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Abstract 

Cuproptosis is a kind of programmed cell death in which copper reacts with the cycloaliphatic 
component of the tricarboxylic acid (TCA) cycle. In this study, we devised a predictive model and a 
theoretical framework to examine the variations in the expression of the cuproptosis-related genes 
(CRGs) in ovarian cancer. Through screening the 11 CRGs, all samples were segmented into two risk 
groups and a prognostic model was built. Among the 11 CRGs, 10 genes showed a significant relationship 
with survival probability, demonstrating the model had good prediction ability and high accuracy. Age and 
FIGO stage were discovered to be strongly correlated with patient survival time by means of univariate 
Cox regression analysis. The patients over 65 in FIGO stages IIIA-IV had an increased risk. The 
enrichment analysis showed that the main metabolic pathways were those related to drug metabolism, 
tissue development, tyrosine metabolism and retinol metabolism. The PPI networks revealed that 
CDKN2A was the key gene. Finally, the in vitro and in vivo functional assays demonstrated that cuproptosis 
induced by CuET agent treatment could significantly inhibit ovarian cancer cell viability, migration and 
invasion as well as xenografted tumor growth where the CDKN2A expression level increased. Our 
results indicate that the comprehensive definition of differentially expressed CRGs in ovarian cancer will 
provide new insights for clinical remedy of ovarian cancer. 
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Introduction 
Copper is a fundamental element for our body 

[1]. The concentration of copper in normal cells is 
terribly low, and its primary mechanism is to prevent 
detrimental accumulation of free copper in cells with 
dynamic balance across concentration gradients, 
thereby maintaining the copper homeostasis of cells 
[2, 3]. A novel cell death mechanism, cuproptosis, has 
been lately confirmed [4]. Different from apoptosis, 
ferroptosis and pyroptosis [5], can contribute to 
protein toxicity stress by directly binding to lipoylated 
proteins, a key enzyme in the TCA cycle, and can 
moreover induce mitochondrial metabolic 
dysfunction. Moreover, through the production of 
reactive oxygen species (ROS), cuproptosis can also 
induce tumor cell death via activating apoptosis 
signaling pathways, which makes it a novel 

mechanism for anti-tumor study [6]. 
Ovarian cancer (OV) is a malignant ovarian 

tumor, of which 90%-95% is primary OV, and the 
remaining 5%-10% is primary cancer metastases in the 
ovarian system [7]. OV’s early diagnosis is laborious 
because of lacking symptoms and hidden onset in the 
early stage, as well as the lack of effective early 
diagnosis methods. At the time of the initial 
diagnosis, there are 60%–70% of patients already in 
the advanced stage, which makes the healing efficacy 
poor [8-10]. Most patients experience disease relapse 
within 2 years, and there is a lack of an effective 
therapeutic schedule for recurrent OV [11]. Therefore, 
although the incidence rate of cervical cancer and 
endometrial cancer is higher than that of OV, OV still 
has a higher mortality rate than the sum of the first 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3356 

two, making it the most common cause of death 
among various gynecological tumors [12-14]. 

OV is pernicious, which can’t be accurately and 
effectively diagnosed in its early stages and has a poor 
prognosis [15-18]. Copper is an essential element in 
the body and is critical in many biological processes 
[19, 20]. Cuproptosis, a new form of programmed cell 
death has been confirmed [4]. However, the 
importance of copper in the induction of cell 
death-related gene expression in OV has not been 
assessed. With the increasing popularity of DNA 
sequencing, high-throughput proteomics and 
metabolomics, the key prognostic genes of 
cuproptosis-related OV can be found by high- 
throughput gene chip technology and bioinformatics, 
and the prognostic model of CRGs in OV can be 
constructed [21], which provides novel ideas for the 
clinical diagnosis and treatment of OV. 

There have been some reports of copper death in 
OV. Kang et al. found that the liposome DQ/CuClz 
complex induced cell death through ROS mediated 
REDOX homeostasis in cancer cells, showing 
promising anticancer potential [22]. Kordes tani et al. 
confirmed that Cu(Ⅱ) complex 1 induced stronger 
apoptotic reaction, increased mitochondrial 
membrane depolarization, and increased intracellular 
ROS levels, thus leading to the death of A2780 OV 
cells [23]. Zhang et al. established a risk prediction 
model for OV based on 13 CRGs, including APT7A, 
LISA, DLAT, SLC31A1, FDX1, DLD, ATP7B, and 
PDHB, and based on their expression differences in 
OV tissues, a risk scoring model was constructed [24]. 
The model can predict the effectiveness of 
chemotherapy in OV patients and guide drug 
selection. Research on OV cells using these 
genes-based copper death regulators shows that 
certain copper complexes [Cu(Ⅱ ) complexes] can 
inhibit OV cell proliferation with lower toxicity than 
non-essential metals such as platinum, suggesting 
that targeted copper death therapy for OV has certain 
prospects. 

