
Journal of Cancer 2025, Vol. 16 
 

 
https://www.jcancer.org 

3343 

Journal of Cancer 
2025; 16(11): 3343-3354. doi: 10.7150/jca.115507 

Research Paper 

The Prediction Model for Triple-Negative Breast 
Cancer Prognosis and Immunotherapy Efficacy Based on 
Single-Cell Sequencing of CD8+ T cells 
Jiarong Yi1†, Yejun Qiao2†, Zhengchong Xiong1, Jikun Feng1, Xiazi Zouxu1, Shuang Zeyu1, Xi Wang1 

1. Department of Breast Oncology, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation 
Center for Cancer Medicine, Guangzhou, Guangdong, China. 

2. Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.  

† Contributed equally to this work. 

 Corresponding author: Dr. Jiarong Yi; yijr@sysucc.org.cn. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See https://ivyspring.com/terms for full terms and conditions. 

Received: 2025.04.10; Accepted: 2025.07.08; Published: 2025.07.24 

Abstract 

Background: Triple-negative breast cancer (TNBC) exhibits a higher propensity for recurrence, distant 
metastasis, and mortality than the other subtypes of breast cancer. TNBC is primarily attributed to the 
lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2). 
Methods: Single-cell sequencing results of CD8+ T cells in TNBC patients were screened for 
differentially expressed and immune-related genes. The selected genes were then analyzed with 
immunohistochemistry for their prognostic effects. Additionally, a regression model was constructed to 
ascertain the gene expression score and classify patients into high- and low-risk groups. We further 
analyzed the impact of gene expression on prognosis based on risk grouping and evaluated its potential as 
a prognostic predictor for TNBC patients. This analysis was validated using PCR and the prognostic data 
from patient samples. We also investigated the effect of risk grouping on immunotherapy in TNBC 
patients and evaluated its potential to predict the efficacy of immunotherapy in TNBC patients. 
Results: Single-cell sequencing of CD8+ T cells from TNBC patients identified 191 differentially 
expressed genes. Among them, XCL1, RASGRP1, CTSD, and AIP were reported to be independent 
prognostic factors for TNBC. The results were verified through immunohistochemistry. Additionally, a 
regression analysis model was constructed using these four genes to classify patients into risk groups. The 
high-risk group correlated with a poor prognosis in patients and could serve as an independent 
prognostic factor for TNBC. The results were further validated through PCR. Notably, patients in the 
low-risk group displayed a better response to immunotherapy. 
Conclusion: Based on the single-cell sequencing results of CD8+ T cells from TNBC patients, a 
prediction model was established, which facilitated prognosis prediction in TNBC patients and evaluated 
the patients' response to immunotherapy. In summation, this model could potentially assist in improving 
the efficacy of TNBC immunotherapy. 
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Background 
Triple-negative breast cancer (TNBC) refers to a 

specific subtype of breast cancer that lacks expression 
of the estrogen receptor (ER), progesterone receptor 
(PR), and human epidermal growth factor receptor 2 
(HER2) [1]. TNBC accounts for approximately 15% of 

breast cancer cases and is characterized by its 
resistance to hormone therapy and HER2-targeted 
therapy [2]. TNBC has reported higher incidences of 
recurrence, distant metastasis, and mortality than the 
other breast cancer subtypes, which correlates to the 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3344 

poor prognosis of TNBC patients [3]. In patients 
without metastatic TNBC, the tumors exhibited a 
favorable response to neoadjuvant therapy, with 
approximately 40%–50% of tumors achieving a 
pathological complete response (pCR) [4]. Tumors 
with pCR are normally associated with a lower 
10-year recurrence rate in patients (i.e., less than 15%) 
as compared to patients with residual disease (i.e., 
more than 50%). Nonetheless, chemotherapy has been 
the primary first-line treatment option for TNBC 
patients, with a median overall survival (OS) of two to 
three years [5]. Recently, targeted drugs and 
immunotherapies have reported significant progress 
in the prognosis of TNBC patients with high 
therapeutic potential. Nevertheless, only a few 
targeted drugs and immunotherapies are currently 
available for the clinical treatment of TNBC, such as 
the antibody-drug conjugate goxatuzumab and the 
anti-PD-1 agent pembrolizumab. However, 
immunotherapy has reported a low single-agent 
efficacy and a relatively high rate of drug resistance, 
which prompts the search for better alternative 
treatment strategies [6-9]. 

