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Abstract 

Radiotherapy is a standard treatment for advanced lung cancer, but resistance remains a significant 
cause of treatment failure. This study aimed to investigate lactate-associated genes to identify 
patients likely to benefit from radiotherapy. RNA-seq data from 99 patients with lung cancer who 
underwent radiotherapy were analyzed to identify differentially expressed genes (DEGs) between 
resistant and sensitive cases. Bioinformatics tools were used to assess the prognostic relevance of 
lactate-related genes, and a risk score model was develpoed based on these genes. Dysregulation of 
these genes in patients with lung cancer undergoing radiotherapy was validated through in vitro 
experiments. Molecular docking was used to explore potential radiosensitizers. The analysis 
identified 1482 DEGs, with enrichment analysis highlighting lactate metabolism pathways. A risk 
score model was constructed using the lactate-related genes ADAMTS3, FADS2, and RTBDN to 
classify patients into high- and low-risk subgroups. Functional enrichment analysis revealed the 
model's impact on DNA repair and tumor immunity. A nomogram was developed for clinical 
implementation. Wet lab experiments further confirmed these findings. In conclusion, a novel risk 
score model based on lactate-related genes was developed to predict radiotherapy outcomes in 
lung cancer. FADS2 was identified as a potential biomarker for predicting resistance to 
radiotherapy. This study is the first to examine the predictive value of lactate-related genes for 
radiotherapy efficacy in lung cancer, offering valuable insights for personalized treatment strategies 
to improve therapeutic outcomes. 
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Introduction 
Lung cancer is the most prevalent and fatal 

malignancy worldwide, with a five-year overall 
survival (OS) rate of only 19%[1, 2]. Due to its subtle 
symptoms, most patients are diagnosed at advanced 
stages, resulting in poor prognoses[3]. Consequently, 
for advanced lung cancer, the primary treatment 

options include radiotherapy in combination with 
targeted therapy, chemotherapy, and 
immunotherapy, all of which have significantly 
improved survival rates[4, 5]. However, radiotherapy 
resistance remains the predominant cause of 
treatment failure. Thus, understanding the molecular 
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mechanisms underlying radiotherapy resistance is 
crucial for developing more effective strategies to 
improve patient outcomes. 

Radiotherapy kills tumor cells primarily through 
the generation of reactive oxygen species (ROS) and 
DNA breakage[6]. However, tumor heterogeneity 
leads to the survival of residual tumor cells, which can 
repair DNA, activate immune responses, promote 
cancer stem cells, and suppress various forms of cell 
death, all of which contribute to radiotherapy 
resistance[6-8]. Notably, all these processes require 
energy, which is often provided through altered 
metabolism. The Warburg effect, a hallmark of tumor 
metabolism, promotes rapid energy production via 
aerobic glycolysis, resulting in a lactic acid 
microenvironment[9]. Glycolysis has been linked to 
tumor metastasis and resistance to both chemo-
therapy and radiotherapy[10-13]. Lactate plays a 
pivotal role in delivering oxidative and gluconeogenic 
substrates and transducing cellular signaling in these 
processes[14, 15]. In lung cancer, lactate-related genes 
have been shown to influence prognosis and immune 
response[16-18]. However, studies investigating the 
regulation of lactate-related genes in the context of 
radiotherapy resistance in lung cancer remain scarce. 

This study identified three prognostic 
lactate-related differentially expressed genes (LRDs) 
associated with radiotherapy resistance in patients 
with lung cancer from TCGA data. A risk score model 
based on these LRDs was developed and validated for 
clinical application, and the related mechanisms were 
further explored through bioinformatics analysis and 
in vitro experiments. Our findings suggest that lactate 
regulators could serve as biomarkers for predicting 
radiotherapy resistance in patients with lung cancer, 
providing clinicians with valuable tools to tailor 
personalized treatment strategies and improve 
therapeutic outcomes.  