In this study, the differential expressions of 
CRGs in OV were analyzed comprehensively, as well 
as 62 CRGs were screened progressively employing 
univariate Cox regression analysis and LASSO 
regression analysis. Accordingly, we constructed the 
risk model, and Kaplan-Meier curves and receiver 
operating characteristic (ROC) curves at 1, 3 and 5 
years were plotted for analysis. The results indicated 
that CRGs have potential value and effect on OV. It is 
of certain authenticity and feasibility that these CRGs 
can be utilized to construct the prognosis model. 
Eleven CRGs were identified by multivariate Cox 
regression analysis which can be used for 

constructing the prognostic model in OV. Through 
GO and KEGG pathway enrichment analysis of 
differentially expressive CRGs in OV, we found that 
these genes were principally enriched in tissue 
development, oxidoreductase activity, drug 
metabolism, tyrosine metabolism and retinol 
metabolism. The above metabolic processes and 
enzyme activities have an inevitable correlation with 
the occurrence and development of OV. In addition, 
through the construction of protein-protein 
interaction (PPI) networks, the core gene CDKN2A 
was identified, which plays a significant part in 
biological signaling, regulation of gene expression, 
metabolism of energy and substances, and regulation 
of the cell cycle. 

Materials and Methods 
Data acquisition and preprocessing 

We initially downloaded the RNA-seq data of 
429 OV samples along with their corresponding 
clinical data from TCGA database (https://www. 
genome.gov/) and extracted the FPKM [25] as our 
testing groups. Subsequently, we employed the ID 
conversion using the "rjson" package and successfully 
procured the clinical data matrix and gene expression 
matrix. We also downloaded the mRNA chip data of 
serous OV and normal ovarian cells with ID numbers 
of GSE14407, GSE18520 and GSE54388 from GEO 
database(http://www.ncbi.nlm.nih.gov/geo/) [26]. 

In order to prevent data from overfitting, we 
eliminated the duplicated and missing data, 
standardized the expression matrix and filled in the 
missing values utilizing "impute" package and set the 
"Number of neighbors" to 15 to supplement the data. 
The standardization method was as follows: after 
adding 1 to each data, log2(X+1) was taken with base 
2, where X was the expression data of different genes 
in different samples. CRGs were found by searching 
the Genecards database(https://www.genecards.org) 
with the term "copper induced cell death". Utilizing 
Excel's "VLOOKUP" and "HLOOKUP" functions, we 
matched and combined the gene expression matrix 
with the clinical data matrix, and filtered the data of 
CRGs. The resultant matrix served as the basis for 
further study. 

Construction and identification of the 
prognosis model 

To evaluating the relevance between the 
expression of these CRGs and OV patients’ overall 
survival, we employed the packages "survival" and 
"survminer" in the R Programming Language to 
execute a univariate Cox regression analysis [27] on 
CRGs, and the genes with p < 0.05 were screened out. 
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The LASSO regression analysis study was 
carried out using the "survival", "glmn" and "pacman" 
packages, with the intention to further filter the CRGs, 
build a LASSO regression model and determine the 
risk values of each gene [28, 29]. Each OV patient's 
risk score was determined grounded on the results of 
the LASSO regression analysis. Risk score [30] of each 
OV sample was calculated using the following 
formula: Risk score = regression coefficient for each 
cuproptosis-related gene × each sample’s expression 
level for each predictive gene. In accordance with the 
intermediate values of the risk scores, two groups of 
OV patient samples were generated, one representing 
high risk and the other low risk. After that, the 
Kaplan-Meier curve and ROC curve, which could be 
applied to assess the prognosis and forecasting 
capacity of the LASSO regression model for CRGs 
were drawn subsequently using the "survminer" 
package and the "timeROC" package. 

Afterwards, we examined these genes using 
multivariate Cox regression analysis. Utilizing the 
"survival" as well as "survfit" functional packages, 
taking into account the conditions of survival time, 
survival status along with gene data, we executed a 
multivariate Cox regression analysis with the aim of 
assessing the predicting effectiveness of these 
characteristics in OV patient samples. We defined 
p<0.05 as the screening criterion, CRGs meeting the 
criteria were considered as the optimum prognostic 
genes, and then we drew the forest map using R 
package "ggplot2" for them. The Kaplan-Meier curves 
[31] of each optimum prognostic CRGs were plotted 
to observe their prognostic ability for OV. After 
establishing the connection between the expression of 
each gene and sample's overall survival, we 
determined the risk score for these CRGs. As a 
consequence, these OV samples were split into high- 
and low-risk categories on the grounds of the 
intermediate value of the risk scores. Accordingly, the 
Kaplan-Meier curve was plotted. Moreover, we drew 
ROC curves [32] so as to calculate the prognostic 
accuracy of these CRGs. Afterwards, we analyzed the 
relationship between patients’ risk scores, distribution 
of survival time, and gene expression to further verify 
the prognostic model. 

