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Abstract 

Background: Acute myeloid leukemia (AML) remains an incurable hematological malignancy 
characterized by significant treatment resistance. Necroptosis, a newly recognized form of programmed 
cell death, has been implicated in tumor development and progression; however, its specific role in AML 
is not yet fully understood.  
Materials and Methods: We integrated transcriptomic and clinical data from TCGA and GEO 
database (GSE37642) to identify differentially expressed necroptosis-related genes (NRGs) between 
AML and normal samples from GTEx. Consensus clustering was performed to classify AML samples 
based on NRG expression profiles. Kaplan-Meier survival analysis, GSVA, and ssGSEA were employed to 
assess survival differences, biological functions, and immune cell infiltration between clusters. 
Differentially expressed genes (DEGs) identified between NRG clusters underwent LASSO and Cox 
proportional hazards regression analyses to develop a prognostic risk model. A nomogram integrating 
age and risk score was constructed and validated in independent cohorts (GSE12417). A nomogram 
integrating age and risk score was developed. CNV, TMB, immune profiles, and drug sensitivity were also 
analyzed. Importantly, qRT-PCR was performed using THP-1 and normal PBMCs to experimentally 
validate the expression levels of three key NRGs identified by the model (STAT5B, MAP3K7, and 
BCL2L11). 
Results: Two distinct NRG clusters were identified. Cluster B exhibited poorer prognosis, higher 
immune cell infiltration, and enriched signaling pathways, including TGF-β, JAK-STAT, ERBB, MAPK, and 
VEGF. The developed prognostic nomogram demonstrated robust predictive capability (integrated AUC 
= 0.645). The high-risk group displayed positive correlations with naive B cells, eosinophils, 
activated/resting memory CD4+ T cells, and CD8+ T cells, while negatively associated with memory B 
cells, resting mast cells, and follicular helper T cells. Drug sensitivity analysis indicated increased sensitivity 
to Bcl-2 inhibitors, checkpoint kinase inhibitors, and MAPK-MEK pathway inhibitors in the high-risk 
group. qRT-PCR results confirmed that STAT5B was significantly upregulated, while MAP3K7 and 
BCL2L11 were significantly downregulated in AML cells compared to normal PBMCs, consistent with 
bioinformatic predictions. 
Conclusion: Our study elucidates a significant association between suppressed necroptosis and adverse 
prognosis in AML. We highlight the role of NRGs in modulating the immune microenvironment of AML 
and identify potential therapeutic targets and drugs, providing valuable insights for improving clinical 
outcomes in AML patients. 

Keywords: Necroptosis-related genes; Acute myeloid leukemia; Tumor immune microenvironment; Prognostic nomogram; Drug 
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Introduction 
Programmed cell death (PCD), including 

apoptosis and necroptosis, is critical for eliminating 
malignant cells and suppressing oncogenesis [1]. 
Necroptosis is triggered by stimuli such as TNF-α, 
which binds TNFR1 to activate signaling cascades 
culminating in cell death [2]. TNFR1 engagement 
recruits TRADD, RIPK1, and RIPK3 to form Complex 
I (necrosome), where RIPK1 ubiquitination activates 
pro-survival pathways (NF-κB/MAPK) [3, 4]. Within 
Complex I, RIPK1 activity is a critical regulator; its 
polyubiquitination mediated by inhibitors of 
apoptosis (IAP) activates NF-κB and MAPK-ERK 
signaling pathways [4]. If RIPK1 is deubiquitinated 
(e.g., by CYLD), it dissociates to form Complex IIb 
with FADD-caspase-8, promoting apoptosis. 
Conversely, caspase-8 inhibition redirects RIPK1/ 
RIPK3 to phosphorylate MLKL (Complex IIc), 
executing necroptosis via membrane rupture [5, 6]. 
Thus, FADD-caspase-8 acts as a molecular switch, 
repressing necroptosis to favor apoptosis [7]. 

Necroptosis, distinct from apoptosis, triggers 
immunogenic cell death through DAMPs release and 
inflammatory cascades [8], yet its dual role in 
cancer—suppressing tumorigenesis or promoting 
metastasis—depends on cellular context [9]. Key 
necroptosis regulators (e.g., RIPK3, RIPK1, CYLD) are 
frequently downregulated across malignancies 
(colorectal, breast, and hematopoietic cancers) [10-12], 
enabling tumor immune evasion and aggressiveness. 
Conversely, FADD overexpression in pancreatic 
cancer drives tumorigenesis [13], highlighting 
context-dependent roles of necroptosis machinery. 
These complex dynamics underscore the dual roles of 
necroptosis in cancer and the necessity to further 
elucidate its mechanisms. 