The CD8+ T cells can respond to tumor-specific 
antigens and autoantigens, and these cells can 
selectively target and kill cancer cells [10]. However, 
CD8+ T cells are ineffective in tumor tissues, which 
suggests that the tumor-reactive CD8+ T cells are 
dysfunctional during tumorigenesis [11]. Changes in 
the tissue microenvironment during tumorigenesis 
may have affected CD8+ T cell differentiation, 
resulting in a non-reactive T cell state. When primitive 
antigen-specific CD8+ T cells encounter antigens in the 
context of acute inflammation, the T cells undergo 
clonal expansion and differentiate into cytolytic 
effector T cells. After the pathogen or antigen is 
cleared, most effector T cells die, but a small number 
survive and form memory T cells [12, 13]. The 
differentiation of T cells into their effector and 
memory states involves different transcriptional and 
epigenetic factors. Surface suppressor molecules of 
CD8+ T cells inhibit the tumor suppressor ability of 
CD8+ T cells and promote tumor escape by binding to 
tumor or regulatory immune cell surface ligands. 
Immunotherapies targeting cytotoxic T lymphocyte 
antigen 4 (CTLA-4) and programmed cell death 1 
(PD-1) have been used for the treatment of melanoma, 
non-small cell lung cancer (NSCLC), renal cell 
carcinoma (RCC), and Hodgkin's lymphoma [14-21]. 
However, immunotherapy resistance and poor 
patient response remain the key challenge for cancer 
treatment. Herein, this study analyzed the gene 
expression of CD8+ T cells and the expression of 
various signaling pathways. This study also evaluated 

the effect of CD8+ T cells on immunotherapy using an 
established prognostic model. 

 

Table 1. Patient information from TCGA and GSE47994 (n=249 
patients) 

Variables No. Patients (%) 
Gender   
 Female 249 (100.0%) 
 Male 0 (0.0%) 
Age (y)   
 ≤ 55 147 (59.0%) 

 ＞55 102 (41.0%) 

Tumor size   
 T1 53 (21.3%) 
 T2 168 (67.5%) 
 T3 18 (7.2%) 
 T4 10 (4.0%) 
Nodal status   
 N0 113 (45.4%) 
 N1 74 (29.7%) 
 N2 43 (17.3%) 
 N3 19 (7.6%) 
Metastasis   
 M0 132 (53.0%) 
 M1 102 (41.0%) 
 Mx 15 (6.0%) 
Pathological grade   
 G1 35 (14.1%) 
 G2 73 (29.3%) 
 G3 141 (56.6%) 
Stage   
 I 50 (20.1%) 
 II 79 (31.6%) 
 III 68 (27.3%) 
 IV 102 (41.0%) 
Ki-67   
 ＜ 15% 43 (17.3%) 

 ≥ 15%  206 (82.7%) 

 

Materials and Methods 
Gene expression dataset  

The TNBC dataset was retrieved from the Cancer 
Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) databases. This study only recruited 
patients diagnosed with TNBC with confirmed 
pathological and clinical information. Patients with 
insufficient or missing data, including age, TNM 
staging, and OS, were excluded. Information from 116 
patients was retrieved. The GSE47994 dataset was 
retrieved from GEO database by searching the 
keywords "TNBC" and “survival", which contained 
information from 133 patients. Patient characteristics 
in TCGA and GSE47994 are displayed in Table 1. 
Subsequently, qRT-PCR and immunohistochemistry 
were performed on 40 samples collected from TNBC 
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patients at the Sun Yat-sen University Cancer Center. 
The basic information of patients is displayed in Table 
2. 

 

Table 2. Patient information from the Sun Yat-sen University 
Cancer Center (n=40 patients). 