Establishment of a nomogram model  
To pinpoint independent predictors of prognosis 

and to confirm the independent prognostic 
significance of the gene signature, both univariate and 
multivariate Cox regression analyses were conducted 
within the TCGA dataset. These analyses 
encompassed the prognostic gene signature along 
with various clinicopathological factors, such as age, 
FIGO stage, tumor grade, tumor size, histological 

subtype, chemotherapy history, radiation therapy 
history, targeted molecular therapy history, tobacco 
smoking history, and alcohol consumption history. A 
P-value threshold of less than 0.01 was set to 
determine statistical significance. Variables that 
achieved P < 0.01 in the univariate analysis were 
subsequently incorporated into the multivariate Cox 
regression analysis. Following the multivariate 
analysis, all independent prognostic factors and 
pertinent clinical variables were utilized to develop a 
prognostic nomogram. This nomogram was 
constructed using a stepwise Cox regression model in 
R software to forecast the 1-, 3-, and 5-year overall 
survival rates for OV cancer patients in the TCGA 
dataset [33, 34]. The predictive accuracy of the 
nomogram was assessed through calibration curves 
and clinical decision curves, which effectively 
demonstrated the model's discriminatory power, 
calibration accuracy, and clinical applicability [35]. 

Analysis of the differential expression and 
functional enrichment 

For the sake of screening out the differential 
expressed genes on OV, we imported the chip data of 
GSE14407, GSE1852 and GSE5438 into R software, 
where the "affy" package is used to normalize the 
original data of the above datasets, and then we 
applied "Limma" package to manage the difference of 
GEO microarray data. The filtering threshold was 
confined to p < 0.01 after calibration, and the 
differential expression multiple | logFC | ≥ 4. 
Besides, the volcanic plots of the differentially 
expressive genes in each dataset were drawn through 
the "ggplot 2" package. A heatmap of the up or 
down-regulated expression genes was plotted using 
the "pheatmap" package. In addition, we intersected 
the up- or down-regulated expression genes in the 
four datasets above using the "venndigram" package 
to get the common differentially expressive genes, 
and finally got the common differentially expressive 
genes in OV associated with cuproptosis.  

To gain insight into the biological functions and 
pathways of CRGs, we performed functional 
enrichment analyses [36] of these CRGs in OV, 
including the Gene Ontology (GO) [37, 38] and Kyoto 
Encyclopedia of Genes and Genome (KEGG) [39, 40]. 
GO assays are typically used to test the enrichment of 
gene ontology entries in gene collections and predict 
common features of genes in biological processes 
(BP), molecular functions (MF), and cell components 
(CC), while KEGG is used to analyze the role of genes 
in metabolism and signaling pathways. 

To be specific, employing the functional 
packages "org.Hs.eg.db" and "clusterProfiler" in the R 
Programming Language, we performed GO 
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enrichment analysis, which has three ontologies that 
respectively describe the molecular function (MF), 
cellular component (CC), and involved biological 
process (BP) of a gene [41]. After that, we successfully 
derived the latest information of KEGG Pathway gene 
annotation from the KEGG REST API (https://www. 
kegg.jp/kegg/rest/keggapi.html). Additionally, the 
"clusterProfiler" [42] package was applied to carry out 
the enrichment analysis. When a gene met the 
filtering criteria of p < 0.05 and FDR < 0.1, it was 
deemed statistically significant, and the outcomes of 
the enrichment were presented on bubble charts. 

Construction of protein-protein interaction 
(PPI) network  

STRING database [43] (STRING: functional 
protein association networks (https://string-db. 
org/)) was utilized to establish a PPI network [44] of 
these differentially expressed genes in OV samples, 
and the visualization was achieved by Cytoscape 
software (version 3.4.0, http://chianti.ucsd.edu/ 
cytoscape-3.4.0/). In addition, we applied the 
CytoNCA plug-in (Version 2.1.6, http://apps. 
cytoscape.org/apps/cytonca) to analyze the nodal 
topological properties of the network, where Degree 
was used as the main attribute. CytoNCA is a 
cytoscape plugin for centralized analysis and 
evaluation of biological networks, so that the key 
nodes could be filtered from the interworking 
networks. The larger value of the attribute proved the 
greater role of the gene in the network. The top 67 
genes were selected and the key differentially 
expressed CRGs were obtained. 

Cell lines and reagents 
The human OV cell line ES-2 and cervical cell 

line HUCEC (Human Uterine Cervical Epithelial 
Cells) were maintained in our lab. ES-2 cells were 
incubated in McCoy's 5A Medium (Gibco, USA) 
supplemented with penicillin/streptomycin 
antibiotics (100 U/mL penicillin, 100 g/mL 
streptomycin, Gibco, USA) and 10% fetal bovine 
serum (HyClone) in a humidified 5% CO2 incubator at 
37 °C. HUCEC cell were incubated in F-12K Medium 
adding 0.1 mg/mL Heparin Solution, 500 μL of 
30 mg/mL Endothelial Cell Growth Supplement 
(ECGS) and 10% fetal bovine serum (HyClone) in a 
humidified 5% CO2 incubator at 37°C. Cell copper 
Content Assay Kit (BC5750) was purchased from 
Solarbio (Beijing, China). CDKN2A/p16INK4a 
Antibody (AF5484) were acquired from affinity 
(Cincinnati, USA). anti-Beta Actin (20536-1-AP) 
antibodies were obtained from Proteintech Group 
(Wuhan, China). pCMV3-CDKN2A-C-Flag (HG 
29840-CF) plasmid was purchased from 

SinoBiological (Beijing, China). BCA protein assay kit 
(23227) was purchased from Thermo Scientific (New 
York, USA). Tween 80 (T8360), Polyethylene glycol 
300 (IP9020), and Kanamycin Sulfate (IK0030) were 
obtained from Solarbio (Beijing, China). HRP- 
conjugated secondary antibody (10702-MM01E) was 
purchased from Santa Cruz (New Jersey, USA). 
Western Bright ECL reagent (K-12045-D20) was 
purchased from Advansta (California, USA). Protease 
Inhibitor Cocktail (HY-K0010) was purchased from 
MedChemExpress (New Jersey, USA).  