Necroptosis further modulates antitumor 
immunity by regulating dendritic cell (DC) cytokine 
production and CD8+ T cell activation, critical for 
immunosurveillance [14]. Interestedly, necroptosis 
can reduce excessive T cells in immune tolerance to 
reactivate T cell immunity to regulate the antigen- 
induced proliferation of T cells [15]. The initiation of 
adaptive CD8+ T cell immune responses also heavily 
depends on RIPK1-mediated NF-κB activation [16]. 
Pharmacological necroptosis induction reshapes the 
tumor microenvironment (TME) by suppressing 
Tregs and enhancing cytotoxic CD8+ T cells, 
demonstrating therapeutic potential [17]. Collectively, 
these findings highlight necroptosis as a crucial 
regulator of antitumor immunity, underscoring its 
potential therapeutic relevance in cancer treatment. In 
acute myeloid leukemia (AML), where chemotherapy 
resistance and relapse prevail despite multimodal 

therapies [18, 19], targeting necroptosis—a 
mechanism to bypass apoptosis resistance—holds 
untapped therapeutic promise.  

In this study, we leveraged publicly available 
transcriptomic and clinical data from The Cancer 
Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) databases to comprehensively 
investigate the association between necroptosis- 
related genes (NRGs) and AML prognosis. We 
identified distinct clusters based on NRG expression 
patterns and assessed their correlations with patient 
survival and immune microenvironment 
characteristics. Subsequently, we constructed a 
prognostic nomogram incorporating key NRGs and 
clinical features to predict AML patient outcomes. 
Additionally, we explored differential drug 
sensitivity profiles between risk groups, aiming to 
identify potential therapeutic agents specifically 
targeting high-risk AML subgroups.  

Materials and methods 
Data collection and arrangement 

We download the transcriptome and clinical 
data from TCGA and GEO. All samples with 
incomplete clinical or survival data were excluded. A 
total of 142 AML samples from TCGA and 402 
samples from the GEO database (GSE37642) were 
included. Batch effects between the two datasets were 
corrected using the “removeBatchEffect” function in 
the “limma” package, after which they were merged 
into a combined cohort of 544 AML samples. 
Specifically, we randomly split the 544 samples into 
training (n = 272) and internal validation cohorts (n = 
272) using the “caret” package in R. The training 
cohort was used to build the prognostic model, while 
the internal validation cohort assessed its stability. 
GSE12417 served as an external validation set. In 
addition, we selected 337 normal blood samples from 
The Genotype-Tissue Expression (GTEx) as the 
control group.  

Somatic mutation profiles and copy number 
variation (CNV) data for TCGA AML samples were 
obtained from the UCSC Xena platform. All 
subsequent analyses were conducted using R 
software (version 4.4.1), various R Bioconductor 
packages, and Perl scripts.  

Identified necroptosis-related genes, TMB and 
CNV 

We retrieved 125 necroptosis-related genes 
(NRGs) from public databases and previous literature, 
using the keyword “necroptosis,” and selected genes 
with a relevance score ≥1.0 to ensure strong biological 
association [5, 20, 21]. Differential expression analysis 
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between AML samples from TCGA and the GTEx 
control group was performed using the “limma” 
packages in R. Tumor mutation burden (TMB) 
analysis was conducted using the “maftools” package 
in R and custom Perl scripts. Additionally, CNV 
patterns and chromosome locations of the identified 
NRGs were visualized using the “Rcircos” package.  

Clustering analysis of NRGs in AML 
To acquire consensus NRGs in the entire cohort, 

we discarded some NRGs that were only present in 
the TCGA samples. And 109 NRGs were eventually 
identified as shared genes (Table S1). We used 
“survminer” packages to perform Cox analysis to find 
21 NRGs influencing the survival of AML patients. 
Then, we constructed protein-protein interaction (PPI) 
from STRING and a correlation network by the 
“igraph”, “psych” and “reshape2” packages. Based on 
21 NRGs, we used the “ConsensusClusterPlus” 
package to divide the entire cohort into two NRG 
clusters. The optimal number of clusters was 
determined by examining the cumulative distribution 
function curve and the consensus matrix heatmap. 
These methods ensured stable and robust clustering 
results. Kaplan-Meier (K-M) surv ival analysis was 
subsequently performed between the two clusters 
using the “survminer” package. We also used the 
“limma” and “ggplot2” packages to draw a principal 
component analysis (PCA) plot to test the capacity of 
NRGs to distinguish the clustering results. To 
investigate the correlation of biological functions and 
NRGs, we downloaded “c2.cp.kegg.v7.4.symbols. 
gmt” from MSigDB. Differentially enriched pathways 
were visualized through a gene set variation analysis 
(GSVA) heatmap generated using the “GSVA” 
package. Furthermore, single-sample gene set 
enrichment analysis (ssGSEA) using the “GSEAbase” 
package was performed to evaluate immune cell 
infiltration levels between clusters.  

