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Abstract 

Background: Psoriasis is a chronic inflammatory skin disease associated with immune dysfunction, and 
its relationship to cutaneous melanoma is unclear. This study used Mendelian randomization (MR) to 
explore the causal link between the two and identify risk genes.  
Methods: SNPs from a psoriasis GWAS (5,072 cases, 478,102 controls) were used as instrumental 
variables, and melanoma GWAS data (3,751 cases, 372,016 controls) served as the outcome. Causal 
relationships were assessed using IVW, MR-Egger, and weighted median methods, with sensitivity tests. 
Co-localization and transcriptome analyses identified risk genes.  
Results: Forward MR showed psoriasis significantly reduced melanoma risk (PIVW=0.040). The 
co-localization analysis revealed genes positively associated with the risk of psoriasis, including 
HLA-DOB, NOTCH4, and VARS2. HLA-DOB was the only risk gene of psoriasis that showed differential 
expression in cutaneous melanoma based on transcriptional analysis. HLA-DOB was downregulated in 
melanoma and associated with better prognosis (P=0.033). Single-cell analysis showed that HLA-DOB 
was mainly enriched in B cells (especially memory B cells) and myeloid cells (particularly DC: 
monocyte-derived). 
Conclusion: Our findings suggest an inverse causal relationship between melanoma and psoriasis. 
Importantly, we also found that HLA-DOB can be served as a key “coordinator” between cutaneous 
melanoma and psoriasis: a risk gene of psoriasis and a protective factor of cutaneous melanoma. 
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Introduction 
Psoriasis (PsO) is a common, chronic and 

relapsing immune-related inflammatory dermal 
disease characterized by red plaques and silvery 
scales on the skin surface [1]. Approximately 503.62 
people per 100,000 population suffer from psoriasis 
worldwide [2]. Currently, there are various regimens 
for moderate to severe psoriasis. However, some 
treatment options still have limitations. Conventional 
phototherapy, Methotrexate (MTX), Cyclosporine 

(CsA) and biological agents (tumor necrosis factor α 
inhibitors) may increase the risk of tumors [3]. 
Cutaneous melanoma (SKCM) is a malignant skin 
tumor originating from melanocytes. Its basic cause is 
usually DNA damage, and the inducing factors 
include excessive ultraviolet exposure, multiple 
moles, fair skin, history of sunburn and poor immune 
system [4-6]. Among them, an important external 
factor is the exposure to ultraviolet radiation, 
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especially intermittent sunlight exposure [7].  
Currently, the relationship between PsO and 

SKCM is still controversial. A retrospective study of 
72,739 patients showed that the incidence of 
melanoma among those with psoriasis was 1.8% (95% 
confidence interval: 1.5-2.2%), while the incidence of 
melanoma in patients without skin diseases was 4.5% 
(95% confidence interval: 3.8-5.4%), suggesting that 
the risk of melanoma in patients with psoriasis is 40% 
lower than that in patients without skin diseases [8]. 
However, a cohort study of 7,061 psoriasis patients 
showed that the risk of melanoma in patients with 
psoriasis was about 3.75 times higher than that in the 
general population. The risk was notably greater in 
those with severe psoriasis, showing a standardized 
incidence rate ratio of 11.01 [9]. A retrospective cohort 
study by Reddy et al. also found that patients with 
psoriasis had a 53% increased risk of melanoma 
compared with non-psoriatic patients. The increased 
risk of malignant tumors does not affect the prognosis 
of psoriasis patients [10]. In addition, a systematic 
review by Pouplard et al. also found no increased risk 
of melanoma in psoriasis patients [11]. Therefore, it is 
necessary to clarify the relationship between PsO and 
SKCM with a novel method. 