MTT assay 
ES-2 cells were plated in 96-well plates at a 

density of 1 × 10⁴ cells per well. On the following day, 
the culture medium was refreshed with medium 
supplemented with varying concentrations of Copper 
(II) Diethyldithiocarbamate (CuET). Following a 12 h 
incubation period, the cells were subsequently treated 
with 100 mL of medium containing 0.5 mg/mL MTT 
for an additional 4 h. Afterward, the supernatant was 
discarded from each well, and the formazan crystals 
produced by viable cells were dissolved in 100 µL of 
DMSO. The absorbance at 490 nm was then measured 
using a microplate reader (SuPerMax 3100, Flash, 
China). 

Reverse transcription and quantitative PCR 
(qPCR) 

To detect the mRNA expression level of 
CDKN2A, the total RNA obtained from ES-2 cells 
treated with CuET (0.5 μg/mL) was extracted using 
Trizol reagent (Invitrogen, GrandIsland, NY) 
according to the manufacturer's instructions. 2 μg of 
total RNA was reverse-transcribed into cDNA using a 
cDNA synthesis kit (SIMGEN, China). After that 
qPCR was performed with PCR Mix (Biosharp, China) 
and CDKN2A primers (Beyotime, China) at 95 °C for 
5 min, 40 cycles of 95 °C 30 s, 60 °C 30 s using Quant 
Gene 9600 PCR system (Bioer, China). GAPDH served 
as the endogenous control for normalization. The 
primer sequences are as follows: CDKN2A Forward 
Sequence: CTC GTG CTG ATG CTA CTG AGG A; 
Reverse Sequence: GGT CGG CGC AGT TGG GCT 
CC; GAPDH Forward Sequence: GTC TCC TCT GAC 
TTC AAC AGC G, and Reverse Sequence: ACC ACC 
CTG TTG CTG TAG CCA A. 

Wound healing assay 
ES-2 cells were plated in 12-well plates and 

cultured overnight to attain nearly 100% confluence. 
A scratch was made across the cell monolayer using a 
p10 pipette tip, and each well was washed twice with 
PBS to remove dislodged cells. The cells were 
subsequently cultured in DMEM medium 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3359 

supplemented with 1% FBS and CuET (0.5 μg/mL). 
Wound closure was monitored microscopically at 0 
and 12 hours, and the relative wound healing area 
was quantified using ImageJ software. 

Cell migration assay 
A 24-well plate with 8.0 μm membrane 

Transwell chamber was prepared. Cells were starved 
(without serum medium) for 24h for cell migration 
experiment, and 5×104 cells /200 μL were inoculated 
in the Transwell chamber. 600μL medium containing 
10% fetal bovine serum was added into the lower 
room, cultured in an incubator for 48 h, then removed, 
fixed with 4% paraformaldehyde, stained with 0.5% 
crystal violet, observed and photographed under a 
microscope. 

Western-blotting analysis  
To prepare whole cell lysates, cells were 

subjected to RIPA buffer containing a protease 
inhibitor (MCE). Following this, the cellular extracts 
underwent centrifugation at 13,000g for 15 min at 4 ℃. 
The protein concentration in the resulting supernatant 
was measured using a BCA protein assay kit 
(PIERCE). Subsequently, 10 mg of the cell lysates were 
heated at boiling temperature for 10 min and resolved 
by SDS-PAGE. The proteins were then transferred to a 
PVDF membrane. Western blotting was performed 
with primary antibodies specific to CDKN2A and 
β-actin. The membrane was further incubated with an 
HRP-conjugated secondary antibody (Santa Cruz) for 
1 h. After rinsing with PBST, the protein bands were 
revealed using the Western Bright ECL reagent 
(Advansta) and captured using a ChemiDoc Touch 
Imaging System (Bio-Rad). 

Xenograft mice tumor model  
The animal studies were carried out and 

authorized by the Biomedical Ethics Committee of the 
Health Science Center at Xi’an Jiaotong University. 
Six-week-old female Balb/c-nu mice were sourced 
from Changsheng Biotechnology and housed under a 
regulated 12-hour light/dark cycle, with unrestricted 
access to food and water. Each mouse received an 
intracranial injection of 5×106 ES-2 cells. A total of 
eight mice were allocated to each experimental group. 
Once the average tumor volume reached 100 mm³, the 
mice were randomly assigned to three distinct groups. 
The control group received 0.9% saline, the second 
group was administered CuET at a dose of 5 mg/kg, 
and the third group received CuET at a dose of 
15 mg/kg. After a period of four weeks, the mice were 
humanely sacrificed, and their tumors were harvested 
for further analysis. 