Variables No. Patients (%) 
Gender   
 Female 40 (100.0%) 
 Male 0 (0.0%) 
Age (y)   
 ≤ 55 29 (72.5%) 

 ＞55 11 (27.5%) 

Tumor size   
 T1 3 (7.5%) 
 T2 28 (70.0%) 
 T3 5 (12.5%) 
 T4 4 (10.0%) 
Nodal status   
 N0 16 (40.0%) 
 N1 10 (25.0%) 
 N2 9 (22.5%) 
 N3 5 (12.5%) 
Metastasis   
 M0 36 (90.0%) 
 M1 2 (5.0%) 
 Mx 2 (5.0%) 
Pathological grade   
 G1 6 (15.0%) 
 G2 12 (30.0%) 
 G3 22 (55.0%) 
Stage   
 I 3 (7.5%) 
 II 16 (40.0%) 
 III 19 (47.5%) 
 IV 2 (5.0%) 
Ki-67   
 ＜ 15% 11 (27.5%) 

 ≥ 15%  29 (72.5%) 

 
 

Differential expression analysis of CD8+ T cells 
based on single-cell sequencing 

Based on the single-cell sequencing data in the 
TISCH database (Tumor Immune Single Cell Hub, 
http://tisch.comp-genomics.org), we screened the 
T-cell sequencing dataset of TNBC and selected CD8+ 
T cells from the GSE148673 dataset as the subject of 
our research. This dataset consisted of 46501 single 
cells from 21 tumors, including TNBC, pancreatic 
ductal adenocarcinoma, thyroid undifferentiated 
carcinoma, invasive ductal carcinoma, and 
glioblastoma. We selected 10359 cells from six TNBC 
patients and analyzed the immune cell types and 
composition to sequence CD8+ T cells (tools provided 
by TISCH). 

Differential gene expression analysis of T cells 
and associated immune genes 

Sequencing results were used to compare genes 
in different states, and an intersection was made with 
immune-related genes (R package of VennDiagram). The 
intersection was then analyzed in STRING 
(https://cn.string-db.org) to assess their correlation, 
and genes with a correlation point ≥ 20 were 
considered hot genes. 

Single-factor analysis of hot-spot genes 
A single-factor analysis was performed to screen 

genes that could serve as independent prognostic 
factors for the construction of models. TCGA data 
were used to conduct an independent prognostic 
analysis of hot-spot genes to determine their 
prognostic impact on TNBC patients. 

Identification of key prognostic genes with 
immunohistochemistry 

Immunohistochemistry was performed on 40 
samples collected from TNBC patients, and stain 
intensity was analyzed with recognition software. 
Based on the degree of staining, the samples were 
divided into either high expression group or low 
expression groups, using the imagine gray scale. And 
then prognostic analysis was conducted to determine 
the impact of these genes as independent prognostic 
factors on patient prognosis and survival. 

Immunohistochemistry 
The tissues were first dewaxed in xylene, 

rehydrated in alcohol, and blocked in endogenous 
peroxidase activity. The tissues were then incubated 
overnight at 4 ℃ with specific antibodies targeting 
AIP, RASGRP1, CTSD, and XCL1 (rabbit; 1:100, 
Abcam, Cambridge, UK). The samples were 
incubated at room temperature with secondary 
antibodies (ab97080, goat anti-rabbit, 1:2,000; ab97040, 
goat anti-mouse, 1:500, Abcam) for 10 min and 
subsequently, in 3-3’-diamino-benzidine for 1.5 min. 
After that, the samples were counter-stained with 
hematoxylin for 30 s and visualized under a 
microscope. Median gray level was set as CUTOFF. 
Based on the degree of staining from grayscale 
imaging, the samples were divided into either high- 
or low-expression groups. The result and clinical 
information were then subjected to survival analysis 
using the R package of survival and survminer. 