To explore the potential function of two NRG 
clusters, we used “clusterProfiler”, “enrichplot” and 
“org.Hs.eg.db” packages for Gene Ontology (GO) and 
Kyoto Encyclopedia of Gene and Genomes (KEGG) 
enrichment analysis and mapped bubble plot. 

Identified the DEGs and established a 
nomogram 

Initially, univariate Cox regression analyses 
were conducted using the “limma” package to 
identify differentially expressed genes (DEGs) 
between the two NRG clusters. Subsequently, LASSO 
regression and multivariate Cox proportional hazards 
analyses were performed using the “survminer”, 
“glmnet” and “timeROC” packages, resulting in the 
identification of 13 significant DEGs. Based on 13 

DEGs, we calculated the risk score of each sample. 
The risk score calculation formula was as follows: risk 
score = Coef1 × Exp1 + Coef2 × Exp2 + … + Coef13 × 
Exp13. Then, we distinguished the entire cohort into 
high- and low-risk groups based on the median value 
of the risk score. Meanwhile, we performed the K-M 
analysis and drew the risk curves and survival status 
curves of the entire, training and testing cohort by 
“pheatmap” package. To assess the predictive value, 
we used the “timeROC” packages to draw the 
receiver operating curve (ROC) of 1-, 3- and 5 years. In 
addition, we also performed the same works for the 
external cohort to validate the accuracy of our study. 

Based on DEGs, we used the “Consensus 
ClusterPlus” package to cluster again and obtained 
two clusters (DEG cluster A and DEG cluster B). The 
K-M analysis was also performed by “survminer” 
package. Finally, to understand the relationship 
among NRG cluster, DEG cluster, risk score, and 
survival status, we drew Sankey’s diagram by 
“ggalluvial” and “ggplot2” packages. 

Combining with risk score and a 
clinicopathological feature (Age), we drew the 
nomogram model, calibration curve, and area under 
the curve (AUC) to predict the prognosis and survival 
in the 1-, 3-, and 5- year survival rate by “rms”, 
“regplot” and “readr” packages. 

Immune infiltration TMB and drug sensitivity 
between the high- and low-risk groups 

To study related immune cells, we used the 
CIBERSORT algorithm can help us to calculate AML 
samples in the fraction of 23 immune subsets in high- 
and low-risk groups [22]. We summarize the 
frequency and somatic mutation of CNV and plot the 
landscape of genetic alternation and expression 
variation between high- and low-risk groups. Even-
tually, we investigated the drug sensitivity between 
the high- and low-risk groups by “pRRophetic” 
packages. Using the package, we predicted the 
half-maximal inhibitory concentration (IC50) values 
for various chemotherapeutic agents. This strategy 
underscores the potential of risk-stratified treatment 
approaches in AML management. 

Quantitative Real-Time PCR Validation 
To validate the expression levels of 3 key NRGs 

(STAT5B, MAP3K7, BCL2L11) identified from our 
bioinformatics analysis, quantitative real-time PCR 
(qRT-PCR) was performed. The primer sequences 
used for STAT5B, MAP3K7, and BCL2L11 were 
designed based on published literature and verified 
using NCBI Primer-BLAST. And the primer 
sequences used for STAT5B, MAP3K7, and BCL2L11 
are listed in Table 1. The human acute myeloid 
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leukemia cell line THP-1 and peripheral blood 
mononuclear cells (PBMCs) from healthy donors were 
used as the tumor and normal control groups, 
respectively. Both cell types were cultured under 
standard conditions (RPMI-1640 medium 
supplemented with 10% fetal bovine serum and 1% 
penicillin-streptomycin) at 37°C with 5% CO₂. 

 

Table 1. qPCR Primer Sequence. 

Primer name Sequence (5’-3’) 
STAT5B-Forward GCCACTGTTCTCTGGGACAATG 
STAT5B-Reverse ACACGAGGTTCTCCTTGGTCAG 
MAP3K7-Forward CAGAGCAACTCTGCCACCAGTA 
MAP3K7-Reverse CATTTGTGGCAGGAACTTGCTCC 
BCL2L11-Forward CAAGAGTTGCGGCGTATTGGAG 
BCL2L11- Reverse ACACCAGGCGGACAATGTAACG 

 
 
Total RNA was extracted using the TRIzol 

reagent (Invitrogen), and reverse transcription was 
performed with a PrimeScript RT reagent kit (Takara). 
qRT-PCR was conducted using SYBR Green Master 
Mix (Thermo Fisher Scientific) on a QuantStudio 5 
Real-Time PCR System. The relative expression levels 
of STAT5B, MAP3K7, and BCL2L11 were normalized 
to GAPDH using the 2⁻ΔΔCt method. All reactions were 
performed in triplicate. 