Mendelian randomization (MR) is an 
epidemiological method of instrumental variable 
analysis to assess the causal relationship between 
modifiable exposures or risk factors and clinically 
relevant outcomes [12]. The principle of MR is based 
on Mendel's second law that genetic alleles are 
independently separated when DNA is passed from 
parents to offspring during gamete formation [13]. 
The alleles of this exposure-related genetic variation 
are randomly assigned, reducing the impact of 
environmental confounding and reverse causality. In 
view of this, single nucleotide polymorphisms (SNPs) 
are often used as instrumental variables for putative 
risk factors [14]. Compared with traditional 
randomized controlled trials, MR has many 
advantages, such as faster and cheaper, revealing 
potential causal relationships, avoiding ethical issues, 
and reflecting lifelong perturbation effects [13]. 

In this study, we used bidirectional two-sample 
MR to reveal the causal relationship between PsO and 
SKCM. MR results showed that the elevated PsO 
reduced the risk of SKCM. However, there was no 
significant causal relationship of SKCM on the risk of 
PsO. Further, eQTL co-localization analysis, 
transcriptome analysis, and single-cell analysis were 
conducted to deeply explore the relationship. 
Notably, we found that HLA-DOB is a risk factor of 
PsO from co-localization analysis. While, HLA-DOB 
is expressed at a low level in SKCM, and the 
upregulation of HLA-DOB could improve the overall 

survival of patients with SKCM in transcriptome 
analysis. From the single-cell analysis, we further 
found that HLA-DOB exhibits immune cell-specific 
expression in SKCM, mainly enriched in B cells 
(especially memory B cells) and myeloid cells 
(particularly DC: monocyte-derived). In summary, 
our study found a causal relationship between PsO 
and SKCM, in which HLA-DOB played an important 
role. 

Methods  
1. Bidirectional MR analysis 

1.1. MR study design 

We constructed bidirectional MR analyses to 
elucidate the causal relationship between PsO and 
SKCM. Forward MR used PsO as the exposure and 
SKCM as the outcome. Conversely, reverse MR used 
SKCM as the exposure and PsO as the outcome. All 
included instrumental variables followed three MR 
assumptions: (1) there is a strong correlation between 
genetic variants and exposure factors; (2) there is little 
association between genetic variants and potential 
confounders; and (3) genetic variants cannot directly 
affect outcome factors. 

1.2. GWAS data sources 

The GWAS summary statistics data for psoriasis 
vulgaris employed in this investigation originated 
from the GWAS Catalog (ebi-a-GCST90018907) [15]. 
In our study, the identified PsO phenotype 
encompassed 24,211,145 single nucleotide 
polymorphisms (SNPs) derived from 5,072 patients 
and 478,102 control individuals of European ancestry 
(Finland, U.K.), as well as 206 patients and 172,289 
controls of East Asian ancestry. The GWAS summary 
statistics data for SKCM were acquired from the UK 
Biobank through the IEU Open GWAS project (IEU 
GWAS ID: ieu-b-4969). The identified phenotype for 
SKCM comprised 11,396,019 SNPs derived from 3,751 
patients and 372,016 control individuals of European 
ancestry. 

1.3. SNPs selection  

Referring to studies [16-18], we determined 
SNPs that reached the genome-wide significance 
threshold (P < 1.0 x 10-8) as instrumental variables 
(IV) to determine the relationship between PsO and 
SKCM. SNPs are selectively retained based on their 
clustering within genomic regions that are 10,000 
kilobase pairs (kbp) apart and in linkage 
disequilibrium (R2 < 0.001), ensuring the 
independence of selected SNPs. Subsequently, we 
calculated the F statistic of the selected SNPs and 
selected SNPs with F > 10 as strong instrumental 
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variables. When performing forward MR analysis 
with PsO as exposure and SKCM as outcome, we 
identified 11 SNPs. In contrast, when performing 
reverse MR analysis with SKCM as exposure and PsO 
as outcome, we identified 10 SNPs. 