Materials and Methods 
Data collection and sample preprocessing for 
radiotherapy patients with lung cancer 

RNA sequencing, survival data, and clinical 
phenotypes were obtained from The Cancer Genome 
Atlas (TCGA) database. A total of 522 primary lung 
adenocarcinoma patients were obtained and 
underwent screening. The inclusion criteria were 
listed as following conditions: (a) patients with 
postoperative radiotherapy; (b) patients who have an 
evaluation of the efficacy of radiotherapy or 
information about their progress after radiotherapy; 
(c) patients who have a clear state of alive or death 
and a definite survival time. The exclusion criteria 
were listed as following conditions: (a) the patients 

whose number in the expression profile didn’t match 
with the patient number corresponding to the clinical 
information (n=9); (b) patients with new primary 
tumor(n=12); (c) patients without postoperative 
radiotherapy or missing evaluation of the efficacy of 
radiotherapy or information about their progress after 
radiotherapy (n=389); (d) patients missing a clear state 
of alive or death, or a definite survival time (n=13). 
Finally, a cohort of 99 patients was extracted. Among 
them, 35 patients exhibited a complete response or 
partial response to radiotherapy, were categorized as 
the radiosensitive group. While 64 patients, exhibited 
progressive disease or stable disease or recurrence 
after radiotherapy, were included in the radioresistant 
group. Single cell sequencing analysis was performed 
on the lung cancer tissues in GSE179373. 

Identification of differentially expressed genes 
(DEGs) and functional enrichment analysis 

The threshold value for screening DEGs was set 
to |FC| > 1.2 and P < 0.05[19]. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways of DEGs were analyzed to 
determine their potential functions and pathways. GO 
analysis, including biological processes, cellular 
components, and molecular functions, helped to 
understand the biological functions as well as 
positioning of DEGs. KEGG pathway analysis 
clarified the signaling pathways that DEGs may focus 
on. P < 0.05 was considered to be statistically 
significant. Gene set enrichment analysis (GSEA), and 
gene set variation analysis (GSVA) were conducted 
among DEGs using the R packages. 

Construction of lactate-related risk score 
model 

After lactate-related genes were downloaded 
from genecards database and were intersected with 
DEGs, LRDs were analyzed by Univariate COX 
regression analysis. Then, least absolute shrinkage 
and selection operator (LASSO) algorithm was 
performed on the significant LRDs in radiotherapy 
patients with lung cancer in TCGA cohort. Finally, the 
lactate related risk score model was constructed by 
the stepwise Cox regression algorithm. Radiotherapy 
patients with risk-score above the median were 
categorized as the high-risk subgroup, and the rest 
were included in the low-risk subgroup. For model, 
the time dependent receiver operating characteristic 
(ROC) was calculated. Survival analysis was used 
“survival”, “survminer” and “timeROC” packages, 
and the nomogram was used “rms” package.  

Immune infiltration analysis 
Cibersort algorithm analyzed the proportion of 
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22 immune cells in high-risk and low-risk subgroups. 
ssGSEA, xcell, ESTIMATE detected the different 
distribution of the immunity cells between the 
high-risk subgroup and low-risk subgroup using the 
SangerBox 3.0 platform.  

Methylation and mutation analysis 
The assessment of methylation status in 

ADAMTS3, FADS2, RTBDN between tumor and their 
corresponding para-cancerous tissues was conducted 
by the UALCAN database. The maftools package in R 
software was taken to download and extract mutation 
data, and the somatic mutation data of patients in 
high-risk subgroup and low-risk subgroup were then 
visually analyzed. 

Immunohistochemical (IHC) analysis  
The study was approved by the Research Ethics 

Board of the Tumor Hospital Affiliated with Nantong 
University (No.2023-053). Tissues slice was incubated 
with a primary antibody against a 1:100 dilution of 
FADS2 (Rabbit-anti-human, Proteintech) overnight at 
4° C after the dewaxing and blocking of endogenous 
peroxides of the tissues. Visualisation of the antibody 
complex was achieved through a diaminobenzidine 
reaction. Tissue was counterstained by Meyer’s 
haematoxylin. Based on the intensity of staining in the 
tumor from three hot spots of each tissue, IHC 
staining was analyzed by pathologists. Image J was 
used to score the intensity of staining. 

Quantitative real-time PCR (qPCR)  
RNA was isolated from H1299 radioresistant cell 

and radiosensitive cell A549[20, 21] by Trizol. Reverse 
transcription and quantitative PCR were carried out 
by using a two-step Prime Script TM RT reagent kit 
(TAKARA). Primers for the genes were synthesized 
and obtained from Thermo Fisher Scientific. The 
primer sequences are presented in Supplementary 
Table 1. 

Cell culture and clonogenicity assay 
The human lung cancer cell lines H1299, A549 

were purchased from ATCC. Cell lines were 
maintained under a humidified atmosphere of 5% 
CO2 in air at 37℃ in RPMI 1640 medium 
supplemented with 10% FBS (Gibco BRL, USA) and 
1% penicillin-streptomycin. H1299 or H1299 with 
lentivirus-mediated FADS2 overexpression were 
plated in 6-well plates prior to ionization radiation 
exposure (4 Gy, 8 Gy), and maintained in culture for 
14 days. Afterward, when colonies were formed 
(defined as a bulk of at least 50 cells), cells were 
stained by crystal violet reagents. 

