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Abstract 

Background: As a highly prevalent tumor in males, prostate cancer (PCa) needs newly developed 
biomarkers to guide prognosis and treatment. However, few researches have elaborated on the function 
of cuproptosis-associated RNA methylation regulators (CARMRs). 
Methods: We identified CARMRs based on single-sample gene set enrichment analysis and weighted 
gene co-expression network analyses. Subsequently, we performed 10 machine learning algorithms and 
101 combinations of them to select the best model in TCGA, GSE70768, GSE70769, and DKFZ cohorts. 
Furthermore, we explored the potential function of CARMRs in the tumor microenvironment, 
immunotherapy, and tumor mutation burden (TMB). We validated the expression of the two genes with 
the largest regression coefficients using qRT-PCR. 
Results: In our analysis, we successfully established a consensus prognostic model with 9 CARMRs based 
on the 101-machine learning framework. Furthermore, functional enrichment analysis revealed different 
metabolic and signaling pathways in the high- and low-risk groups. Notably, the high-risk group had a 
higher TMB, a lower level of immune infiltration, and a lower expression of immune checkpoints. 
Through drug sensitive analysis, we screened chemotherapy drugs suitable for different groups. Vitro 
experiments illustrated the high expression of C4orf48 and SLC26A1 in PCa compared with normal 
controls. The discovery was in concordance with bioinformatic analysis results. 
Conclusion: A gene signature with 9 CARMRs was developed in our study, which served as biomarkers 
for PCa. This brings benefits in determining the prognosis of patients with PCa and guiding personalized 
treatment. 
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1. Introduction 
Generally speaking, prostate cancer (PCa) has a 

mortality rate of 7.1%, ranking the third highest of all 
cancers in both sexes combined, according to the 

GLOBOCAN 2018 estimates of cancer incidence and 
mortality [1]. Of note, PCa is the second most 
common malignancy and the most prevalent tumor in 
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males in most countries, according to recent studies 
[2]. From a meta-analysis, we figured that rational 
screening reduced the cancer incidence and mortality, 
reinforcing the importance of searching for 
biomarkers. As to the treatment modalities, except for 
the surgical castration, androgen deprivation therapy 
(ADT) remains be cornerstone of treatment for 
advanced PCa [3]. Nevertheless, prolonged ADT can 
induce castration-resistant PCa in some patients, 
leading to a higher risk of distant metastasis and 
poorer recurrence-free survival (RFS) and increased 
risk for cardiovascular disease [3, 4]. In this context, 
the search for appropriate therapeutic targets is of 
significant importance. 

As an important cofactor in biological life 
processes, both defective and overloaded copper ions 
can cause abnormal biological effects. Based on the 
phenomenon described above, cuproptosis, as a novel 
mode of cell death, was proposed in 2022 [5]. 
Following this discovery, considerable evidence 
suggests that copper is significantly correlated with 
tumor-related biological processes, and hub genes of 
cuproptosis play a key role in tumor occurrence, 
metastasis, and escape [6-8]. From a pan-cancer 
analysis, we also discovered that cuproptosis-related 
genes were negatively associated with the tumor 
microenvironment (TME) score, which demonstrated 
that these genes had correspondence with the 
reconstruction of TME and tumor 
immunosuppression [7]. Meanwhile, previous studies 
had confirmed that RNA methylation is significantly 
associated with tumorigenesis and metastasis, and 
has the potential to serve as a biomarker for most 
cancers [9-12]. Moreover, the crosstalk between both 
characteristics has been investigated in multiple 
cancers. Underlying a comprehensive review 
regarding the correlation between cuproptosis and 
RNA methylation regulators in hepatocellular 
carcinoma, we noticed that their crosstalk contributed 
to the exploration of valuable prognostic biomarkers, 
which could guide the application of targeted therapy 
[13]. For instance, the dual role of METTL16 in 
participating in the m6A modification and inducing 
the process of cuproptosis was revealed, and a couple 
of cuproptosis-associated RNA methylation 
regulators (CARMRs) were further identified to 
construct risk models and characterize immune status 
[13-15]. Additionally, YTHDC2 serves as a CARMRs 
to regulate the methylation and proliferation 
processes of colorectal cancer [16]. The 
downregulation of it can facilitate the cuproptosis 
resistance. Similarly, ATG10, regulated by RNA m6A 
methylation, also plays a pivotal role in the 
cuproptosis and survival outcomes, emphasizing a 
promising tumor-regulatory function [17]. 