1.4. Statistical analysis 

In our study, we evaluated the bidirectional 
causal relationship between PsO and SKCM using the 
R package “TwoSampleMR” with different MR 
methods, including inverse variance weighted (IVW), 
MR-Egger, weighted median, and simple weighted 
median (VM). Among them, IVW was selected as the 
main research method because it was consistent 
across all effective genetic variants and had the 
greatest testing power [19]. The efficiency of weighted 
median is the same as IVW, but it should be noted that 
the weighted median method has certain limitations, 
and the robustness of weighted median can only be 
maintained when the effective genetic variants 
account for half of the total weight [20]. The efficiency 
of the MR-Egger method is significantly lower than 
that of the IVW and weighted median methods [20]. 
Since MR-Egger relies on the InSIDE (Instrument 
Strength Independent of Direct Effects) assumption, 
this assumption has inherent limitations in terms of 
satisfaction. The validity of MR-Egger may be 
challenged when all genetic variants are null or the 
distribution of pleiotropic effects is not independent 
of instrument strength [20]. Subsequently, we 
performed sensitivity analyses to assess the 
robustness of the Mendelian randomization (MR) 
results. Cochrane's Q value was used to assess 
heterogeneity, and funnel plots were used to visualize 
heterogeneity. MR-PRESSO analysis was used to 
analyze horizontal pleiotropy with ‘MR-PRESSO’ R 
packages. MR Egger intercept analysis was used to 
assess direct pleiotropy. This method uses the 
deviation of the intercept from zero in MR Egger 
regression as the effect size of direct pleiotropy [21]. 
To further assess the specific effect of each SNP, we 
performed a leave-one-out analysis, which 
systematically excluded individual SNPs from the 
analysis to estimate their respective causal effects. 

2. Co-localization analysis 
We employed colocalization analysis to uncover 

risk genes for PsO. Expression quantitative trait loci 
(eQTL) describe the genetic link between SNPs and 
gene expression levels [22]. GWAS describe the 
association between SNPs and specific traits or 
diseases [23]. If a molecular trait is causally related to 
a complex phenotype, then any genetic variation that 
affects the molecular trait will also affect the 
phenotype. Based on this assumption, by combining 

eQTL data from different tissue types with patterns of 
association in GWAS, colocalization analysis revealed 
potential genes shared between GWAS signals and 
eQTLs. Compared to previous eQTL methodologies 
applied in GWAS analysis, Sherlock approach utilizes 
gene expression SNPs in both cis- and 
trans-regulatory regions, discerns causality from 
coincidence, and exhibits generalizability across 
various molecular traits [24]. Based on the 
Logarithmic Bayes Factor (LBF) value, we pinpointed 
target genes within risk loci for PsO. The higher the 
LBF, the stronger the association between the locus 
and the gene. For colocalization analysis, we utilized 
GWAS data of PsO (“ebi-a-GCST90018907”) and 
eQTL data of two skin types (“GTEx V7 
Sun-unexposed (suprapubis)” and “GTEx V7 
Sun-exposed (calf)”) from the Genotype-Tissue 
Expression (GTEx) database [15, 25]. Colocalization 
analysis was constructed using the “coloc” R package 
and the web tool Sherlock. 