 

Table 1. Univariate analysis of LRDs associated with OS of 
patients with lung cancer underlying radiotherapy in TCGA. 

Characteristics Univariate analysis  
HR (95% CI)  P value  

FADS2 0.662 (0.537 - 0.816) < 0.001 
PARP1 0.555 (0.369 - 0.834) 0.005 
STC2 0.774 (0.648 - 0.924) 0.005 
DARS2 0.592 (0.407 - 0.860) 0.006 
LMNB1 0.675 (0.507 - 0.897) 0.007 
ATP2A2 0.609 (0.424 - 0.873) 0.007 
RCC2 0.598 (0.406 - 0.880) 0.009 
PHGDH 0.821 (0.708 - 0.952) 0.009 
UPB1 1.246 (1.055 - 1.473) 0.010 
ASPM 0.773 (0.634 - 0.943) 0.011 
PSTPIP1 1.382 (1.066 - 1.792) 0.015 
KIF21A 0.703 (0.528 - 0.935) 0.016 
CAPN3 1.267 (1.040 - 1.543) 0.019 
ALDH18A1 0.664 (0.472 - 0.934) 0.019 
HNRNPU 0.496 (0.275 - 0.895) 0.020 
MKI67 0.787 (0.637 - 0.972) 0.026 
VDAC1 0.625 (0.405 - 0.966) 0.034 
RTBDN 0.896 (0.809 - 0.993) 0.036 
ADAMTS3 0.848 (0.726 - 0.991) 0.038 
PITX3 0.881 (0.780 - 0.995) 0.041 
ASIC2 0.852 (0.728 - 0.997) 0.046 
ZMPSTE24 0.619 (0.385 - 0.993) 0.047 
HSPA4 0.637 (0.406 - 0.998) 0.049 

 

Weighted gene co-expression network analysis 
(WGCNA) 

The co-expression network of radiotherapy 
patients with lung cancer in TCGA was generated 
using WGCNA package. A suitable soft threshold β is 
calculated based on the criteria for scale-free net-
works. In the following step, the weighted adjacency 
matrix was converted into a topological overlap 
matrix (TOM), and the corresponding dissimilarity 
(1-TOM) was calculated. Module identification was 
conducted using the dynamic tree cutting approach. 
The modules most relevant to the clinical phenotype 
were selected for subsequent analysis. 

Molecular docking  
In order to estimate the likelihood of drug 

interactions, the DEGs was identified from the high- 
and low-risk subgroups. L1000FWD database was 
used to detect the signaling pathways affected by 
small molecule drugs. Drug-gene interactions were 
performed on the Network Analyst Database. 
Furthermore, Home for researches platform was used 
for visualizing the molecular docking. 

Statistical analysis  
SPSS 20.0 software was used for statistical 

analysis, and Graphpad Prism 9 software for drawing 
the survival curve and statistical chart of the 
difference between the two groups. The difference 
was tested by independent sample t-test. Cox 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3299 

proportional hazards regression model was taken for 
univariate and multivariate analysis, while Kaplan 
Meier method and Log-rank test for overall survival 
analysis. P < 0.05 was considered significant. 

Results 
Identification of the key biological processes 
and signaling pathways to radiotherapy 
resistance in lung cancer  

The workflow of this study is illustrated in 
Figure 1. To investigate the mechanisms of 
radiotherapy resistance in lung cancer, DEGs between 
radiotherapy-resistant and sensitive patients from the 
TCGA cohort were analyzed using limma. A total of 
1482 DEGs (633 downregulated and 849 upregulated) 
as showed in volcano plot (Figure 2A), with the top 20 
upregulated and downregulated DEGs displayed in 
the heatmap (Figure 2B). Further analysis of these 
DEGs using GO and KEGG enrichment revealed 
significant biological processes. GO analysis 
identified three primary categories: DNA damage 
repair (including the cell cycle, G2/M phase 
transition, and DNA replication)[22, 23], lactate 
metabolism (including regulation of carbohydrate 
metabolism, gluconeogenesis, and ATP generation 
from poly-ADP-D-ribose)[24, 25], and immune cell 
regulation (specifically the negative regulation of B 
cell apoptosis) (Figure 2C). KEGG analysis 
highlighted pathways associated with the Warburg 
effect, including phospholipase D signaling, 
glycerophospholipid metabolism, one-carbon pool by 
folate, and alpha-linolenic acid metabolism, as well as 
excision repair pathways[26-28] (Figure 2D). These 
findings highlight the critical roles of lactate 
metabolism, DNA repair, and immune response in 
radiotherapy resistance. 