Nevertheless, the investigation of CARMRs has been 
limited to the construction of a prognostic model, and 
the in-depth discussion of CARMRs in PCa has not 
been studied so far. 

Therefore, in the current study, we integrated 10 
machine learning algorithms and 101 algorithm 
combinations to construct a risk model in PCa 
patients based on CARMRs in the TCGA-PRAD 
dataset and validated our model in three independent 
public datasets. What’s more, we performed vitro 
experiment to further validate the expression of 
CARMRs. And we subsequently explored the value of 
CARMRs in the aspects of prognosis, immune 
infiltration, and responses to treatments in PCa. 

2. Materials and methods 
2.1 Dataset acquisition and preprocessing 

We acquired four independent public datasets 
from The Cancer Genome Atlas (TCGA), Deutsches 
Krebsforschungszentrum (DKFZ), and Gene 
Expression Omnibus (GEO) based on two criteria: (1) 
patients with available expression data and (2) 
comprehensive clinicopathological features, 
particularly RFS status and time [18]. TCGA-PRAD 
was enrolled, including 490 patients with complete 
expression profile data and clinical information. The 
transcripts per million were computed and further 
log2(x+1) transformed for subsequent analysis, which 
reduced the dimensionality of the original expression 
data to achieve greater comparability. GSE70768 [19] 
(n=111), GSE70769 [19] (n=88), DKFZ (n=105) were 
employed to validate our signature. And the ‘sva’ 
package [20] was employed to remove potential 
cross-dataset batch effects along with the empirical 
Bayes framework. A summary of the 
clinicopathological parameters of the four datasets is 
shown in Table 1. 

2.2. Single-sample gene set enrichment 
analysis (ssGSEA) and Weighted gene 
co-expression network analysis (WGCNA) 

Cuproptosis-related genes and RNA methyla-
tion regulators were collected from previous literature 
[5, 21]. Defining R ≥ 0.7 and P ≤ 0.001 as the cutoff, 
Pearson correlation analysis was used to screen for 
CARMRs. We employed the R package “limma” [22] 
to screen out differentially expressed genes (DEGs) 
between normal and tumor samples (|logFC|> 1 and 
adjusted P value < 0.05). 

ssGSEA is a widely used approach for 
quantifying the enrichment score of a particular gene 
set within a single sample [23]. In our analysis, 25 
CARMRs were utilized for ssGSEA to obtain the 
CARMRs score. The WGCNA analysis is a systematic 
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biological approach that enables the characterization 
of gene association patterns between different 
samples to identify highly co-varying gene sets [24]. 
Then, we constructed a co-expression network by 
WGCNA package. A clustering tree based on the 
eigengenes of modules calculated the dissimilarity of 
the module eigengenes. Associations between 
modules and the CARMRs score were assessed using 
Pearson’s correlation analysis. Finally, we choose the 
intersection of the highest related model genes and 
differential genes between normal and tumor 
organization for subsequent analysis. 

 

Table 1: Summary of the clinicopathological parameters of the 
four cohorts. 

Items TCGA-PRAD(n=49
0) 

GSE70768(n=11
1) 

GEO70769(n=8
8) 

DKFZ(n=105
) 

Agea     
 ≤60 220 48 — 105 
 >60 270 63 — 0 
Pathologica
l T satge 

    

 T1+T2 187 34 46 68 
T3+T4 303 77 42 37 
Gleason 
scoreb 

    

 ≤7 287 102 74 91 
 >7 201 9 14 14 
PSAc     
 ≤10 398 83 60 58 
 >10 44 27 26 47 
Status     
Recurence 
free 

398 92 44 81 

Recurred 92 19 44 24 
aAge information is missing in 88 patients from GSE70769 cohort. 
bGleason score information is missing in two patients from TCGA-PRAD cohort.  
cPSA data are missing in 48 patients from TCGA-PRAD cohort, in one patient from 
GSE70768 cohort. 

