 

3.6 Identification of potential therapeutic 
agents for patients with high FAMRGs 

Drug response data were obtained from the 
CTRP database and Spearman correlation analysis 
(|Spearman's R| > 0.4) was employed to identify the 
top five agents exhibiting a considerable negative 
correlation between IC50 and FAMRGs (Figure 5C). 
The IC50 values and their correlations with FAMRGs 
for the five agents derived from CTRP, including 
Temozolomide, BRD-K03536150, BRD-K33514849, 
BRD-K35604418 and NSC95397 were showed in 
Figures 5D-H, respectively. These five agents all 
exhibited lower IC50 values in high FAMRGs group 
and demonstrated a negative correlation with 
FAMRGs, potentially offering therapeutic alternatives 
for patients with high FAMRGs. 

3.7 The biological function related to FAMRGs 
To explore the biological functions related to 

FAMRGs, GSEA analysis was conducted and found 
that FAMRGs was enriched in pathways related to 
tumor growth, such as E2F targets, G2M checkpoint, 
mitotic spindle, cell cycle, and DNA replication 
(Figures 6A and B). The GO analysis revealed that the 
most related biological processes of FAMRGs were 
mitotic sister chromatid segregation and mitotic 
nuclear division (Figure 6C). 

3.8 Construction of a novel nomogram 
consisted of FAMRGs for clinical utilization 

A novel nomogram was established including 
the pT stage, pN stage, cM stage, gleason score, age, 
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PSA value, and risk score of FAMRGs. The risk score 
was identified as the primary contributor to BCR 
prediction for PCa patients in the novel developed 
nomogram (Figure 7A). Decision curve analysis 
demonstrated that the nomogram had a greater 
clinical net benefit than clinical characteristics, except 
for the risk score (Figure 7B). Furthermore, the 1-, 3-, 
5-, and 7-year AUC values of the nomogram for 
predicting BCR were 0.976, 0.987, 0.967, and 0.959, 
respectively (Figures 7C-F). To enhance the clinical 
application of the novel nomogram, we developed a 
dynamic nomogram (Figure 7G) that allowed for 
more convenient and intuitive prediction of BCR 
probability according to the individual characteristics 
of PCa patients (https://410studio.shinyapps.io/ 
DynNomapp/). 

4. Discussion 
BCR is recognized as a risk factor for possible 

clinical metastasis and unfavorable prognosis in PCa 
patients [21]. Early detection and prompt intervention 
can significantly improve the prognosis of PCa 
patients [22]. Currently, the precision in 
distinguishing high risk patients through measures 
like PSA levels, Gleason score, tumor invasion, and 
metastatic status is inadequate [12]. Therefore, it is 
crucial to discover novel prognostic biomarkers and 
risk scores that can accurately stratify the risk of BCR 
in patients with PCa. 

FAM is a significant metabolic characteristic of 
tumor cells and participates in various pathological 
mechanisms. PCa is rich in fatty acids, and the 
abnormal regulation of FAM promotes the poor 
prognosis [23]. In previous studies, FAM-related 
genes were used to construct prognostic models of 
PCa [24]. Due to the deficiencies in the selection of 

algorithms and the number of validation cohorts, the 
predictive accuracy of the model requires 
enhancement. Here, we collected multiple cohorts 
from public databases and applied machine learning 
to select the most suitable algorithm combination to 
construct a novel prognostic signature. The 
combination of Lasso and RSF algorithms yielded the 
highest C-index and was used to construct the 
FAMRGs, which contained 13 core genes. Also, 
FAMRGs performed better accuracy and robustness, 
compared with various preditive models of PCa. To 
the best of our knowledge, FAMRGs is the first 
predictive model constructed by comprehensive 
machine learning algorithm combination and 
obtaining a high level of testing efficiency. 

Seven genes in FAMRGs have been reported to 
be associated with the progression of PCa. We have 
demonstrated that ACOX2 inhibits PCa progression 
by regulating fatty acid oxidation [25]. TWIST1 was 
found to direct an embryonic developmental program 
for prostate organogenesis, thereby facilitating cancer 
metastasis [26]. ABCC4 was shown to play a key role 
in docetaxel resistance in PCa [27]. APOE can promote 
the senescence of immunosuppressive neutrophils in 
PCa, linking to an unfavorable prognosis [28]. The 
expression and genetic variation of the SLC5A8 gene 
are closely related to the risk of PCa and its 
progression [29]. PTGS2 plays a crucial role in 
prostaglandin synthesis, potentially accelerating 
tumor development and compromising immune 
response against tumors [30]. SLC45A3-ELK4 fusion 
was found to regulate the proliferation of PCa cells 
through its non-coding effects [31]. Thus far, no 
research has been reported regarding the roles of 
PLP1, GSTM4, SLC27A2, PLA2G2C, HMGCLL1 and 
PLA2G4D in the advancement of PCa. 