Model construction and verification 
Lasso regression analysis was conducted on 

selected genes to determine the best coefficients and 
regression equations (R package of glmnet and survival) 
[22]. The CUTOFF was selected based on TCGA and 
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GEO data to divide the high- and low-risk groups. 
TCGA data and the GSE47994 dataset were used to 
verify the accuracy of the model for prognosis 
prediction. Results from q-RT PCR were used to 
calculate the patient risk score based on the regression 
coefficient. The median was taken as CUTOFF, and 
the patients were divided into high- and low-risk 
groups. Finally, survival analysis was conducted 
based on the different risk groups. There are limits in 
lasso regression, including large amounts of 
computation, overfitting problems when dealing with 
complex data and high sensitivity of parameter 
selection, but it is still the most suitable choice for the 
study.  

qRT-PCR analysis 
Total RNA was extracted from cultured vascular 

endothelial cells and fibroblasts with Trizol 
(Invitrogen, Carlsbad, USA). For mRNA detection, 
cDNA was synthesized from 1 μg of total RNA using 
the Revert Aid First-Strand cDNA Synthesis Kit 
(Fermentas, Burlington, Canada). qRT-PCR was then 
analyzed using the SYBR Premix ExTaqTM II 
configuration and the ABI PRISM® 7900HT system. 
The relative standard curve method (2-ΔΔCT) used 
GAPDH as a reference to detect the relative mRNA 
expression. The PCR primers used in this study are as 
follows: 

AIP-qF: AGGCAGTGCCACTTATCCAC  
AIP-qR: ACCCAGGCTGTTCCTTCATC  
RASGRP1-qF: GGCTCCGCGGAAACCTT  
RASGRP1-qR: TTCGGAACTGGGTGATGTGG  
CTSD-qF: CTGGACATCGCTTGCTGGAT 
CTSD-qR: TGCCTCTCCACTTTGACACC 
XCL1-qF: AGGACCTCAGCCATGAGACT 
XCL1-qR: TCACTCCCTACACCTTCCACA 
The expression median was taken as CUTOFF, 

and the patients were divided into high- and low-risk 
groups. 

Validation of risk score 
Based on the risk score and prognostic data from 

TCGA, univariate and multivariate analyses were 
conducted to evaluate the significance of selected 
genes to predict the prognosis of TNBC patients (R 
package of survival). Additionally, ROC analysis was 
performed to evaluate the accuracy of predicting the 
prognosis of TNBC patients (R package of survival, 
survminer, and timeROC). 

Mechanism 
Based on the risk score and grading, we 

conducted GO and KEGG analysis using GSEA to 
study the differentially expressed signaling pathways 
and the potential mechanism of key genes influencing 

the prognosis of patients (R package of limma, 
org.Hs.eg.db, clusterProfiler, and enrichplot). 
Additionally, a waterfall map was plotted to further 
analyze the specific expression of signal pathways in 
the high- and low-risk groups (R package of maftools). 

Correlation analysis between risk score and 
immune function 

Based on the risk score and grading, immune 
checkpoints with significant differential expression 
were screened, and the infiltration of immune cells in 
different risk groups was analyzed with CIBERSORT. 
The differences in immune cell function were also 
evaluated (R package of limma, GSVA, GSEABase, 
ggpubr, and reshape2) [23]. 

Effect analysis of immunotherapy 
Using the jarrydmartinx/metabric2 dataset, the 

prognosis of TNBC patients who had undergone 
immunotherapy with different risk scores was 
analyzed to validate the effectiveness of the prognosis 
assessment model (R package of stringi, caret, glmnet, 
and survminer). The effect of immunotherapy in 
different patients was further analyzed to evaluate the 
predictive function of the model in TNBC patients (R 
package of limma) [24]. 

Statistical Analysis 

The R software (version 4.0.3) was used for all 
statistical analyses. Univariate and multivariate Cox 
regression analyses were performed to evaluate the 
survival situation. Hazard ratio (HR) and 95% 
confidence interval (CI) were calculated to identify 
genes related to overall survival. Unless noted 
otherwise, P < 0.05 was considered statistically 
significant. 

Results 
CD8+ T cell single-cell sequencing analysis 

The immune cell types and composition were 
analyzed based on 10359 cells from six TNBC patients 
in the GSE148673 dataset (Figs. 1A-D), and the 
sequencing of CD8+ T cells was intersected with 
immune genes (Fig. 1E). STRING was used to further 
analyze intersection genes, and genes with association 
nodes greater than 20 were selected as hot genes (Figs. 
1F-G). 