Results 
The mutation landscape and CNV location of 
NRGs 

We obtained 125 NRGs between TCGA AML 
and normal samples. In addition, we summarized all 
samples’ clinical features of TCGA and GEO 
databases (Table 2). Statistical comparisons revealed 
significant differences in overall survival time (p 
<0.001) and survival status (p = 0.014) among the 
three cohorts. These results indicate potential 
heterogeneity across datasets that should be 
considered when interpreting downstream analyses. 
It is worth noting that sex information was not 
available in the publicly accessible clinical metadata 
of the GSE37642 and GSE12417 datasets, and thus 
could not be included in the comparison. 

The genetic mutation landscape was shown in 
Figure 1A. This picture suggested that 14 NRGs 
mutations appeared in 32 of 134 AML samples 
(23.88%). Among these genes, FLT3 was the most 
mutated NRG (8%). The mutated frequencies of IDH2 
and IDH1 were 7% and 5%, respectively. It indicated 
the important roles of FLT3 and IDH in the 
development of AML. As for CNV, the analysis result 
revealed that the CNV of NRGs in AML was 
predominantly deletion (Figure 1B). CAMK2A, 

HSPA4, TICAM2, TRADD, and VDAC1were the main 
deleted genes, which probably indicated that 
necroptosis was suppressed in AML. Surprisingly, we 
did not observe significant gained genes in this 
picture. Figure 1C displayed the chromosome 
location of NRGs. It suggested that NRGs are 
distributed on nearly every chromosome. 

 

Table 2. The clinical characteristics of studied datasets. 

 GSE37642 TCGA AML GSE12417 P value 
Sample counts 402 142 162  
Age, years 
mean (SD) 

54.57 (14.90) 54.39 (16.34) 55.63 (14.88)  

Gender     
Male - 78 -  
Female - 64 -  
FAB subtypes     
M0 14 - 5  
M1 84 - 45  
M2 117 - 45  
M3 19 - 0  
M4 104 - 42  
M5 47 - 19  
M6 15 - 6  
M7 2 - 0  
OS    < 0.001*** 
Time, years 
mean (SD) 

2.84 (3.74) 1.57 (1.64) 1.25 (1.16) 

Survival status    0.014* 
Dead 295 89 103 
Alive 107 53 59  
OS, overall survival; SD, standard deviation. p-values for OS time were calculated 
using one-way ANOVA, and for survival status using 𝜒𝜒2 test. *, **, and *** 
represent p < 0.05, < 0.01, and < 0.001, respectively. 

 
 
Figure 1D illustrates the protein-protein 

interaction (PPI) network, highlighting potential 
biological interactions among the 21 identified NRGs, 
which helps to elucidate the functional relationships 
underpinning necroptosis pathways in AML. 
Furthermore, Figure 1E visually depicts the prog-
nostic correlations among these genes, emphasizing 
their prognostic roles and potential as therapeutic 
targets. The picture shows that 17 NRGs are favorable 
factors and 4 PRGs are marked as risk factors. 

Construction and analysis of NRG clusters 
We used the consensus clustering algorithm to 

divide the entire cohort into two NRG clusters (Figure 
2A). K-M analysis of two clusters was shown in 
Figure 2B, suggesting they differ in survival time (p＜
0.001). Cluster B was more associated with poor 
survival than cluster A. We drew the heatmap to 
estimate the prognostic values of clusters (Figure 2C). 
PCA analysis indicated two clusters can be easily 
distinguished (Figure 2D). 
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Figure 1. Genetic mutation landscape of NRGs in AML. (A) The TMB frequencies of NRGs in 134 AML samples. (B) CNV frequencies of NRGs in AML. The mutated 
frequencies were shown the height. (C) Locations of the CNV alteration on chromosomes in NRGs. (D) PPI network shown the interaction of NRGs. (E) Genes interactions 
among NRGs in AML. The line connecting of NRGs represents their interaction. Pink and blue represent positive and negative correlations, respectively. 
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Figure 2. Identified and analyzed of NRG clusters. (A) Consensus heatmap of two NRG cluster (k=2). (B) The Kaplan-Meier survival analysis of two NRG clusters 
(p<0.001). (C) The heatmap of NRG clusters in clinicopathological features of AML samples. (D) PCA analysis in two NRG clusters. (E) KEGG pathways analysis in NRG clusters 
by GSVA. (F) Immune cells infiltration between NRG clusters by ssGSEA. *, **, and *** represent p < 0.05, < 0.01, and < 0.001, respectively. 