Construction of the lactate-related risk score 
model for radiotherapy patients with lung 
cancer  

Based on these results, an intersection analysis of 
lactate-related genes and DEGs, identified 131 LRDs 
(Figure 2E). Subsequently, univariate Cox regression 
analysis was employed to construct a risk 
stratification system, with 23 LRDs found to be 
prognostically relevant for radiotherapy patients in 
the TCGA cohort (Table 1). To prevent overfitting of 
the prognostic signature, LASSO regression was 
applied to these 23 prognosis-related LRDs, resulting 
in the selection of seven LRDs based on the optimal λ 
value (Figures 3A, 3B). Stepwise regression further 
refined the model, extracting three key genes (Figure 
3C). The risk score model was formulated using the 
following algorithm: risk score = (-0.257131817660543) 

× ADAMTS3 + (-0.500985047) × FADS2 + 
(-0.136319284) × RTBDN. The radiotherapy patients in 
the TCGA cohort were divided into high- and 
low-risk subgroups based on the median risk score for 
subsequent analysis. Comparisons of risk score 
distributions and survival statuses between these 
subgroups were performed (Figure 3D). The 
specificity and sensitivity of the signature were 
assessed by calculating the area under the curve 
(AUC) values for 1-, 3-, and 5-year survival, yielding 
AUCs of 0.71, 0.80, and 0.87, respectively, in the 
TCGA cohort (Figure 3E). Survival analysis revealed 
that patients in the high-risk subgroup had 
significantly poorer prognosis (P = 5.7e-8; Figure 3F). 

Functional enrichment analysis of different risk 
score subgroups 

To investigate the molecular mechanisms 
underlying the different risk score subgroups, we 
performed a DEGs analysis of patients from the 
TCGA cohort and identified 1067 genes (|FC| > 1.2, 
P< 0.05). GO analysis revealed that the lactate-related 
risk score primarily impacted processes such as the 
cell cycle, DNA replication, oxidation-reduction 
processes, response to hypoxia, ATP metabolic 
process, mitochondrial ATP synthesis coupled 
electron transport, innate immune response activating 
cell surface receptor signaling pathway, regulation of 
lipid catabolic process, tetrahydrobiopterin metabolic 
process, alditol phosphate metabolic process, negative 
regulation of glycolytic process, glycerol-3-phosphate 
metabolic process (Figure 4A). KEGG analysis 
highlighted pathways involved in DNA replication, 
non-small cell lung cancer, natural killer cell mediated 
cytotoxicity, pyruvate metabolism, carbohydrate 
digestion and absorption-PD-L1 expression and PD-1 
check point pathway in cancer (Figure 4B). 
Additionally, the GSEA algorithm explored the citric 
acid TCA cycle and respiratory electron transport, 
VEGFA-VEGFR2 signaling, innate immune system 
pathways, cargo recognition for clathrin mediated 
endocytosis, vesicle mediated transport, matrisome 
associated signaling by receptor tyrosine kinases were 
different between high- and low-risk score subgroups 
(Figure 4C). GSVA algorithm further revealed 
differences in multiple immune regulatory pathways 
between the subgroups (Figure 4D). These results 
suggest that lactate-related risk scores modulate 
radiotherapy outcomes through energy metabolism, 
immune infiltration, and DNA repair mechanisms. 

Immune infiltration analysis for lactate-related 
risk score 

Given that GO, KEGG, GSEA and GSVA 
analyses all indicated a significant role of LRDs in 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3300 

immune infiltration, immune cell infiltration was 
assessed across 24 cell types using ssGSEA (Figure 
5A). The results showed that CD8+ T cells, cytotoxic 
cells, T cells, and T helper cells were significantly 
more abundant in the high-risk score subgroup 
compared to the low-risk subgroup. ESTIMATE 
analysis showed the score of each sample (Figures 5B) 
and found immune score was higher in the high-risk 
subgroup (Figures 5C). CIBERSORT algorithms 
confirmed that CD4+ memory-activated T cells and 

M1 macrophages were inhibited, whereas M2 
macrophages were significantly activated in the 
high-risk subgroup (Figures 5D). XCELL algorithm 
explored differences in Keratinocytes, NK cells and 
Osteoblast between the two subgroups (Figure 5D). 
Collectively, these results highlight the distinct 
patterns of immune cell infiltration between the 
lactate-related risk score subgroups, suggesting that 
immune modulation may influence the effectiveness 
of radiotherapy in patients with lung cancer. 