 

 
Figure 6. Functional enrichment analysis of FAMRGs. (A-B) Gene set enrichment analysis (GSEA) of FAMRGs. (C) Gene ontology (GO) enrichment analysis of 
FAMRGs. 
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Figure 7. Construction of a novel nomogram consisting of FAMRGs for predicting survival. (A) Nomogram integrates FAMRGs and clinicopathological 
characteristics. (B) Decision curve analysis of the nomogram and clinicopathological characteristics for survival prediction. (C-F) The 1-year, 3-year, 5-year, and 7-year survival 
ROC curves of the nomogram, FAMRGs, and clinicopathological characteristics. (G) A dynamic nomogram integrates FAMRGs and clinicopathological characteristics for clinical 
application to predict survival. The K-M analysis is shown on the left. The corresponding 95% CI is shown on the right. 

 
It is important to validate novel prognostic 

signature among multiple cohorts. The FAMRGs 
robustness test was performed in 6 independent PCa 
cohorts. In each cohort, patients in the low-risk group 
exhibited a more favorable BCR-free survival rate 

than those in the high-risk group. Univariate Cox 
regression analysis indicated that risk scores served as 
significant predictors of BCR across all cohorts. In 
TCGA, the AUC values for risk scores predicting 1-, 
3-, and 5-year BCR-free survival in PCa patients 
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exceeded 0.95. In all 5 validation cohorts, the AUC 
values were above 0.6, demonstrating the strong 
predictive capability of FAMRGs. In addition, 
FAMRGs showed powerful predictive performance 
across cohorts compared to 51 previously published 
PCa prognostic features, apparently superior to other 
prognostic features. All these findings indicating 
FAMRGs could serve as a reliable prognostic 
predictive tool for patients with PCa. 

ARSIs, such as abiraterone and enzalutamide, 
have been widely used in clinical practice, offering 
survival benefits for patients with advanced PCa, and 
may become one of the neoadjuvant therapies for 
high-risk PCa prior to radical prostatectomy [4]. Our 
novel FAMRGs demonstrated an accurate ability to 
stratify PCa patients for the ARSI treatment response. 
Regardless of overall survival or progression-free 
survival, patients with high FAMRGs exhibited an 
unfavorable prognosis, furnishing evidence to 
support personalized treatment options for patients. 

Considering the unfavorable prognosis observed 
in patients with high FAMRGs after radical surgery or 
ARSI treatment, the CTRP drug database was 
leveraged to identify potential therapeutic agents in 
the high FAMRGs group, ultimately finding 5 
compounds with low IC50 values and high FAMRGs. 
This finding had important clinical implications for 
guiding personalized treatment of high FAMRGs 
patients. 

Pathways related to FAMRGs were identified, 
including E2F targets, G2M checkpoint, DNA 
replication, mitotic sister chromatid segregation, and 
mitotic nuclear division, all of which play crucial roles 
in regulating the tumor cell cycle. Fatty acids are the 
substrate of sphingolipid synthesis, which plays an 
important role in cytokinesis [32]. The transcriptional 
regulator of fatty acid synthesis, SREBP1, plays a 
crucial role in the regulation of cell mitosis [33]. 
Decreased levels of fatty acids can limit the growth of 
cancer cells [16]. It has been reported that inhibiting 
fatty acid synthesis leads to cell stagnation in the G2M 
phase, thereby confirming the essential role of de 
novo lipogenesis in cell cycle completion [34]. 

The nomogram incorporating clinical factors 
demonstrated significant clinical utility. Its AUC was 
superior to any other clinical features. Moreover, the 
construction of dynamic nomogram enabled us to 
predict prognosis according to individual 
characteristics more intuitively and conveniently. 

While FAMRGs demonstrated strong 
performance in forecasting BCR for PCa patients, this 
study still has some limitations. First of all, the 
samples in the public database were retrospective, 
which may exist bias. Secondly, the incomplete 
clinical information of a small number of samples may 

lead to the neglect of the potential relationship 
between FAMRGs and some clinical variables. 
Finally, the molecular mechanisms of some genes in 
FAMRGs involved in PCa process have not been 
clarified, and further experiments are required for 
validation. 

5. Conclusion 
In conclusion, FAMRGs, the novel prognostic 

model which is based on machine learning, can 
accurately classify the risk of PCa patients and is 
expected to guide the personalized and precise 
therapeutic strategies for PCa patients. 
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