 
In addition, we mapped the GSVA and ssGSEA 

analysis based on 21 NRGs to investigate biological 
pathways and infiltrated immune cells (Figure 2E-2F). 
In Figure 2E, Cluster A showed enrichment in terms 
of pathways associated with DNA synthesis and 
repair, and biochemical material metabolism. In 
cluster B, the picture showed significant enrichment 
of growth factors signaling pathways, such as TGFβ, 
JAK-STAT, ERBB, MAPK, and VEGF signal 
pathways. As for ssGSEA analysis, we were surprised 
to find that the 17 differential immune cells all in 

cluster B, including activated CD4+ T, activated 
dendritic, CD56bright NK, CD56dim NK, 
Eosinophils, immature B, MDSC, macrophage, mast, 
monocyte, NK T, NK, neutrophil, plasmacytoid 
dendritic, follicular helper T cells (Tfh), and type 1, 17 
helper T cells. It suggested that nearly all immune 
cells upregulated in different degrees in AML patients 
with poor prognoses.  

The GO analysis was shown in Figure 3A, which 
was enriched in T cell activation, lipopolysaccharide 
and bacterial origin reactions, and leukocyte 
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activation in the biological process (BP). Meanwhile, 
we performed the KEGG analysis that involved 
cytokine-cytokine interaction, NK-κB signal pathway, 

viral protein interaction, and transcriptional 
dysregulation (Figure 3B). 

 

 
Figure 3. Identified and analyzed DEGs and DEG clusters. (A-B) GO and KEGG enrichment analysis between NRG clusters. (C) Hazard ration of Cox and LASSO to 
screen DEGs. (D) Consensus heatmap of two DEG cluster (k=2). (E) The Kaplan-Meier survival analysis of two DEG clusters (p<0.001). 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3209 

We obtained 13 DEGs (STAT5B, BCL2L11, 
MAP3K7, BIRC2, CHMP5, HSP90AA1, PLA2G4A, 
PLA2G4C, PYGB, STAT4, ITPK1, ID1, KLF9) after 
LASSO and proportional hazard analysis based on 
NRG clusters (Figure 3C). Then, we subdivided the 
entire cohort into two DEG clusters again and 
conducted the K-M analysis (Figure 3D-3E).  

Identification and Validation of DEGs 
Then, the entire cohort was randomly divided 

into the training cohort (n = 280) and testing cohort (n 
= 279). Then, the entire cohort and external validation 
cohort will be categorized into high- and low-risk 
after calculating the risk score, which will be used to 
study the predictive capacity of DEGs. The K-M 
analysis of the entire, training, testing and validation 
cohorts were shown in Figure 4A, 4E, 4I, 4M (all 
p<0.001). It indicated an obvious difference between 
these cohorts in survival. And the risk curve and 
survival status curve of four cohorts suggested that 
the high-risk sample can be easily separated from 
other samples (Figure 4B-4C, 4F-4G, 4J-4K, 4N-4O). 
Moreover, we mapped the ROC to evaluate the 
prognostic values (Figure 4D, 4H, 4L,4P). To be 
specific, the entire cohort AUCs of 1-, 3- and 5 years 
were 0.691, 0.709, and 0.699, respectively. As for the 
training cohort, the AUCs of 1-, 3- and 5 years were 
0.724, 0.745, and 0.745, respectively. And the AUCs of 
the testing cohort was 0.654, 0.674, and 0.655, 
respectively. In addition, the external cohort with 
AUCs of 0.701 and 0.745 at 1- and 3 years. Above all, 
we found that the risk score could be perfectly used to 
predict the clinical outcome of AML patients. 

To confirm the differential expression of the 
three NRGs identified by LASSO regression, we 
conducted qRT-PCR in THP-1 and normal PBMC 
cells. As shown in Figure 4Q, STAT5B expression was 
significantly upregulated in THP-1 cells compared to 
PBMCs (p < 0.001), consistent with its positive 
regression coefficient in the risk model. In contrast, 
MAP3K7 and BCL2L11 were both significantly 
downregulated in THP-1 cells relative to PBMCs (p < 
0.001), corroborating their negative coefficients and 
potential protective roles. These results further 
support the predictive value of the identified gene 
signatures and their association with AML 
pathogenesis. 