 

 
Figure 1. The flow chart of the research. R: resistance, S: sensitive, DEGs: differentially expressed genes. 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3301 

 
Figure 2. GO and KEGG analysis of DEGs from radioresistant patients comparing with sensitive ones with lung cancer in TCGA. (A) Volcano plot of the 
1,482 DEGs. The red triangles represent the significantly up-regulated genes, and the blue triangles showed the significantly down-regulated genes. (B) Heat map showed the 
TOP20 up-regulated and down-regulated genes respectively. (C) GO enrichment analysis of the DEGs. (D) KEGG enrichment analysis of the DEGs. (E) The venn diagram of 
radiotherapy resistance DEGs and lactate-related genes. 

 

Methylation and mutation analysis for 
lactate-related risk score 

To explore the differences between 
lactate-related risk score subgroups, the chromosomal 
distribution of the three genes used to construct the 
lactate-related risk score was visualized through 
circos plots (Figure 6A). Given the role of aberrant 
DNA methylation in cancer-related dysregulation, the 
UALCAN database was utilized to investigate the 
relationship between the expression patterns of 

ADAMTS3, FADS2, and RTBDN and methylation 
levels in both normal and tumor tissues. The 
increased methylation of ADAMTS3, FADS2 and 
RTBDN was found in lung cancer tissues, potentially 
contributing to their downregulation (Figure 6B-6D). 
The gene mutation landscape revealed significant 
mutations in TP53, TTN, MUC16, USH2A, and 
ZFHX4 in the high-risk score subgroup, and in 
CSMD3, LRP1B, XIRP2, and RYR3 in the low-risk 
score subgroup (Figure 6E). 
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Clinical applications for lactate-related risk 
score 

The relationship between the lactate-related risk 
score and clinical parameters was also assessed. The 
results showed significant correlations between the 
risk score and sex, radiotherapy response, T status, 
and N status (P < 0.001, Supplementary Table 2). To 
capture the complexity of the risk signature, a 
nomogram was developed incorporating both clinical 
information and the risk scores of radiotherapy 
patients with lung cancer from the TCGA cohort 
(Figure 7A). Patients with high risk scores had poorer 
survival compared to those with low scores (Figure 

7B). Calibration plots for OS outcomes demonstrated 
strong concordance between predicted and observed 
OS at 1-, 3-, and 5-year intervals. The C-index for 
prediction was 0.701 (0.661-0.741), indicating a 
relatively good predictive performance (Figure 7C). 
Additionally, the nomogram model was evaluated 
using decision curve analysis (DCA) for radiotherapy 
patients with lung cancer in the TCGA cohort (Figure 
7D-7F). Collectively, the lactate-related risk score 
emerged as an independent and robust prognostic 
indicator, offering enhanced predictive value when 
combined with clinical features for radiotherapy 
patients with lung cancer. 

 

 
Figure 3. Identification of lactate related signature via LASSO-stepwise algorithms. (A, B) LASSO analysis with minimal lambda value. (C) Three genes were screen 
out by stepwise Cox algorithm. (D) Lactate-related risk score model illustrating the distribution of survival status and the expression of the three candidate genes. (E) The 
time-dependent ROC curve for lactate-related risk score. (F) Kaplan-Meier analysis demonstrated the prognostic significance of the risk model in TCGA. 
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Figure 4. Enrichment analysis of the lactate-related risk score. GO (A), KEGG (B), GSEA (C) and GSVA (D) analysis of the DEGs and potential signaling pathways in 
different lactate-related risk score subgroups. 