3. Transcriptomic analysis 
Based on transcriptome profiling data obtained 

from TCGA and downloaded via “BiocManager” R 
package, we conducted an analysis to investigate the 
correlations between the expression of PsO risk genes 
and molecular as well as clinical features in SKCM 
[26]. Initially, we identified the differentially 
expressed genes in SKCM using a significance 
threshold of p < 0.05 and a fold change of 2, 
employing the “limma” R package for the analysis of 
differential expression between SKCM and normal 
samples. We then crossed these genes with PsO risk 
genes obtained by colocalization analysis. Finally, 
PsO risk genes (HLA-DOB) showing significant 
differential expression in SKCM were identified. This 
result was visualized using Venn diagrams created 
with the “ggVennDiagram” and “ggplot2” R 
packages. Then, we used the surv_cutpoint() function 
from the “survminer” R package to determine the 
optimal cutoff value for HLA-DOB expression. Based 
on this value, SKCM patients were classified into high 
and low expression groups. Furthermore, the 
relationship between HLA-DOB expression levels and 
overall survival (OS) time in SKCM patients was 
analyzed using Kaplan-Meier, which was 
implemented with the “survival” R package. We used 
Genemania to identify the co-expressed genes of 
HLA-DOB [27], and used STRING to construct the 
protein-protein interaction of HLA-DOB (PPI) 
network [28]. Furthermore, we performed gene 
ontology (GO) enrichment analysis using the 
“clusterProfiler” R package to evaluate the potential 
biological overcompetence of HLA-DOB [29-31]. 
Visualization of the above results was achieved using 
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the “ggplot2” R package. 

4. Single-cell transcriptome analysis 
We collected 10X single-cell sequencing profiles 

on specimens sourced from GSE215120 dataset [32, 
33]. Low-quality single cells were removed through 
the following criteria: 1. nCount_RNA > 500 & 
nFeature_RNA >300. 2. the proportion of 
mitochondrial genes counts (< 15%) and hemoglobin 
gene counts (< 1%). A total of 24362 cells were 
retained for subsequent analysis, with an average 
detection of 2162 genes/cell. We used the "Seurat" R 
package for dimensionality reduction and 
unsupervised clustering, and used the "harmony" 
package to eliminate batch effects between multiple 
samples. Subsequently, UAMP algorithms was used 
to obtain cascade maps, revealing 15 major cell 
clusters. Cell types were further identified through 
manual annotation using the CellMarker database 
[34]. To investigate HLA-DOB expression across cell 
types, we utilized the FindAllMarkers function in the 
Seurat package. Finally, we conducted a 
subpopulation analysis focusing on B cells and 
myeloid cells. UMAP was reapplied to these subsets, 
and cell types were annotated using the CellMarker 
database. The expression levels of HLA-DOB in these 
subpopulations were further analyzed using the 
FindAllMarkers function in Seurat. 

5. Immunohistochemistry (IHC) 
Tissues were deparafnized, rehydrated, and 

permeated using Triton-X100 (T8200, Solarbio, 
Beijing, China) and followed by antigen retrieval 
using EDTA Antigen Retrieval solution (c1034, 
Solarbio, Beijing, China). The sections were incubated 
with Anti-HLA-DOB antibody (sc-69739, Santa-cruz, 
USA) at 4 °C overnight followed by a biotinylated 
secondary antibody (diluted at 1:200) at RT for 60 min. 
Then, the sections were stained with DAB staining 
solution (AR1022, BOSTER Biological Technology, 
Wuhan, China). 

6. Statistical analysis 
All statistical analyses were performed using R 

software (v4.2.3). P values < 0.05 were considered 
statistically significant. 

Results 
An inverse causal effect of PsO on the risk of 
SKCM in forward MR analysis 

In the forward MR analysis, PsO was set as the 
exposure factor, and SKCM as the outcome factor. 
There were 11 SNPs were found and identified as 
instrumental variables (Fig. 1A). The forward MR 

analysis revealed a significant causal effect between 
PsO and SKCM (PIVW= 0.040; table 1). In Fig. 1B, 
scatterplots showed that the increased risk of PsO was 
associated with the decreased risk of SKCM with five 
MR methods. Furthermore, we found there was no 
heterogeneity according to Cochran’s Q analysis 
(Cochran’s QMR-Egger = 4.565 and P = 0.870, Q IVW = 
4.665 and P = 0.912; Table 1). And there was no 
pleiotropy affecting the association according to the 
direct pleiotropy analysis (PMR-Egger-intercept= 0.758; 
Table 1). Similar results were also verified by 
horizontal pleiotropy tests (PMR-PRESSO= 0.895; Table 1). 
In Fig. 1C, the leave-one-out test showed that the 
extreme value of any SNPs did not affect the overall 
positive MR results. 