Establishment of a nomogram to predict 
prognosis 

To construct a connection between NRG clusters 
and risk groups, we mapped Figure 5A. In this 
picture, we found that the risk score of cluster B was 
distinctly higher than cluster A. It revealed that 
cluster B was majorly linked with high risk and poor 

prognosis. We also found that most of the NRGs were 
significantly different between high- and low-risk 
groups after differential analysis (Figure 5B). Besides, 
the relationship among NRG clusters, DEG clusters, 
risk score, and clinical outcomes was shown in Figure 
5C. We observed that the patients of NRG cluster B 
majorly linked to DEG cluster B and high-risk score, 
which indicated that they were correlated with 
poorest clinical outcome. 

We selected three clinical data (age, gender, and 
FAB subtypes) and the risk score of the entire cohort 
as the prepared factors. Only age and risk score were 
included in the final model because they were the 
only variables that remained statistically significant in 
both univariate and multivariate Cox regression 
analyses. Thus, we finally identified age and risk 
score as independent prognostic factors to establish a 
nomogram after univariate and multivariant Cox 
regression analysis (Figure 5E-5F). 

We constructed the nomogram including age 
and risk score to predict the clinical survival of AML 
patients. Thus, we drew calibration curves to assess 
the accuracy of nomogram for predicting 1-, 3- and 
5-years survival outcomes (Figure 5G). The 
comprehensive AUC was 0.645 and the predictive 
capacity of the nomogram is better than that of any 
single factor (Figure 5H). It indicated that this model 
might be suitable for AML. 

Immune cell infiltration, mutation, drug 
sensitivity between high- and low-risk groups 

In Figure 2F, we explored the relationship 
between 17 immune cells and NRG clusters. 
However, our research needed to further define the 
relationship between DEGs and immune cells. We 
investigated the infiltration of 22 types of immune 
cells in DEGs and presented the results in Figure 6A. 
The picture suggested that 5 immune cells have the 
highest infiltration ratio in 13 DEGs, respectively 
Tregs (9/13, 69.23%), resting NK cells (8/13, 61.54%), 
resting mast cells (8/13, 61.54%), macrophage 0 (M0, 
8/13, 61.54%), and Eosinophils (9/13, 69.23%). In 
addition, we screened out 8 differential immune cells 
in high- and low-risk groups (Figure 6B). Immune 
cells positively correlated with risk score were naive B 
cells, Eosinophils, activated/resting CD4+ T memory 
cells, and CD8+ T cells, while B memory cells, resting 
mast cells and Tfh were negatively correlated. 

Figure 6C-6D displayed the mutated frequencies 
of CNV in high- and low-risk groups. Figure 6C 
indicated that there were 43 mutations in 56 samples 
(76.79%) in the high-risk group, among which NPM1 
(21%), DNMT3A (18%), RUNX1 (16%), and IDH2 
(12%) gene mutation frequencies were the highest. As 
for the low-risk group, KIT had the highest mutation 
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(12%), followed by DNMT3A (10%), FLT3 (10%), 
NRAS (10%), and TTN (10) with 28/41 (68.29%) 
altered samples. We saw that frameshift and missense 

mutations were the main types of mutations in both 
risk groups. 

 
 

 
Figure 4. The evaluation and validation of the prognostic risk score in different AML cohorts and experimental validation by qRT-PCR. (A, E, I, M) 
Kaplan-Meier survival analysis of the entire, training, testing, and external validation cohorts, respectively (all p < 0.001). (B, F, J, N) Distribution of risk scores in the 
corresponding cohorts. (C, G, K, O) Survival status plots for each cohort, showing the distribution of alive and deceased patients by increasing risk score. (D, H, L, P) 
Time-dependent ROC curves at 1, 3, and 5 years for each cohort, demonstrating the prognostic accuracy of the risk model. (Q) Relative mRNA expression levels of BCL2L11, 
MAP3K7, and STAT5B were validated by qRT-PCR in AML cell line (THP-1) and normal PBMCs. BCL2L11 and MAP3K7 were significantly downregulated, while STAT5B was 
significantly upregulated in AML cells compared to PBMCs (***p < 0.001). Data are presented as mean ± SEM. 
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Figure 5. Established a nomogram to predict the survival of AML patients. (A) The correlation of risk score and NRG clusters (p< 0.001). (B) The significantly 
differential NRGs between high- and low-risk groups. (C) Sankey diagram to display the connection of NRG clusters, DEG clusters, risk score, and clinical outcomes. (D-E) 
Univariant and multivariant Cox analysis of clinicopathological and risk score of AML samples. (F) The nomogram integrating age and risk score for AML patients. (G) The 
calibration curve of the nomogram at 1, 3, and 5 years, respectively. (H) AUC curve of nomogram, risk score and age. *, **, and *** represent p < 0.05, < 0.01, and < 0.001, 
respectively. 
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Figure 6. Identification of immune cells infiltration, genetic variants, and drug sensitivity between high- and low-risk groups. (A) The infiltration abundance of 
immune cells in DEGs. (B) 8 differential immune cells were correlated with risk score. Positively correlated cells included naive B cell, eosinophils, activated and resting CD4+ 
T memory cells, and CD8+ T cells. Negatively correlated cells included B memory cells, resting B cells and follicular helper T cells (p < 0.05). (C-D) The CNV frequencies in high- 
and low-risk group. (E) 7 sensitive drugs in high-risk group. These drugs were ABT.263, AZD7762, Bexarotene, CI.1040, NU.7441, RDEA119, VX.702, respectively (p < 0.001). 
*, **, and *** represent p < 0.05, < 0.01, and < 0.001, respectively. 
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Lastly, in order to analyze the drug sensitivity in 
AML cells, we used IC50 drug data from 
“pRRophetic” package. We obtained the 13 
differential results of drug sensitivity in two risk 
groups (Figure 6E, S1). In this figure, we found that 7 
of the 13 drugs were more sensitive in the high-risk 
group, including ABT.263, AZD7762, Bexarotene, 
CI.1040, NU.7441, RDEA119, VX.702. These drugs 
offered potential therapeutic targets for AML. 