 

2.3. Construction of prognostic signature 
by integrative 101 machine learning 
approaches 

Univariate Cox regression analysis was 
employed to screen for CARMRs affecting RFS in PCa 
patients. To minimize the risk of overfitting, we 
arranged 101 combinations of these 10 algorithms in 
the TCGA-PRAD training dataset for variable 
selection and model construction based on a tenfold 
cross-validation framework. The integrative 
algorithms included random survival forest (RSF), 
elastic network (Enet), Lasso, Ridge, stepwise Cox, 
CoxBoost, partial least squares regression for Cox 
(plsRcox), supervised principal components 
(SuperPC), generalised boosted regression modelling 
(GBM), and survival support vector machine 
(survival-SVM). Of note, some algorithms, such as 
CoxBoost, Lasso, RSF, and stepwise Cox, can screen 

for characters. Based on a ten-fold cross-validation 
framework and calculation of C-index, we could 
screen for the optimal model with the highest average 
C-index. Subsequently, the risk score for each PCa 
patient was calculated according to the following 
formula: 

risk score = �(coef𝑖𝑖  ∗ Exp𝑖𝑖)
n

i=1

 

where coefi and Expi represent the coefficient 
value and expression value of the corresponding 
gene, respectively. To assess the predictive accuracy 
and performance of the model, time-dependent 
receiver operating characteristic (ROC) curves and 
Kaplan-Meier (KM) curves were generated. Principal 
component analysis of independent prognostic genes 
was conducted. 

2.4. Construction of the nomogram 
We used the variables identified as independent 

prognostic factors for PCa as covariates to create a 
nomogram in the TCGA-PRAD cohort by employing 
the "regplot" package. This nomogram was designed 
to assess the recurrence rates of PCa patients at 1-, 3-, 
and 5-year. Additionally, we calculated the 
concordance index (C-index) and drawn the 
calibration curve to quantify the predictive 
effectiveness of the model by comparing it with other 
clinicopathological features. 

2.5. Functional enrichment analysis and drug 
sensitivity analysis 

Gene Ontology (GO) enrichment analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis were conducted to gain further 
insight into the potential biological mechanisms and 
pathways related to CARMRs utilizing 
“clusterProfiler” [25] and “org.Hs.eg.db”. Based on 
the curated databases of known molecular 
interactions and pathways, enriched pathways were 
selected using a threshold of adjusted P < 0.05. 
ssGSEA was performed to discover the potential 
functional signalling pathway and metabolic pathway 
in different groups. The hallmark gene set was 
downloaded from the Molecular Signatures Database, 
and 114 metabolic pathway gene sets were extracted 
from previous literature [26]. As a common algorithm 
that can evaluate the enrichment extent of specific 
gene sets, the approach of ssGSEA was utilized by 
employing the “GSVA” R package to compute the 
actual score of diverse metabolic and signaling 
pathways in a single patient [27-29]. We used the 
"Limma" package to calculate the differences in 
metabolism and pathways between the two risk 
subgroups, using a heat map to highlight the up- or 
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down-regulation of each pathway. The “oncoPredict” 
package was utilized to calculate the half-maximal 
inhibitory concentration (IC50) values of common 
chemotherapy and targeted drugs for curing PCa. 
Experimental data on related drugs were downloaded 
from Genomics of Drug Sensitivity in Cancer (GDSC), 
the largest publicly available pharmacogenomics 
database currently. 

2.6. Immune cell infiltration 
Tumor growth and metastasis are affected not 

only by genetic variation and epigenetic regulation 
within tumor cells but also by the tumor 
microenvironment. Among the constituents of the 
tumor microenvironment, immune cells play a 
significant role in tumors. To explore the TME of PCa, 
we used the ssGSEA algorithm to evaluate the 
infiltration degree of 28 kinds of immune cells. The 
"IOBR" package and Wilcoxon test were conducted to 
verify the robustness and stability of ssGSEA results. 
Immune cells with no abundance in over half of the 
samples were excluded, and the differences in terms 
of immune cells across different risk groups were 
calculated using the “limma” package. Ultimately, the 
differentially distributed immune cells, identified by 
setting the threshold of P < 0.05, were vividly 
visualized by portraying a boxplot. 