 

Table 1. Forward MR results of PsO as the exposure and SKCM 
as the outcome. 

MR Results Method nsnp beta se pval 
 MR Egger 11 -0.0004  0.0003  0.2224  
 Weighted median 11 -0.0005  0.0003  0.1080  
 Inverse variance 

weighted 
11 -0.0005  0.0002  0.0400  

 Simple mode 11 -0.0010  0.0006  0.1628  
  Weighted mode 11 -0.0005  0.0003  0.1579  
Heterogeneity 
test 

Method Q Q_df Q_pval  

 MR Egger 4.5647  9  0.8705   
 Inverse variance 

weighted 
4.6653  10  0.9124   

Direct 
pleiotropy 

Egger_intercept se pval   

 -3.68E-05 0.0001  0.7583    
Horizontal 
pleiotropy 

Pvalue of MR- 
PRESSO results 

    

 0.895     
 

No causal effect of SKCM on the risk of PsO in 
reverse MR analysis  

When it comes to the reverse MR analysis, 
SKCM was set as the exposure factor, and PsO as the 
outcome factor. 10 SNPs were identified as 
instrumental variables (Fig. 1D). However, the reverse 
MR analysis showed that there is no causal effect of 
SKCM on PsO. (PIVW = 0.067; Table 2). 

Risk loci of PsO with co-localization analysis 
In order to find target genes and risk loci related 

to PsO, we utilized skin-related expression 
quantitative trait loci (eQTL) data for a co-localization 
investigation. eQTL data are tissue-specific and can 
identify regions in the genome that harboring 
sequence variants and influencing gene expression 
[35]. Therefore, in our analysis, we combined the 
eQTL data of “GTEx V7 Sun Exposed (Crucula)” with 
the PsO GWAS data “ebi-a-GCST90018907”. And the 
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analysis revealed several genes that were significantly 
positively associated with the expression of PsO risk 
loci in sun-exposed skin (P < 0.05, LBF > 0; Table S1), 
including HLA-DOB (P < 0.001, LBF = 7.60), NOTCH4 
(P < 0.001, LBF = 14.90) and VARS2 (P < 0.001, LBF = 
15.09) (Table S1). Meanwhile, we combined the eQTL 
data of “GTEx V7 Not Sun Exposed (Suprapubic)” 
with the PsO GWAS data “ebi-a-GCST90018907”. This 
analysis revealed several genes that were significantly 
positively associated with the expression of PsO risk 
loci in not sun-exposed skin (P < 0.05, LBF > 0; Table 
S2), including HLA-DOB (P < 0.001, LBF = 7.60), 
HLA-DQB1 (P < 0.001, LBF = 15.20), and CYP21A2 (P 
< 0.001, LBF = 15.08) (Table S2). 

 
 

Table 2. Reverse MR results of SKCM as the exposure and PsO 
as the outcome. 

MR Results Method nsnp beta se pval 
 MR Egger 10 -16.410

1  
9.7561  0.1311  

 Weighted median 10 -9.9309  5.2164  0.0569  
 Inverse variance 

weighted 
10 -7.9365  4.3263  0.0666  

 Simple mode 10 -13.717
4  

9.6613  0.1894  

 Weighted mode 10 -15.052
9  

6.9737  0.0592  

Heterogeneity test Method Q Q_df Q_pval  
 MR Egger 12.8077 8 0.1186  
 Inverse variance 

weighted 
14.3135 9 0.1116  

Direct pleiotropy Egger_intercept se pval   
 2.55E-02 0.0263  0.3605    
Horizontal 
pleiotropy 

Pvalue of MR- 
PRESSO results 

    