Statistical analyses  
For this investigation, statistical evaluations 

were performed utilizing SPSS version 23.0, where 
quantitative information was presented as mean ± SD. 
Notable disparities were determined through either a 
one-way ANOVA or an unpaired Student’s t-test. The 
significance thresholds were set at: *p < 0.05, **p < 
0.01, and ***p < 0.001 for each experiment. 

Results 
Construction of prognosis and multivariate 
cox regression models 

We downloaded the clinical data and the data on 
gene expression in OV samples from TCGA database. 
After conducting data extraction and ID conversion 
using the "rjson" package, we obtained gene 
expression matrix with data of 429 samples. Then we 
prevent data overfitting by eliminating the duplicated 
and missing data, standardizing the expression matrix 
and filling in the missing values. Consequently, we 
acquired the processed expression matrix including 
425 samples. Furthermore, Sangerbox platform [45] 

was used to standardize the data of expression matrix. 
2029 CRGs were retrieved from Genecards database, 
and we matched and combined these CRGs with their 
related expression and clinical data. Subsequently, 
1930 CRGs and their relevant data were acquired. A 
univariate Cox regression analysis was implemented 
on the CRGs for the purpose of further filtering these 
genes with great prognostic value [46]. According to 
the analysis, 200 CRGs genes were indicated to have a 
moderately obvious correlation with patients’ overall 
survival (OS) for OV (p < 0.05). The genes along with 
their related data were exhibited in Table S1.  

We further screened CRGs using LASSO 
regression analysis (Fig. 1A, B), thus obtaining 62 
CRGs (Table S2). The risk score of each sample was 
determined on the ground of the built risk model. As 
an outcome, the samples were consequently separated 
into high and low groups. According to the 
Kaplan-Meier curves (Fig. 1C), the low-risk group’s 
overall survival rate was substantially greater than 
that of the high-risk group at the significance of p < 
0.001. ROC curve (Fig. 1D) demonstrated the AUC 
values, which presented the area under the ROC 
curve. The AUC values at years 1, 3, and 5 were 0.776, 
0.824 and 0.859, respectively. Since all of these values 
were greater than 0.75, it could be demonstrated that 
the precision and dependability of this signature for 
patient prognosis was reliable.  
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Figure 1. Construction and verification of prognostic signature. (A) The LASSO coefficient diagram of cuproptosis-related genes in OV. (B) Misclassification error 
against log(λ) is plotted. (C) Kaplan-Meier curves of high and low risk groups in LASSO model. (D) ROC curves of OV patients in LASSO model at 1, 3 and 5 years. 

 
Then a multivariate Cox regression analysis was 

carried out. Setting p < 0.05 as our screening criteria, 
11 CRGs were ultimately obtained, including Pumilio 
RNA Binding Family Member 3 (PUM3), Kynurenine 
Aminotransferase 1 (KYAT1), Myosin Light Chain 2 
(MYL2), Aminomethyltransferase (AMT), RALBP1 
Associated Eps Domain Containing 1 (REPS1), CD40 
Ligand (CD40LG), C-X-C Motif Chemokine Receptor 
2 (CXCR2), ArfGAP with FG Repeats 1 (AGFG1), 
Fibroblast Growth Factor 23 (FGF23), Alpha 2-HS 
Glycoprotein (AHSG), and 3-Hydroxyanthranilate 
3,4-Dioxygenase (HAAO). In an effort to make our 
results more legible, a forest map of these 11 CRGs 
was plotted (Fig. 2A, B). As all OV samples were 

separated into low- and high-risk categories, we 
displayed the Kaplan-Meier curve (Fig. 2C) and ROC 
curves at years 1, 3, and 5 (Fig. 2D). The AUC at 1, 3, 
and 5 years showed values of 0.75, 0.83, and 0.87, 
which were all greater than 0.75 and illustrated the 
exceptional accuracy and usefulness of the analytical 
procedure. The relationship among patients’ risk 
scores, distribution of survival time, and gene 
expression was analyzed to further verify the 
prognostic model. As expected, we could recognize 
that the patient's survival rate declined dramatically 
as the risk score increased (Fig. 2E). On the basis of the 
subgroups of risk scores, we drew the Kaplan-Meier 
curves for these 11 CRGs that were eventually 
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screened out, among which 10 genes showed 
relatively significant relationship with survival rate, 
including PUM3, KYAT1, AMT, REPS1, CD40LG, 
CXCR2, AGFG1, FGF23, AHSG, and HAAO (p<0.05) 

(Fig. 3A-J). These results showed that the model 
demonstrated excellent predictive accuracy and 
reliability. 