Model construction and verification 
Single-factor analysis was performed on each of 

the selected hot genes. Genes that could be used as 
independent prognostic factors were selected for the 
construction of the model, such as AIP, CTSD, 
RASGRP1, and XCL1 (Fig. 2A). The lasso regression 
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model was constructed to determine the final 
coefficients of the genes. The XCL1 coefficient was –
1.313, the RASGRP1 coefficient was –0.723, the CTSD 
coefficient was 0.909, and the AIP coefficient was –
0.538 (Figs 2B-C). The patient risk score was 
calculated according to the regression coefficient, and 
the median was considered the CUTOFF. The 
prognoses of different risk groups in GEO and TCGA 
databases were significantly different (Figs. 2D-E). 
After that, qRT-PCR results from 40 patient samples 
were used to calculate patient risk scores according to 

the respective gene regression coefficients. The 
median was taken as CUTOFF, and the corresponding 
prognoses of different risk groups reported significant 
differences (Fig. 2F). Both univariate and multivariate 
analyses confirmed that risk score could be used as a 
prognostic factor (Figs. 2G-H). The plotted ROC curve 
indicated that the risk score of each factor was 0.828, 
which validated the reliability of risk scores. In terms 
of prognosis time, the reliability of prediction at one 
year was the highest but then gradually decreased 
with time (Figs. 2I-J). 

 

 
Figure 1. CD8+ T cell single-cell sequencing analysis. (A–D) Immune cell types and composition in CD8+ T cell single cell sequencing results. (E–F) Screening of hot 
genes, where G refers to the hot genes. 
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Figure 2. Model construction and verification. Results from (A) single factor analysis, (B-C) lasso analysis, (D) prognosis analysis based on TNBC, (E) prognosis analysis 
based on GEO, (F) prognosis analysis based on qRT-PCR, (G) univariate analysis, (H) multivariate analysis, and (I-J) ROC analysis. 

 

Function verification of prognosis-related 
genes 

The function of independent prognostic genes 
AIP, RASGRP1, CTSD, and XCL1 were further 
validated. The prognoses of different gene expression 
groups (i.e., from TCGA) were first analyzed. 
Subsequently, the gene expression groups were 
distinguished by immunohistochemistry, and the 

prognostic conditions of different expression groups 
were analyzed. These results reported that groups 
with different expressions of AIP (Figs. 3A-D), 
RASGRP1 (Figs. 3E-H), CTSD (Figs. 3I-L), and XCL1 
(Figs. 3M-P) represented significantly different 
prognoses. High expressions of AIP, RASGRP1, and 
XCL1 corresponded to a better prognosis, while high 
expression of CTSD corresponded to a poorer 
prognosis. 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3349 

 
Figure 3. Function validation of AIP, RASGRP1, CTSD, and XCL1. (A) Survival analysis based on AIP expression in TCGA. (B) Conditions for low expression of AIP. 
(C) Conditions for high expression of AIP. (D) Survival analysis based on immunohistochemistry. (E) Survival analysis based on RASGRP1 expression in TCGA. (F) Conditions 
for low expression of RASGRP1. (G) Conditions for high expression of RASGRP1. (H) Survival analysis based on immunohistochemistry. (I) Survival analysis based on CTSD 
expression in TCGA. (J) Conditions for low expression of CTSD. (K) Conditions for high expression of CTSD. (L) Survival analysis based on immunohistochemistry. (M) 
Survival analysis based on XCL1 expression in TCGA. (N) Conditions for low expression of XCL1. (O) Conditions for high expression of XCL1. (P) Survival analysis based on 
immunohistochemistry. 