 

Expression and prognosis of LRDs in 
radiotherapy patients with lung cancer 

The lactate-related risk score, constructed using 
ADAMTS3, FADS2, and RTBDN, was further 
explored to assess their expression and prognostic 
value for radiotherapy patients with lung cancer 
across multiple databases. ADAMTS3 and FADS2 
exhibited downregulation in tumor tissues compared 

to normal lung tissues, whereas RTBDN displayed an 
opposite trend (Figure 8A). Notably, the expression of 
these three genes was significantly downregulated in 
the radiotherapy-resistant group from the TCGA 
cohort (Figure 8B-8D), as well as in the deceased 
subgroup from the same cohort (Figure 8E-8G). 
Survival analysis revealed that radiotherapy patients 
with low FADS2 expression had a poorer prognosis 
compared to those with high expression of FADS2 in 
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the TCGA cohort (P < 0.001). A similar trend was 
observed for ADAMTS3 (P = 0.065) and RTBDN (P = 
0.007) (Figure 8H-8J). Moreover, validation in the 
KM-Plot database confirmed that radiotherapy 
patients with low expression of FADS2 and 

ADAMTS3 had better prognoses, whereas RTBDN 
did not show significant prognostic relevance (Figure 
8K-8L). Based on these findings, FADS2 was 
prioritized for further validation. 

 
 

 
Figure 5. Immune infiltration analysis of lactate-related risk score. (A) ssGSEA analysis detected immune cell expression between the high- and low-risk score 
subgroups. (B, E) The landscape and comparing of the immunoscore in high- and low-risk score subgroups by ESTIMATE algorithms. (C) CIBERSORT showed the different 
correlations between 22 immune cells in the high- and low-risk score subgroups, respectively. (D) Xcell algorithms detected immune cell expression between the high- and 
low-risk score subgroups. L:low-risk score subgroup, H: high-risk score subgroup, *P<0.05, **P<0.01. 
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Figure 6. Methylation and mutation analysis of LRDs. (A) The chromosomal distribution of LRDs by circos plots. Methylation analysis of FADS2 (B), ADAMTS3 (C) and 
RTBDN (D) in different stage of lung cancer and normal tissues was explored in the UALCAN database. (E) The top 15 mutation genes in high and low lactate-related risk score 
subgroups, respectively. ***:P < 0.001. 
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Figure 7. Clinical application of lactate-related risk score. (A) The nomogram of the risk score and clinical parameters for radiotherapy patients with lung cancer in 
TCGA cohort. (B) Kaplan-Meier plot analysis based on nomogram. (C) The calibration curves displayed the accuracy of the nomogram in the 1-, 3-, and 5-years. (D-F) DCA 
curves to assess the ability of sex, T stage, N stage, risk score, and their combination to predict 1-, 3-, 5-years overall survival of radiotherapy patients with lung cancer in TCGA 
cohort. 

 

Validation of the LRDs in lung cancer tissues 
and radioresistant cells 

To explore the expression and localization of 
FADS2 in lung cancer tissues, we analyzed single-cell 
RNA sequencing data from lung cancer (GSE179373) 

were analyzed, revealing that FADS2 was 
predominantly expressed in malignant cells (Figure 
9A-9C). In the Human Protein Atlas database, the 
expression of FADS2 was lower in lung cancer tissues 
compared to normal lung tissues (Figure 9D). To 
further validate these findings, 10 lung cancer tissue 
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samples (5 radioresistant and 5 radiosensitive) were 
collected, and IHC analysis showed significantly 
lower FADS2 expression in radioresistant tissues 
compared to radiosensitive tissues (Figure 9E, 9F). At 
the cellular level, qPCR confirmed a significant 
decrease in FADS2 expression in radioresistant cells 
(Figure 9G). Furthermore, colony formation assays 

demonstrated that upregulation of FADS2 
significantly increased the sensitivity of radioresistant 
cells to 4Gy and 8Gy irradiation (Figure 9H). 
Collectively, these results suggest that FADS2 is 
associated with radiotherapy resistance in lung 
cancer. 

 

 
Figure 8. Expression and prognostic significance of LRDs. (A) Expression of LRDs in lung cancer patients of TCGA. (B-G) Expression of LRDs in radiotherapy patients 
with lung cancer of TCGA cohort. (H-J) Correlation between LRDs and OS in radiotherapy patients with lung cancer of TCGA cohort. (K-L) Correlation between LRDs and 
OS in radiotherapy patients with lung cancer from KM-plot database. 
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Figure 9. Validation the expression and role of FADS2 in radiotherapy resistance. (A, B, C) Single-cell sequencing analysis for the location and expression of FADS2 
in lung cancer tissue from GSE179373. (D) IHC staining of FADS2 in lung cancer and para-carcinoma tissue in HPA database. (E&F) IHC analysis of FADS2 in radioresistant 
(n=5) and radiosensitive (n=5) tissues. (G) qPCR analysis of FADS2 in radioresistant cell (H1299) and radiosensitive cell (A549). (H) Clonogenicity assay explored the role of 
FADS2 in radiotherapy sensitive. H1299-FADS2: over-expression of FADS2 in H1299. *:P < 0.05, **:P < 0.01. 
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Figure 10. Identifying the role of FADS2 via WGCNA analysis. (A) The correlation between soft threshold and scale free topology model as well as mean connectivity. 
(B) Highly interconnected groups of genes were clustered and modules are represented by distinct colours in the horizontal bar. (C) The correlations between different 
modules were calculated. (D) The high correlation between GS and MM in the green module in radiotherapy resistance. (E) Genes in the green module were analyzed by GSEA. 
(F) Co-expression analysis for FADS2 with genes in the green module. (G) KEGG enrichment analysis for the key genes co-expressed with FADS2. 