 

 
Figure 2. Construction and verification of multivariate cox regression model. (A)Forest map of 11 cuproptosis-related genes obtained from multivariate Cox 
regression analysis. (B) In order to make the forest map obtained by multivariate Cox regression analysis more obvious, two genes with excessive confidence interval were 
deleted from Figure 2(a). (C) Kaplan-Meier curves of high and low risk groups in multivariate Cox regression model. (D) ROC curves of OV patients in multivariate Cox model 
at 1 year, 3 years and 5 years. (E) Risk scores, survival time distribution and expression of high-risk and low-risk groups in the multivariate Cox model.  
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Figure 3. Individual prognostic significance of genes. Ten genes had relatively significant clinical prognostic ability (P<0.05). (A) PUM3, (B) KYAT1, (C) AMT, (D) REPS1, 
(E) CD40LG, (F) CXCR2, (G) AGFG1, (H) FGF23, (I) AHSG, (J) HAAO. Survival curves were generated using the Kaplan-Meier method. p value was calculated based on 
log-rank test. 
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Construction and verification of nomogram of 
prediction model 

Univariate Cox regression analysis of OV 
patients indicated that age and FIGO stage were 
strongly relevant to survival (both P < 0.05), as shown 
in Table 1. Further inclusion of the above high-related 
variables, age and FIGO stage, in the multivariate Cox 
regression analysis demonstrated that patients with 
age of onset > 65 years and FIGO stage IIIA-IV had a 
greater risk (Fig. 4A-D). By integrating the 
independent prognostic factors from the multivariate 
Cox regression analysis, R programming language 
was used to draw a nomogram model that can 
forecast survival rates of OV patients. Each 
influencing factor was projected onto the scoring table 
to obtain the score for each item, and then the scores 
were added up to obtain a final score. Specific 
survival rates of patients can be obtained by referring 
to the total score scale (Fig. 4E), and a higher 
total score means a lower survival probability for  
patients. ROC curves clearly illustrated nomogram 
prediction model had good discrimination, and the 
AUC values at age, time and FIGO stage were 0.6, 
0.532, 0.597, respectively (Fig. 4F). The calibration 
curve was close to the black dotted line in an ideal 
case (Fig. 4G), indicating that the accuracy of the 
prediction was reliable. 

 

Table 1. One-way cox regression analysis.  

Characteristics  RC Wald Degrees of 
freedom 

P-valuea Exp (RC) 95%CI 

Age 0.351 25.573 1 0 1.420 (1.240-1.627) 
FIGO Stage 0.361 11.151 1 0.001 1.435 (1.161-1.773) 
Grade 0.210 2.018 1 0.155 1.234 (0.923-1.649) 
RC, Regression coefficient; CI, confidence interval; FIGO, Federation International 
of Gynecology and Obstetrics. aP-values were calculated using the 
Cox-proportional hazard model. 

 

Differential expression analysis and functional 
enrichment of CRGs 

A total of 167 common differentially expressed 
genes (P < 0.01 after correction, differential expression 
multiple |logFC| ≥ 4) were screened out from 
GSE14407, GSE18520 and GSE54388, including 65 
up-regulated genes and 102 down-regulated genes (S3 
Table). The differential gene volcano plot and 
heatmap of dataset GSE14407 (Fig. 5A, B), dataset 
GSE18520 (Fig. 5C, D) or dataset GSE54388 (Fig. 5E, F) 
are shown, respectively. Moreover, the Venn diagram 
of the three datasets is also shown (Fig. 5G). 

We then carried out an enrichment analysis 
using the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathways. The result of gene ontology enrichment 

analysis showed that these CRGs were primarily 
concentrated in drug metabolism progress as well as 
tissue development (ontology: participating biological 
process, BP, Fig. 6A), extracellular region and 
extracellular space (ontology: cellular component, CC, 
Fig. 6B), and oxidoreductase activity (ontology: 
molecular function, MF, Fig. 6C). Meanwhile, in the 
KEGG analysis, CRGs that had differential expression 
in OV were primarily involved in tyrosine 
metabolism and retinol metabolism (Fig. 6D-F). The 
differential expression and enrichment analyses have 
identified key proteins and pathways involved in 
ovarian cancer development, but further in-depth 
analysis is required to elucidate the underlying 
mechanisms. 

Protein-protein interaction (PPI) networks 
analysis 

In order to investigate the relationship between 
proteins encoded by 167 different expression genes, 
we imported these genes into the STRING database. 
After setting the interaction scores > 0.400, the 
protein-protein interaction networks were 
constructed, with an enrichment P value of 2.83e-14. 
The networks included 155 nodes and 126 interactions 
(Fig. 7A). After that, we calculated the number of 
interactions between each gene and visualized the top 
30 genes with the most interactions using the R 
Programming Language. On this ground, the core 
gene of protein-protein interaction network was 
found to be CDKN2A (Fig. 7B). The results indicated 
that CDKN2A is likely a crucial factor in the 
development and progression of ovarian cancer. 