 
Understanding the possible mechanisms of 
CD8+ T cell status change 

The results of GO analysis and KEGG analysis 
using GSEA are displayed in Figs. 4A-D. Based on GO 
analysis, the high-risk group was mainly enriched in 
an external encapsulating structure organization, 
keratinization, collagen-containing extracellular 
matrix, external encapsulating structure, and 
extracellular matrix structural constituents. Based on 
GO analysis, the low-risk group was mainly enriched 

in B cell receptor signaling pathways, 
immunoglobulin complex, immunoglobulin complex 
circulation, T cell receptor complex, and 
immunoglobulin receptor binding. Based on KEGG 
analysis, the high-risk group was mainly enriched in 
bladder cancer, drug metabolism, ECM receptor 
interaction, focal adhesion, and cancer pathways. 
Based on KEGG analysis, the low-risk group was 
mainly enriched in allograft rejection, B cell receptor 
signaling pathways, natural killer cell-mediated 
cytotoxicity, primary immunodeficiency, and T cell 
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receptor signaling pathways. From the waterfall map 
combined with tumor mutation load, TP53 tumor 
mutation was considered the most obvious (Figs. 
4E-F). The immunity of different risk groups was 
evaluated for their correlation with risk scores. The 

genes BTLA, CD28, CD274, CTLA4, IDO1, KLRC1, 
PDCD1, PDCD1LG2, TIGIT, and TNFRSF9 reported 
significant differences in the different risk groups, and 
they were significantly correlated with risk scores 
(Fig. 4G). 

 

 
Figure 4. Mechanisms of CD8+ T cell status change. (A-B) Results of GO analysis. (C-D) Results of KEGG analysis. (E-F) Waterfall map. (G) Expression of immune 
checkpoints in different risk scores and correlation analysis.  
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Correlation between risk score and 
immunotherapy 

We further analyzed immune cell invasion in 
patient samples and identified the immune cells with 
significant differences in the different groups. The 
immune cells included CD8+ T cells, T regulatory cells 
(Tregs), macrophage M0, macrophage M1, and 
macrophage M2 (Figs. 5A-B). Immune functions with 
significant differences in the different risk scores 
include aDCs, immune checkpoints, 
inflammation-promoting functions, pDCs, and T cell 
co-inhibition (Fig. 5C). The data from the 
jarrydmartinx/metabric2 database further verified 
the different prognosis of immunotherapy patients 
and immune scores. The results revealed that the 
prognosis of patients in the low-risk group was 
significantly better than that in the high-risk group 
after immunotherapy (Fig. 5D). Likewise, the efficacy 
of immunotherapy in the low-risk group was 
significantly better than that in the high-risk group 
(Fig. 5E). 

Discussion 
This study focused on the single-cell sequencing 

results of CD8+ T cells. From the pool of differentially 
expressed genes, AIP, CTSD, RASGRP1, and XCL1 
were selected as core genes, which could be used as 
independent prognostic factors. This finding was 
validated by immunohistochemistry and other 
prognostic analyses. The Lasso regression model was 
constructed based on the core genes, and the 
reliability of the prognosis prediction function of the 
model was verified by TCAG data and GEO data. 
Results from qRT-PCR further verified the accuracy of 
the model for prognosis prediction. We also identified 
differences in immune cell infiltration and function 
among different risk scores, and we found that the 
risk score model could be used to predict 
immunotherapy response and the prognosis of 
patients post-immunotherapy. 

The altered response of different T cell states to 
tumors is multifactorial, and the exact mechanism 
remains unclear. The study also reported that AIP, 
CTSD, RASGRP1, and XCL1 were significantly 
differentially expressed in cells of different states and 
could be independent prognostic factors. AIP (aryl 
hydrocarbon receptor interacting protein), also 
known as XAP2, was initially identified as a negative 
regulator of hepatitis B virus X proteins, but recent 
studies have revealed that AIP could also regulate 
estrogen signaling via estrogen receptors [25, 26]. AIP 
interacts with the CARMA1-BCL10-MALT1 complex 
in T cells to enhance IKK/NF-κB signaling and T cell 