Discussion 
Chemotherapy remains the cornerstone of AML 

treatment, primarily acting through apoptosis 
induction; however, despite long-standing reliance on 
cytarabine and anthracycline-based regimens, overall 
prognosis remains unsatisfactory due to frequent 
relapse and resistance [23]. These failures are often 
attributed to apoptosis dysfunction at the cellular 
level, underscoring the urgent need to identify 
alternative non-apoptotic mechanisms of cell death 
[24]. Necroptosis, a regulated form of necrotic cell 
death, has emerged as a promising compensatory 
pathway, shown to exert diverse biological effects in 
solid tumors, though its role in AML has been far less 
explored [25]. Our findings align with previous 
studies that have highlighted the dual roles of 
necroptosis in cancer biology. Culver-Cochran AE et 
al. demonstrated that necroptosis activation enhances 
the efficacy of chemotherapy in acute leukemia by 
overcoming apoptosis resistance [26]. Similarly, Zhu 
et al. reported that RIPK3-mediated necroptosis 
improved immune infiltration in AML cell [27]. In 
contrast, our study expands on these findings by 
establishing a comprehensive nomogram integrating 
necroptosis-related gene signatures with clinical 
parameters, further enhancing AML risk stratification 
and guiding therapeutic decisions. 

We observed a significantly elevated expression 
of FADD in AML samples compared to the normal 
controls, supporting its pivotal inhibitory role in the 
necroptotic cascade [28]. Consistent with this, studies 
in murine models demonstrated that the FADD –
caspase-8 complex can block RIPK1-mediated 
signaling, thereby suppressing necroptosis [29]. In 
addition to its role in necroptosis, FADD has been 
implicated in promoting tumorigenesis by regulating 
cell cycle progression, enhancing proliferation, and 
inhibiting apoptosis, making it a tumor-favoring 
factor. For instance, in hepatocellular carcinoma, 
FADD-driven inflammation suppresses the NF-κB 
pathway, triggering compensatory proliferation and 
contributing to malignant progression [30]. Similarly, 
in oral squamous cell carcinoma, elevated FADD 
expression and gene amplification were both 

associated with advanced tumor stage and 
unfavorable prognosis [31, 32]. Notably, FADD- 
mediated death receptor pathways have been 
identified as potential targets for CAR-T therapies in 
B-cell acute lymphoblastic leukemia [33]. Therefore, 
we assumed that high expression of FADD was 
closely related to poor prognosis in AML since FADD 
inhibited necroptosis and developed AML cell 
proliferation. Meanwhile, molecular drugs or CAR-T 
targeting FADD was probably a promising therapy to 
eliminate AML. 

We applied unsupervised clustering based on 21 
prognostic NRGs and identified two distinct 
molecular subtypes of AML with divergent clinical 
outcomes. Cluster B exhibited markedly poorer 
prognosis and elevated infiltration of immune cells 
with active phenotypes, including antigen-presenting 
cells, T/B cells, and cytotoxic NK cells. Interestingly, 
this cluster also showed significant enrichment of 
oncogenic signaling pathways such as MAPK and 
JAK-STAT, both of which are implicated in 
leukemogenesis and immune resistance. Specifically, 
MAPK overactivation promotes proliferation and 
survival in relapsed AML, while JAK-STAT signaling 
facilitates cytokine-mediated expansion and immune 
evasion in hematologic malignancies [34]. These 
molecular features likely contribute to the inferior 
survival of Cluster B patients and underscore 
potential targets for therapeutic intervention in 
high-risk subgroups. In addition, 13 DEGs were 
identified between clusters, and their derived risk 
score demonstrated strong predictive power for 
clinical outcomes, further supporting their prognostic 
relevance.  