 0.113     
 

 
Figure 1. The causal relationship of PsO and SKCM by MR analysis. (A) Forest plot displaying the effect estimates of genetic variants associated with PsO on SKCM risk. 
Each line represents a SNP, with the red line indicating the overall effect estimate. (B) Scatter plot showing the relationship between the genetic associations with PsO and SKCM 
for each SNP. The regression lines represent different MR methods, including Inverse Variance Weighted, Weighted Median, MR-Egger, Weighted mode and Simple mode. (C) 
Forest plot representing the results of the MR leave-one-out sensitivity analysis for the effect of PsO on SKCM. (D) Forest plot displaying the effect estimates of genetic variants 
associated with SKCM on PsO risk. Each line represents a SNP, with the red line indicating the overall effect estimate. 
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Figure 2. Target genes between PsO and SKCM. (A) Venn diagram showing the overlap of all three groups. HLA-DOB is highlighted as a key gene in the intersection.‘Skin 
Sun Exposed VS GWAS’ presents genes identified from the conjunction analysis between eQTL data from 'GTEx V7 Sun Exposed (Lower leg)' and PsO GWAS data 
'ebi-a-GCST90018907'.‘Skin Not Sun Exposed VS GWAS’ presents genes identified from the conjunction analysis between eQTL data from 'GTEx V7 Not Sun Exposed 
(Suprapubic)' and PsO GWAS data 'ebi-a-GCST90018907'.‘Differential Genes (SKCM/Normal) TCGA’presents genes DEGs between SKCM and normal tissue form TCGA 
database. (B) Volcano plot illustrating differentially expressed genes between SKCM and normal tissue form TCGA database. (C) Kaplan-Meier survival curve comparing overall 
survival rates between high and low HLA-DOB expression groups in SKCM patients. (D) The expression of HLA-DOB by immunohistochemistry analysis in psoriasis patients 
and SKCM patients. 

 

HLA-DOB, a risk locus of PsO and a protective 
factor of SKCM 

To further elucidate the relationship between 
PsO risk genes in two types of normal skin tissues and 
SKCM, we identified differential gene expression 
between SKCM and normal samples using TCGA 
data (Table S3). Subsequently, we intersected these 
genes with PsO risk genes obtained from two distinct 
types of skin tissues. Specifically, only HLA-DOB 
exhibited differential expression in SKCM among 
non-sun-exposed skin tissues. While in sun-exposed 
skin tissues, HLA-DOB was the only risk gene of PsO 
showing differential expression in SKCM (Fig. 2A). As 
shown by the volcano plot, HLA-DOB expression was 
significantly downregulated in SKCM compared with 
normal samples (Fig. 2B). Meanwhile, the Kaplan- 
Meier survival analysis for SKCM was conducted, 
which demonstrated a positive correlation between 
upregulated expression levels of HLA-DOB with 
favorable overall survival in SKCM patients (P = 
0.033) (Fig. 2C). To verify it in clinical samples of 
patients, we performed immunohistochemistry and 
found that HLA-DOB is higher expressed in psoriatic 
skin tissues, while expressed low in SKCM (Figure 
2D). Therefore, HLA-DOB acted as a protective factor 
of SKCM. However, as we mentioned above, 
HLA-DOB is a risk loci of PsO. 