activation, and we believe it is also a possible 
mechanism by which AIP regulates the function of 
CD8+ T cells [27]. In contrast, CTSD (cathepsin D) is 
involved in cell apoptosis [28]. Recent studies have 
reported that CTSD enhances the invasion and 
metastasis of breast cancer by promoting liver 
proteinase-ubiquitin-proteasome degradation [29]. 
Additionally, CTSD could be used as a relevant target 
and biomarker for antibody-based therapy in TNBC 
patients [30]. CTSD affects MDSC (Myeloid-derived 
suppressor cells) death by interrupted autophagy and 
ER stress, while MDSCs inhibit cytotoxic T 
lymphocytes (CTLs) and NK cell functions to promote 
tumor immune escape and progression. We speculate 
that interrupted autophagy and ER stress are the 
possible mechanisms by which CTSD affects the 
function and activity of CD8+T cells in triple negative 
breast cancer [31]. RASGRP1 (RAS guanyl releasing 
protein 1), a bi-functional regulator that promotes 
acute inflammation and inhibits inflammation- 
associated cancers, can inhibit the growth of 
inflammation-associated tumors and activate 
inflammatory response by sponging let-7a to promote 
IL-6 expression [32]. RASGRP1 is a unique biomarker 
for colorectal cancer and is located in the EGFR 
pathway [33]. Its mutations are linked to 
immunodeficiency, immune dysregulation, and 
EBV-induced lymphoma [34]. However, studies 
related to breast cancer are lacking. XCL1 (X-C motif 
chemokine ligand 1) is a C motif chemokine ligand, 
mainly produced by activated CD8+ T cells and 
natural killer cells, and it is involved in activating 
immune checkpoint regulators in tumors [35]. 

 We hypothesize that Rasgrp1 influences its 
function and immunotherapy effect by regulating 
Ras-MAPK and Ras/ERK pathway in CD8+T cells. 
RASGRP1 also play key role at the crossroad of 
pathways required for the expansion of activated T 
lymphocytes by regulating CTPS1, which is the 
potential mechanism by which RASGRP1 affects 
functions of CD8+T cells [36-39]. Hence, XLC1 is 
associated with tumor cell proliferation, invasion, 
angiogenesis, chemotherapy resistance, and other 
prognoses [40]. Moreover, some studies have 
confirmed that XCL1/Glypican-3 fusion genes can 
induce anti-tumor cell immunity and enhance the 
efficacy of anti-PD-1 [41]. XCL1 enhances antitumor 
responses of CD8+ T cell through recruitment of 
CXCL9-expressing conventional type-1 dendritic cells 
and activating notch pathway, which is the potential 
mechanism by which XCL1 affects functions of 
CD8+T cells in TNBC [42]. 
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Figure 5. Correlation between risk score and immunotherapy. (A-B) Invasion of immune cells in different risk groups. (C) Immune function in different risk groups. (D) 
Survival analysis based on risk scores of the jarrydmartinx/metabric2 database. (E) Correlation between risk score and efficacy of immunotherapy. 

 
The predictive model in this study was 

constructed based on public data and was further 
validated with real patient samples. Our study also 
reported that risk score correlated with immune cell 
infiltration and immune function changes in patients. 
We observed significant differences in risk scores 
among BTLA, CD28, CD274, CTLA4, and other 
immune checkpoints, indicating that changes in T cell 
status may affect the immune microenvironment and 

efficacy of immunotherapy. Subsequent findings 
confirmed that different risk scores resulted in 
significant differences in immunotherapy response 
and also affected the prognosis of immunotherapy 
patients. Therefore, our risk model could potentially 
predict the effect of immunotherapy in patients and 
identify potential gene targets to enhance the efficacy 
of immunotherapy. 
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The mechanism of change in CD8+ T cell status 
remains unclear. In this study, the differential 
expressions of AIP, RASGRP1, CTSD, and XCL1 were 
reported to induce changes in CD8+ T cell status. This 
study also identified several downstream enrichments 
of the differentially expressed genes (i.e., AIP, 
RASGRP1, CTSD, and XCL1). In addition, there are 
certain limitations in the study, including the reliance 
on retrospective data, the potential impact of tumor 
heterogeneity on gene expression and 
immunotherapy response, lack of further studies of 
TNBC subtypes, and the lack of follow-up validation 
of large amounts of clinical data. Therefore, future 
research should expand on these findings. 
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