 

Exploring the potential mechanism of LRDs 
regulating radiotherapy resistance in lung 
cancer 

To further elucidate the mechanism by which 
FADS2 regulates radiotherapy resistance in lung 

cancer, WGCNA was conducted based on the DEGs 
from the TCGA cohort, stratified by the median 
FADS2 expression. A soft threshold of β = 3 was 
applied to construct a scale-free network (Figure 
10A). The DEGs were grouped into 26 co-expression 
modules, represented in various colors (Figure 10B, 
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10C). The green module exhibited the strongest 
correlation with radiotherapy resistance, with a 
module-trait relationship R value of 0.50 (P = 5.8e-17) 
(Figure 10D). Then, 875 DEGs from the green module 
underwent GSEA revealing enrichment in pathways 
such as homologous recombination, biosynthesis of 
unsaturated fatty acids, and steroid biosynthesis in 
the FADS2-high expression group (Figure 10E). 
Additionally, the GeneMANIA database identified 
co-expressed genes within the green module 
associated with FADS2 (Figure 10F), which were 
enriched in biosynthesis of unsaturated fatty acids 
fatty acid metabolism, fatty acid elongation, metabolic 
pathways, linoleic acid metabolism, ether lipid 
metabolism, VEGF signaling pathway, inflammatory 
mediator regulation of TRP channels, platelet 
activation, and phospholipase D signaling pathway 
(Figure 10G). 

Molecular docking of small molecule 
compounds for improving radiotherapy effect 

To improve the prognosis of patients in the 
high-risk score subgroup, the L1000FWD database 
was utilized to identify small-molecule compounds 
with potential therapeutic effects (Figure 11A). The 
NetworkAnalyst database was employed to explore 
compounds targeting FADS2 (Figure 11B). Crizotinib 
emerged as a common drug in both databases, 
exhibiting inhibition of FADS2 expression. The 
structure of crizotinib and its interaction with FADS2 
were visualized (Figure 11C-11E). Molecular docking 
analysis confirmed the direct interaction between 
FADS2 and crizotinib. The hydrophobic pockets of 
both targets were successfully occupied, with a low 
binding energy of -7.896 kcal/mol, indicating a highly 
stable binding. These results suggest that crizotinib 
may serve as a potential radiosensitizer for lung 
cancer. 

Discussion 
Lung cancer, a leading cause of cancer-related 

mortality globally, presents a significant challenge in 
clinical management. Radiotherapy plays a critical 
role in managing advanced-stage lung cancer, 
offering symptom relief and controlling disease 
progression[29]. However, the development of 
radiotherapy resistance remains a substantial barrier, 
contributing to rapid disease progression. 
Understanding the mechanisms underlying this 
resistance, particularly the role of lactate metabolism, 
is essential for developing strategies to overcome this 
challenge. 

This study identified DNA repair and lactate 
metabolism-associated biological processes and 
signaling pathways as key factors in radiotherapy 

resistance in lung cancer. On one hand, DNA repair is 
a well-established contributor to radiotherapy 
resistance[30], supporting the validity of our findings. 
On the other hand, this result underscores the 
importance of lactate-related genes in modulating the 
radiotherapy response. 