2.7. Quantitative real-time PCR (qRT-PCR) 
The RNA extraction was performed using the 

Trizol reagent (Beijing ComWin Biotech Co., 
Ltd) from prostate normal and cancer cell lines 
RWPE-1, LNCaP, C42, PC3 (Wuhan Pricella Biotech 
Co., Ltd). For cDNA synthesis, reverse transcription 
was conducted using the TaKaRa (Dalian TaKaRa 
Biotech Co., Ltd) kit according to the manufacturer's 
instructions. GAP was employed as an internal 
reference gene to normalize relative expressions of 
lncRNA with the 2−ΔΔCT method. The specific 
primers in our study were as follows: 
C4orf48(forward: 5’-CGCCTTCGAGTTCATGCAG-3’, 
reverse: 5’-CTGCAGCAGTAGGGTCTCC-3’); 
SCL26A1 (forward: 5’-CTGCGGGAGGAGATCCT 
AAG-3’, reverse: 5’-GCACCACAGTGTAGTCG 
ATG-3’). 

2.8. Statistical analysis 
All the statistical analyses were carried out using 

R (version 4.3.0). Continuous data were analysed 
using an independent t-test or the Wilcoxon 
signed-rank test. The Fisher accuracy test was used to 
analyse the classified data. P < 0.05 was considered to 
indicate statistical significance. 

3. Results 
3.1. Identification of CARMRs 

The design ideas and process of our study were 
presented in Figure 1. A volcano plot of DEGs was 
illustrated in Figure 2A, and up-regulated genes were 
shown as red, while down-regulated genes were 
presented as blue. Meanwhile, we conducted 
Pearson’s correlation analysis to figure out CARMRs 
from cuproptosis-related genes and RNA methylation 
regulators brought from previous literature. And we 
successfully identified 25 CARMRs preparing for 
further analysis (Figure 2B). 

3.2. ssGSEA and WGCNA analysis 
To further analyse the correlation between 

CARMRs and PCa, we conducted ssGSEA to calculate 
CARMRs scores in each sample from the 
TCGA-PRAD cohort. After that, CARMRs scores were 
utilized to perform WGCNA analysis, which could 
identify the modules correlated with CARMRs. In 
detail, when the soft threshold was set at 14 (no scale 
R^2 = 0.9016) (Figure 2C), 12 modules presented with 
different colours were identified in our analysis 
(Figure 2D). According to Figure 2D, we subsequently 
figured that the turquoise model was most 
significantly associated with CARMRs (cor = 0.83, P = 
3e-27). Furthermore, we intersected the DEGs and the 
turquoise model genes (Figure 2E), and 69 CARMRs 
were subsequently selected for further research. 

3.3. Construction of a CARMRs signature 
underlying integrative machine learning 

We conducted univariate Cox regression 
analysis to screen CARMRs affecting RFS in the 
TCGA-PRAD cohort, and finally obtained 14 
prognostic genes. Due to the limitation of chip 
sequencing, five genes were not found in the 
microarray data, so we included 9 genes for follow-up 
analysis. A dot plot reflected the risk contribution of 
each factor according to the univariate Cox regression 
analysis (Figure 2F), and a correlation network 
indicated the interaction of 9 CARMRs and the 
underlying biological function correlated with PCa 
(Figure 2G). Whereafter, we performed an integrative 
101 machine learning-based procedure with 9 
prognostic CARMRs to develop a consensus CARMRs 
model (Figure 3A). Ultimately, according to the 
results, a prognostic model developed by Ridge 
showed optimal performance with the highest 
average C-index (0.687). The figure showed the 
distribution of coefficients of each gene (Figure 3B). 
The positions of CARMRs in the human chromosome 
complement were marked in Figure 3C.  
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Figure 1: Flowchart of this research. 

 
What’s more, we calculated the risk score for 

each cohort with the expression of 9 CARMRs and the 
coefficients we obtained above. The coefficients for 
each gene (ATP5ME, BEND3, C4orf48, MACIR, 
SLC26A1, ENTPD5, ITGA2, LPP, PIK3R1) were 
0.103450158, 0.146147224, 0.148669511, 0.127294082, 
0.280643611, -0.130781306, -0.040467373, -0.002685749, 
-0.090226076. 