Expression and effect of CDKN2A in 
cuproptosis of OV 

CDKN2A (cyclin dependent kinase inhibitor 2A) 
located within the frequently deleted chromosomal 
region 9 of p21, is a tumor suppressor gene that plays 
an important role in cell cycle regulation [47, 48]. To 
investigate the role of CDKN2A in OV, we analyzed 
the data sourced from the GEPIA website, which 
revealed significantly elevated CDKN2A expression 
in OV tissues compared to normal tissues (Fig. 8A). 
Complementary analysis of the TCGA and GTEx 
datasets confirmed these findings, demonstrating 
high CDKN2A expression in OV specimens (Fig. 8B). 
We furthermore analyzed the expression of CDKN2A 
using immunohistochemical staining from the 
Human Protein Atlas database. The results showed 
that CDKN2A is highly expressed in OV (Fig. 8C). To 
verify the expression level of CDKN2A in OV, we 
performed the Western blot experiment, which 
showed high CDKN2A expression in OV cell line (Fig. 
8D).  
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Figure 4. Construction and verification of predictive nomogram model. (A) Cumulative survival analysis curves grouped by age. (B) Cumulative risk profile by age. 
(C) Cumulative survival analysis curves grouped by FIGO stage. (D) Cumulative risk profile by FIGO stage. (E) 1, 3, 5 years survival nomogram. (F) ROC analysis curve. (G) 
Calibration curves of nomograms predicting 1-,3-and 5-year survival rates. Survival curves were generated using the Kaplan-Meier method. p value was calculated based on 
log-rank test. 
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Figure 5. Differential expression analysis. (A) Differential gene volcanic map in dataset GSE14407. (B) Differential gene heat map in dataset GSE14407. (C) Differential 
gene volcanic map in dataset GSE18520. (D) Differential gene heat map in dataset GSE18520. (E) Differential gene volcanic map in dataset GSE54388. (F) Differential gene heat 
map in dataset GSE54388. (G) Venn diagram of differential gene in dataset GSE14407, GSE18520 and GSE54388. 
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Figure 6. GO enrichment and KEGG pathways analysis. (A) The top 10 significant enriched terms in biological process (GO BP). (B) The top 10 significant enriched 
terms in cellular component (GO CC). (C) The top 10 significant enriched terms in molecular function (GO MF). (D, E) The top 10 significant enriched terms in three ontologies 
including BP, CC and MF. (F) The top 10 significant enriched pathways in KEGG analysis. 
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Figure 7. PPI (Protein-protein interaction) network analysis. (A) The PPI network constructed with 167 differentially expressed genes. (B) The top 30 genes with the 
most interactions. 
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Figure 8. Expression and influence of CDKN2A in cuproptosis of OV. (A) Expression levels of group was imaged at 0 and 12 hours using a microscope. (K) The recover 
areas were calculated by ImageJ software in different groups at different time point. (L) Cell migration assay results of ES-2 cells in the control group and CuET treated group (0.5 
μg/mL). (M) Calculate the degree of cell migration in the control group and CuET treated group (0.5 μg/mL) using ImageJ software. (N, O) Tumor size (N) and volume (O) 
measurements in the CDX model following CuET treatment (5mg/kg and 15mg/kg). (P) Body weights of mice across different treatment groups. n = 3, independent experiments 
(D, E, F, G, H, K, L and M). Data presented as mean ± S.D. Statistical significance was assessed using Student's unpaired t-test. *p < 0.05, **p < 0.01, **p < 0.001. 

 
We then explored whether CDKN2A can 

influence the progression of OV by regulating 
cuproptosis. Firstly, transient transfection of ES-2 cells 
with a CDKN2A-encoding plasmid resulted in 
successful CDKN2A protein overexpression (Fig. 8E), 
which in turn markedly increased the concentration of 
Cu2+ in OV cell line (Fig. 8F). To further investigate the 
function of CDKN2A in cuproptosis of OV, we first 

constructed a cuproptosis cellular model using ES-2 
cells. Copper (II) Diethyldithiocarbamate (CuET) is a 
potent anticancer agent that has been proven to 
induce cuproptosis in tumor cells [49, 50]. Therefore, 
the different concentrations of CuET were added to 
ES-2 cells, and then the MTT assay showed that the 
increasing concentration of CuET resulted in a 
continuous decrease in cell viability (Fig. 8G). 
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Furthermore, we measured the mRNA expression 
levels of CDKN2A through qRT-PCR and found that 
it showed a significant increase after CuET treatment 
(Fig. 8H). Moreover, the bright images (Fig. 8I), 
wound healing assay (Fig. 8J, K) and transwell 
experiment (Fig. 8L, M) showed that cuproptosis 
induced by CuET could obviously suppress the cell 
viability, cell migration and invasion ability. To 
further analyzed the effects of CuET on OV, we 
utilized a cell-derived xenograft (CDX) mouse model 
to assess its anti-tumor efficacy in vivo. Compared to 
the control group, CuET treatment resulted in a 
significant reduction in tumor volume (Fig. 8N-O), 
with no substantial change in the body weights of 
mice across the different treatment groups (Fig. 8P). 
These results suggested that CDKN2A is highly 
expressed in OV, and cuproptosis could inhibit OV 
progression in vivo and vitro.  

Discussion 
OV is the third highest annual incidence among 

female reproductive system cancers in China. The 
differential expression of CRGs and the prognostic 
model of CRGs in OV are of certain significance for 
the study, clinical assessment, and therapeutic 
method of OV, which may decrease the mortality 
possibility of OV patients, improve the survival rate, 
and achieve "early prevention, early detection, and 
early treatment" in as far as is possible [51]. 