Building on these insights, LRDs were identified, 
and a lactate-related risk score model was constructed 
using LASSO regression and stepwise Cox regression. 
Time-dependent ROC and survival analyses 
demonstrated the strong predictive and diagnostic 
value of the risk score in patients with lung cancer 
undergoing radiotherapy. To explore the underlying 
mechanisms, GO, KEGG, GSEA, and GSVA analyses 
confirmed a significant enrichment of biological 
processes related to energy metabolism, including 
response to hypoxia, ATP metabolism, respiratory 
electron transport, and lipid catabolic regulation. 
Under hypoxic conditions, the hypoxia-inducible 
factor (HIF) induces LDHA expression, driving 
anaerobic metabolism by converting pyruvate to 
lactate to generate ATP, which enhances cell 
proliferation and defines radiotherapy resistance in 
prostate cancer[31]. The Warburg effect, which 
persists even under normoxic conditions, promotes 
DNA repair and enhances cell survival, ultimately 
contributing to resistance in various cancers, 
including head and neck cancer[32], esophageal 
squamous cell carcinoma[33], lung cancer[34]. These 
findings suggest that lactate-related genes may 
regulate radiotherapy resistance in lung cancer by 
promoting the Warburg effect, thus providing energy 
necessary for DNA repair.  

Additionally, this study revealed differences in 
immune cell infiltration between lactate-related risk 
score subgroups. CD4 memory T cells and M1 
macrophages were inhibited, while M2 macrophages 
were significantly activated in the high-risk score 
subgroup. Furthermore, differences in keratinocytes, 
NK cells, and osteoblasts were noted between the 
subgroups. These findings align with previous studies 
showing that CD4 T cells and M1 macrophages play a 
role in inhibiting tumor progression, as seen in 
glioblastoma[35], and prostate cancer[36]. 
Noonepalle, et al. demonstrated that macrophage M1 
responses induced acute pro-inflammatory reactions 
immediately following radiotherapy. However, these 
macrophages transitioned into anti-inflammatory, 
pro-tumor M2 macrophages in the following days, 
contributing to cancer resistance[37]. Additionally, 
Yang et al. reported that lactate facilitates the 
formation of an immunosuppressive tumor 
microenvironment by lowering the pH, which 
accelerates tumor progression and impairs anti-tumor 
immunity[10]. These findings suggest that 
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lactate-related genes promote radiotherapy resistance 
by enhancing the Warburg effect and suppressing 

immune regulation.  

 
 

 
Figure 11. Drug analysis and molecular docking for inhibiting radiotherapy resistance in lung cancer. (A) The potential drugs for lung cancer treatment. (B) 
Network analyst database predicting the potential drugs reacting with FADS2. (C) The 2D structure of crizotinib. (D) The protein structure of FADS2. (E) Molecular docking 
for crizotinib and FADS2. 
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Fatty acid desaturase 2 (FADS2), a key gene in 
the risk score model, was found to be downregulated, 
indicating a poor prognosis for radiotherapy patients 
with lung cancer. FADS2 is essential for the 
biosynthetic pathways that produce long-chain 
polyunsaturated fatty acids (PUFAs)[25]. PUFAs play 
important roles in tumor progression, enhancing the 
efficacy of chemotherapy and radiotherapy while 
reducing the risk of recurrence by modulating 
inflammation and immune responses in lung and 
colorectal cancers[26, 38]. Besides these, PUFAs 
significantly impact mitochondrial oxidative 
phosphorylation (OXPHOS), stimulating the 
tricarboxylic acid cycle in the mitochondria to 
produce more ATP and ROS than glycolysis[39]. 
Elevated FADS2 expression was shown to inhibit 
radiotherapy resistance in lung cancer cells, similar to 
its role in reducing DNA damage in esophageal 
adenocarcinoma[40]. It is hypothesized that decreased 
FADS2 expression reduces PUFA production, leading 
to downregulation of OXPHOS and promoting the 
Warburg effect, thereby facilitating radiotherapy 
resistance in lung cancer.  

The study has several limitations. Our analysis 
was based solely on cohorts from TCGA and GEO, 
and future research should include additional 
real-world cohorts to further validate the 
lactate-related risk score. Additionally, further 
experiments are required to fully elucidate the 
underlying mechanisms. In summary, a novel 
lactate-related risk score model for predicting 
radiotherapy outcomes has been developed, with 
FADS2 identified as a potent biomarker for predicting 
radiotherapy resistance in lung cancer. While 
previous studies have primarily focused on 
lactate-related genes for prognostic significance in 
lung cancer, this study is the first to demonstrate their 
potential utility in predicting radiotherapy efficacy 
through integrative multi-database analysis. 
Assessing FADS2 expression in surgical or biopsy 
specimens imposes no additional burden on patients, 
underscoring its strong clinical applicability. This 
study offers a promising therapeutic strategy for 
clinicians and is likely to stimulate interest among 
drug developers. 
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