Therefore, we could categorize the patients in 
each cohort into high- and low-risk groups according 
to the median cut-off value of the risk score. Patients 
with higher risk scores demonstrated a worse 
prognosis when compared with those with lower risk 
scores in TCGA-PRAD, GSE70768, GSE70769, and 
DKFZ cohorts (P < 0.05, Figure 3D-3G). 
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Figure 2: Identification of cuproptosis-associated RNA methylation regulators (CARMRs). (A) Volcano plot of differentially expressed genes (DEGs) in TCGA-PRAD. (B) 
Correlation associated between 13 cuproptosis genes and 56 RNA methylation regulatory genes. (C) Soft threshold (power =14) and scale-free topology fit index (R2 = 
0.9016468). (D) Correlations of gene modules with CARMRs score feature. The values in the small cells of the graph represent the correlated coefficients between trait and 
module, as well as the corresponding statistically significant P-values. (E) Venn diagram of overlapping genes in DEGs and WGCNA. (F) Univariable Cox analysis of prognostic 
genes. (G) Gene interaction network diagram. *P < 0.05, **P < 0.01, ***P < 0.001. 

 
3.4. Validation of the prognostic model 

After identifying the prognostic genes, we 
performed TimeROC analysis to validate the 
predictive performance of the prognostic model. The 
area under the curve (AUC) of the prognostic model 
achieved 0.685, 0.695, and 0.632 for 1-year, 3-year, and 
5-year intervals in TCGA-PRAD cohorts, and mostly 
achieved over 0.700 in the validation cohorts (Figure 
3H). The results illustrated the superior predictive 
performance of the model. In addition, the univariate 
and multivariate Cox regression analyses 
demonstrated that the risk score was an independent 

risk factor to predict the RFS of PCa patients in all 
cohorts (P < 0.05, HR > 1) (Figure 4A-4H). Meanwhile, 
the clinical ROC curves were also conducted to reveal 
the efficacy of the risk score and other clinical 
characteristics. The results showed that risk score and 
Gleason score exhibited more favourable performance 
to predict the clinical outcome with higher AUC when 
compared with other clinicopathological parameters 
in all cohorts (Figure 4I-4L). PCA plots illustrating 9 
prognostic CARMRs showed great performance in 
terms of distinguishing high- and low-risk groups in 
all databases (Figure 4M-4P). 
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Figure 3: Construction and validation of the CARMRs via the 101 combinations of these 10 algorithms. (A) C-index of 101 kinds of prediction models calculated via a tenfold 
cross-validation framework in four cohorts. (B) Coefficients of nine genes were finally obtained in Ridge regression. (C) The position of nine genes in human chromosomes. (D-G) 
Kaplan–Meier curves of RFS according to the CARMRs in TCGA-PRAD, GSE70768, GSE70769, DKFZ cohorts. (H) The area under the curve for predicting RFS at 1-, 3-, and 
5-year. 

 
3.5. Establishment and validation of 
nomogram based on clinical characters and 
CARMRs 

Having identified the risk score as a prognostic 
factor for our model, we also found that T stage and 
Gleason score were risk factors as well to predict the 
RFS, according to the results above. Therefore, we’d 
like to construct a predictive nomogram based on 
three risk factors (containing risk score, T stage, and 

Gleason score) in the TCGA-PRAD dataset to guide 
clinical diagnosis and prediction (Figure 5A). In 
addition, a higher C-index demonstrated the robust 
predictive power of the nomogram when it was 
compared with other clinicopathological parameters 
(Figure 5B). Simultaneously, the calibration curves 
illustrated perfect similarity between nomogram 
predictions and actual observations, supporting this 
view (Figure 5C). The decision curve analysis is able 
to evaluate the degree of net benefit to patients and 
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the practicalities of our model. As shown in Figure 
5D, it was indicated the nomogram had a higher net 
benefit than other clinical features, illustrating that the 
combination was suitable. Meanwhile, we found that 
the risk score remained a robust predictor in 
subgroups separated by the two clinical 
characteristics (Figure 5E, 5F, 5H, 5I, 5J). Regrettably, 
a significant difference couldn’t be figured out 
between high- and low-risk groups in terms of 
survival probability when the Gleason score > 7 
(Figure 5G). In a nutshell, we successfully constructed 
a nomogram to robustly predict the RSF of PCa 
patients and confirmed the efficacy of the nomogram. 