Molecular mechanisms and functional 
annotations of HLA-DOB 

To elucidate the molecular mechanisms of 
HLA-DOB in SKCM, we identified co-expressed 
genes closely associated with HLA-DOB and 
constructed a PPI network for HLA-DOB. Co- 
expression analysis revealed that HLA-DOB is 
primarily linked to the expression of immune-related 
genes such as HLA-DOA, HLA-DMB, and HLA-DMA 
(Fig. 3A). The PPI network further validated the 
molecular-level correlation of HLA-DOB with these 
genes (Fig. 3B). To develop the biological functions of 
HLA-DOB, we conducted GO enrichment analysis to 
assess the enrichment levels of HLA-DOB and its 
neighboring genes. Antigen processing and 
presentation (GO:0019882), regulation of antigen 
processing and presentation (GO:0002577); MHC class 
II protein complex assembly (GO:0002399); positive 
regulation of T cell proliferation (GO:0042102), and 
regulation of T cell differentiation (GO:0045580) were 
enriched in biological processes (BP) (Fig. 3C). MHC 
class II protein complex (GO:0042613); endocytic 
vesicle membrane (GO:0030666), and transport vesicle 
membrane (GO:0030658) were enriched in cellular 
components (CC) (Fig. 3D). MHC class II protein 
complex binding (GO:0023026) and MHC class II 
receptor activity (GO:0032395) were enriched in 
molecular functions (MF) (Fig. 3E). Taken together, 
the above findings revealed the immunological 
relevance of HLA-DOB. 
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Figure 3. Molecular mechanisms and functional annotations of HLA-DOB. (A) Co-expression network plot revealed interactions between HLA-DOB and its 
neighboring genes. (B) PPI network plot highlighting HLA-DOB and its direct connections with protein. (C-E) The enrichment levels of HLA-DOB and its neighboring genes in 
biological processes (C), cellular components (D) and molecular functions (E). 

 

Cell type-specific expression of HLA-DOB in 
SKCM tissues  

We performed dimensionality reduction and 
clustering on the GSE215120 dataset and annotated 
the 15 identified cell clusters using the CellMarker 
database. UMAP visualization revealed distinct cell 
populations, including B cells, myeloid cells, 
endothelial cells, epithelial cells, fibroblasts, and other 
cell types (Fig. 4A). Notably, we observed a significant 
increase in HLA-DOB expression in B cells and 
myeloid cells within SKCM tissues (Fig. 4B). 

To further investigate this, we conducted a 
subpopulation analysis of B cells and myeloid cells. 
UMAP visualization demonstrated that B cells were 
subdivided into memory B cells, naive B cells, and 
plasma cells (Fig. 4C). HLA-DOB predominantly 
expressed in memory B cells (Fig. 4D). Similarly, 
myeloid cells were mainly classified into DC: 
monocyte-derived and Monocyte: CD16+ (Fig. 4E). 
HLA-DOB primarily enriched in DC: 
monocyte-derived (Fig. 4F). 

Discussion 
Currently, in the existing observational studies, 

the relationship between PsO and SKCM is still 
controversial. We employed a bidirectional MR 
analysis approach combined with eQTL and 
single-cell transcriptomic analysis for the first time to 
investigate the causal relationship between PsO and 
SKCM. The choice of MR in this study was driven by 
its ability to leverage genetic variants as instrumental 
variables for robust causal inference, effectively 
minimizing confounding and reverse causation. 
Unlike observational studies, which can only show 
associations, MR provides evidence of causality. 
Compared to randomized controlled trials (RCTs), 
MR is more cost-effective and ethically feasible, 
especially when studying harmful exposures. 
Additionally, while traditional genetic studies like 
GWAS identify genetic associations, MR builds on 
these findings to infer causality. Our study analysis 
found a significant causal effect of the increased risk 
in PsO on the decreased risk in SKCM. Through 
co-localization analysis, we identified HLA-DOB 
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upregulation as a risk factor of PsO. Transcriptome 
analysis showed that HLA-DOB has a potential role in 
SKCM suppression and was significantly positively 
correlated with overall survival, which may be related 
to the anti-tumor immune response. Single-cell 
analysis revealed cell-specific expression of 
HLA-DOB in SKCM, enriched in B cells and myeloid 
cells. In summary, HLA-DOB acted as an important 
“coordinator” between PsO and SKCM. 