In this study, there were 62 CRGs sequentially 
covered employing univariate Cox regression analysis 
as well as LASSO regression analysis stepwise. What’s 
more, we investigated the differential expressions of 
CRGs in OV thoroughly. After the risk model was 
constructed, we curved the Kaplan-Meier curve and 
ROC curves of 1, 3, and 5 years, with the intention of 
analysis. The analysis results indicated that CRGs had 
potential value and effect in OV. It is of certain 
authenticity and feasibility that these CRGs can be 
used in the construction of prognosis pattern. Eleven 
CRGs (PUM3, KYAT1, MYL2, AMT, REPS1, CD40LG, 
CXCR2, AGFG1, FGF23, AHSG, and HAAO) were 
recognized as multivariate Cox regression analysis 
and a prognostic pattern for CRGs in OV was 
constructed. Given that CD40LG is a prognostic 
marker related to immunity and stroma in the breast 
cancer tumor microenvironment in the study of breast 
cancer [52], this study enables us to draw lessons from 
and apply the research’s ideas and methods, thus we 
can be much more adequately prepared for the 
subsequent investigation of the cuproptosis-related 
gene CD40LG in OV. The precise connection between 
the AHSG gene and OV can be further investigated. 
Previous research has shown that ovarian 
endometriosis cysts in women of childbearing age are 

associated with ovarian AHSG gene polymorphism, 
and OV is also associated with ovarian endometriosis 
cysts. 

Differentially expressed CRGs in OV were 
functionally enriched utilizing GO and KEGG, which 
determined that these CRGs were predominantly 
abundant in drug metabolism and primary ethanol 
metabolism, oxidoreductase activity, tyrosine 
metabolism and retinol metabolism. The 
aforementioned metabolic processes and enzyme 
activity have a certain correlation to the appearance 
and progression of OV. Many studies have recognized 
the importance of drug metabolism-related genes in 
the treatment and prognosis of OV. Patients with high 
expression of genes related to drug metabolism have 
good prognosis [53]. In addition, immune-infiltration 
analysis also indicated that abnormally expressed 
genes related to drug metabolism may play an 
important role in the regulation of infiltration of 
macrophages and neutrophils in OV tissue. What’s 
more, the accumulation of acetaldehyde, a derivative 
of ethanol metabolism, is closely associated with the 
production of free radicals, the decrease in 
glutathione (GSH) levels, and the formation of protein 
and DNA adduct compounds, which may adversely 
affect key biological functions, thereby promoting 
pathological changes in cells and tissues, and leading 
to the development of cancer [54]. In addition, 
nicotinamide adenine dinucleotide phosphate 
(NADPH) homeostasis is regulated by multiple 
signaling pathways and several metabolic enzymes 
that undergo adaptive alterations in cancer cells. The 
metabolic reprogramming of NADPH makes cancer 
cells highly dependent on this metabolic network for 
antioxidant capacity and more susceptible to 
oxidative stress [55]. In our study, several CRGs 
identified in ovarian cancer, including FGF23 [56] and 
AGFG1 [57], are involved in drug metabolism. Given 
their roles, therapy status could influence the 
expression of these genes and the observed 
differences. Our study has limitations, particularly the 
lack of a comprehensive analysis of therapy status and 
its potential effects on gene expression. Future 
research can address these limitations through more 
in-depth analyses. 

Moreover, our study identified CDKN2A to be 
the core gene through the building of protein-protein 
interaction (PPI) networks. It is crucial for life 
activities such as cell cycle regulation, gene expression 
control, biological signal transmission, and energy 
and material metabolism, which are all closely related 
to the development of tumors [58]. In some cancers, 
the high expression of CDKN2A is associated with 
poor prognosis. For example, in colon 
adenocarcinoma (COAD), bladder urothelial 
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carcinoma (BLCA), and liver hepatocellular 
carcinoma (LIHC), the high expression of CDKN2A is 
correlated with poor prognosis in patients. However, 
in other cancers, the loss or low expression of 
CDKN2A may indicate a worse prognosis. Although, 
previous studies have indeed explored aspects of 
cuproptosis mechanisms in ovarian cancer [59], they 
did not specifically highlight the importance of the 
cuproptosis-related gene CDKN2A in ovarian cancer. 
In contrast, we demonstrated that the expression level 
of CDKN2A increases in cuproptosis of OV by the in 
vitro functional assays which may inhibit viability as 
well as migration and invasion ability of OV cells. 
However, the CDKN2A gene is not included in the 
CRGs prognostic model for OV, which may be 
attributed to that the current high-throughput data 
and clinical sample information are not 
comprehensive enough, or our prognostic model 
needs further optimization. Moreover, the main 
limitation of our research is that our results are mainly 
based on big data analysis of biological information, 
so more experiments are needed to verify the function 
of CDKN2A gene in the occurrence and development 
of OV, and to further reveal its potential mechanism 
in cuproptosis in OV.  

In conclusion, we have developed a unique 
prognostic model for genes associated with 
cuproptosis in OV. Future research is expected to 
concentrate on the mechanisms underlying the genes 
that trigger cuproptosis in OV in order to provide an 
alternative clinical approach for curing the sickness. 
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