Clinically, the constructed nomogram provides a 
valuable tool for stratifying AML patients and 
informing individualized therapeutic strategies. 
High-risk patients identified by the model may 
benefit from intensified treatment, close monitoring, 
or inclusion in clinical trials of targeted agents, while 
low-risk individuals could avoid overtreatment and 
associated toxicities. Furthermore, our drug 
sensitivity analysis suggests that BCL-2 and 
MAPK-MEK inhibitors may serve as effective 
therapeutic options for high-risk groups, reinforcing 
the utility of risk-based treatment approaches. 

Our study revealed the complexity of the AML’s 
TME, with elevated infiltration of immune cells 
(Tregs, M2 macrophages) in Cluster B correlating with 
leukemic cell survival. Despite chemotherapy as the 
frontline treatment, over two-thirds of AML patients 
exhibit refractory disease [35]. This underscores the 
need for novel strategies, including immunotherapy 
targeting leukemic cells and progenitors. However, 
TME-driven immune evasion contributes to treatment 
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resistance [36], with high-risk AML characterized by 
infiltrating immunosuppressive populations (Tregs, 
M0 macrophages) linked to DEG activity. As for 
infiltrated abundance, the relationship between DEGs 
and immune cells suggested that the B cell, Tregs 
cells, resting NK cells, resting mast cells, macrophage 
0, and Eosinophils were dense and linked to the 
high-risk prognosis. While B cells may enhance 
checkpoint blockade efficacy in solid tumors [37], 
their role in AML diverges, as DEGs promote 
immunosuppressive niches. In addition, the B 
cell-related genes were expressed in patients who 
were sensitive to ICB compared to non-counterparts 
[38]. Tregs, known to suppress antitumor immunity 
across malignancies [39, 40], are enriched in AML and 
associated with disease progression. Thus, targeting 
Tregs may disrupt the immunosuppressive TME 
dominated by these cells and MDSCs, offering a 
therapeutic avenue for high-risk AML. Unlike solid 
tumors, AML TME paradoxically associates 
heightened immune activity with adverse outcomes. 
This immune contexture likely enables leukemic 
escape by impairing cytotoxic responses, explaining 
the prognostic paradox observed. 

Lastly, we performed the drug sensitivity 
analysis and found that the inhibitor of BCL-2, 
inhibitor of checkpoint kinase (Chk), and the inhibitor 
of MAPK-MEK pathways were mainly objective 
drugs. ABT.263 (Navitoclax) is a targeted inhibitor of 
BCL-2, which can induce cancer cell to apoptosis. Its 
similar drug, venetoclax, had been approved to treat 
AML. The major function of Chk was initiating the 
DNA damage response to repair impaired DNA. 
Activated Chk was an important feature in cancer, so 
its inhibitor could be the ideal target to treat tumors. 
AZD7762 is an inhibitor of Chk and it will be a 
potential therapeutic drug for AML. In addition, we 
found that the MAPK-MEK signaling pathway was 
enriched in cluster B in GSVA analysis. It indicated 
that the inhibitor of this pathway is also the crucial 
therapeutic orient for AML. Meanwhile, these drugs, 
CI.1040, NU.7441, RDEA119, and VX.702, were 
exactly consistent with the above discussion. But the 
correlation between necroptosis and these drugs is 
unclear, needing subsequent studies. 

It should be noted that this work certainly has 
many flaws. Firstly, all analyses were based on data 
downloaded from public databases, and all samples 
used in our study were obtained retrospectively. 
Thus, selective bias is inevitable. Moreover, we should 
use more independent AML cohorts in the future to 
improve the accuracy of prognostic models. And large 
prospective studies and additional in vivo and in vitro 
studies are needed to confirm our findings. In 
addition, other clinical data, like gender, and stages, is 

unavailable, which may affect the prognostic 
estimating.  

Conclusion 
In summary, our study establishes a prognostic 

nomogram based on necroptosis-related gene 
signatures and clinical parameters, demonstrating 
significant predictive accuracy for acute myeloid 
leukemia patient outcomes. Our findings indicate that 
downregulation of NRGs is strongly associated with 
poorer prognosis in AML. This research provides 
valuable insights into the role of necroptosis in AML 
pathogenesis, highlights potential therapeutic targets, 
and offers a reliable prognostic tool for clinicians, 
ultimately contributing to improved management 
strategies and clinical outcomes for AML patients.  
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