When it comes to the HLA-DOB, the role of 
HLA-DOB in cancers remains uncertain. Chen et al. 
used GEPIA analysis to reveal an association between 
HLA-II genes (particularly HLA-DOB) and overall 
survival in clinical melanoma patients. They covered 
21 common cancers in the TCGA database, ranked 
HLA-II genes as the most important gene for overall 
survival in melanoma patients compared with other 
types of cancer [36]. Wu et al. identified that 
HLA-DOB and HLA-DQB2 genes acted as a tumor 

suppressor with better prognosis. And Li et al. found 
that HLA-DOB was expressed in the ovarian cancer 
group with higher immune infiltration and associated 
with prolonged overall survival [37]. Another study 
also further confirmed through multivariable Cox 
regression that high levels of HLA-DOB expression 
can be used as an independent predictor of overall 
survival in patients with ovarian cancer [38]. High 
HLA-DOB expression reduces the risk of death in 
ovarian cancer patients by 32%." (HR = 0.68, P = 
0.001134) [38]. However, Pu et al. showed that 
HLA-DOB is associated with poor prognosis and 
significantly increased mortality in patients with 
advanced non-small cell lung cancer receiving 
first-line chemotherapy [39]. Baran et al. further 
showed that HLA-DOB promotes tumor progression 
by regulating the infiltration of cancer-associated 
fibroblasts (CAFs) and M2 macrophages [40]. 

 
 

 
Figure 4. The immune characterize of HLA-DOB in SKCM with single-cell RNA sequencing analysis. (A) UMAP plot illustrating the cell type distribution in 
SKCM, including B cells, endothelial cells, epithelial cells, fibroblasts, myeloid cells, NK cells, and T cells. (B) Feature plot of HLA-DOB expression in different cell types of SKCM. 
The color intensity represents the level of HLA-DOB expression. (C) UMAP plot illustrating the cell type distribution of B cell subsets in SKCM, including B_cells:Memory, 
B_cells:naive, and B_cells:plasma_cells. (D) Feature plot of HLA-DOB expression in different types of B cell subsets in SKCM. The color intensity represents the level of 
HLA-DOB expression. (E) UMAP plot illustrating the cell type distribution of myeloid cells subset in SKCM, including DC: monocyte-derived and Monocyte: CD16+. (F) Feature 
plot of HLA-DOB expression in different types of myeloid cell subsets in SKCM. The color intensity represents the level of HLA-DOB expression. 
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In our study, we confirmed that HLA-DOB is 
co-expressed with other HLA class II genes and have 
interaction with them (Figure 3A-B). In addition, 
functional enrichment analysis confirmed that 
HLA-DOB is mainly involved in the processing and 
presentation of antigens such as MHC class II protein 
complex binding and MHC class II receptor activity 
(Figure 3C-E). Single-cell analysis confirmed that 
HLA-DOB is enriched in B cells (especially memory B 
cells) and myeloid cells (particularly DC: monocyte- 
derived) (Figure 4B-F). From Denzin's study, they 
found that HLA-DOB and HLA-DOA bind to 
HLA-DO molecules, thereby affecting the 
presentation of MHC class II antigens in B cells by 
inhibiting the activity of HLA-DM [41]. Other studies 
further showed that high expression of MHC-II 
antigens is associated with increased metastatic 
spread, advanced tumor stage and reduced survival 
[42-44]. Therefore, we hypothesized that HLA-DOB 
inhibits the progression of SKCM by suppressing 
antigen processing and presentation by MHC class II 
factors, which is consistent with our finding that 
HLA-DOB improves the prognosis of SKCM patients. 

Our study found a causal relationship between 
PsO and SKCM and identified a key “coordinator” 
HLA-DOB for them with potential clinical prediction. 
Through molecular mechanism and biological 
function studies, we found that MHC-II antigen 
processing and presentation may be the downstream 
pathway for HLA-DOB to exert its effects. Further 
research is needed on the mechanism of action of 
MHC-II antigen processing and presentation in the 
relationship between HLA-DOB, PsO and SKCM. 
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