3.6. Functional enrichment analysis of 
CARMRs and drug sensitive analysis 

In order to explore the potential biological 
function, we performed functional enrichment 
analysis on CARMRs for further research. According 

to the results of GO analysis, we identified that most 
of the CARMRs were enriched in axon development, 
axon genesis, muscle system process, muscle tissue 
development, muscle contraction, and muscle organ 
development in the biological processes (Figure 6A). 
In terms of cellular components, they were mainly 
enriched in collagen-containing extracellular matrix 
and contractile fiber. Meanwhile, a considerable 
number of CARMRs participated in channel activity, 
metal ion transmembrane transporter activity, 
monoatomic ion channel activity, passive 
transmembrane transporter activity, and receptor 
ligand activity in the molecular functions. In the 
KEGG pathway, the results indicated that CARMRs 
were enriched in axon guidance, calcium signalling 
pathway, cAMP signalling pathway, and neuroactive 
ligand-receptor interaction and vascular smooth 
muscle contraction (Figure 6B). Therefore, the results 
above demonstrated that CARMRs potentially 

 

 
Figure 4: The predictive performance evaluation of CARMRs model. (A-D) Univariate Cox regression analysis of RFS in TCGA-PRAD, GSE70768, GSE70769, DKFZ cohort. 
(E-H) Multivariable Cox regression analysis of RFS in TCGA-PRAD, GSE70768, GSE70769, DKFZ cohort. (I-L) Time-dependent ROC analysis for predicting RFS of CARMRs and 
clinical characters. (M-P) Principal component analysis of four databases based on prognostic genes.  
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participated in the vital activities of nerves and 
muscles. Furthermore, after comparing the 
enrichment levels of metabolism and signalling 
pathways between the high-risk and low-risk groups, 
we figured that patients in the high-risk group 
showed a decrease in prostaglandin synthesis and 
amino acid metabolism, but obtained an increase in 

lipid metabolism activity and enzyme synthesis 
(Figure 6C). Meanwhile, except for E2F targets 
signalling pathway, most of the signalling pathways 
(such as androgen response, epithelial-mesenchymal 
transition, and inflammatory response) were 
downgraded in the high-risk group as the heatmap 
showed (Figure 6D). 

 

 
Figure 5: Establishment and validation of nomogram. (A) Construction of the nomogram based on the CARMRs, Gleason score, and T stage. (B) The comparison of the C-index 
between the nomogram and other characteristics. (C) Calibration curve of the nomogram for 1-, 3-, and 5-year RFS. (D) Decision curve analysis shows the net benefit to patients 
and the practicalities of our model. (E) Differences in risk score according to the Gleason score group and (H) T stage group. (F-G) Kaplan–Meier curves of RFS in the Gleason 
score group and (I-J) T stage group. 
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Figure 6: Biological function and ICI treatment of CARMRs for prostate cancer. (A) GO enrichment analysis. (B) KEGG enrichment analysis. (C) The ssGSEA score for CARMRs 
of metabolic pathway gene sets and (D) Hallmark gene sets. (E-L) Drug sensitivity analysis of Acetalax, Entospletinib, Doramapimod, JAK-8517, Epirubicin, Oxaliplatin, 
5-Fluororacil, and Docetaxel. 

 
Utilizing the oncopredict algorithm, we 

compared the differences in terms of drug response of 
common chemotherapy and targeted therapy drugs 
for PCa between the high-risk and low-risk groups. 
And the IC50 values of Doramapimod, Entospletinib, 

and JAK-8517 were higher in the high-risk group, 
while the IC50 values of Acetalax, Docetaxel, 
Epirubicin, Oxaliplatin, and 5-Fluorouracil were 
higher in another group (Figure 6E-6L). 
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Figure 7: Tumor immune microenvironment and gene mutation. (A) The degree of immune cell infiltration in high and low risk groups was calculated by several algorithms. (B) 
Heatmap showing the differential abundance of 28 immune cells in the high and low risk groups. (C) Box plot revealing the expression level of common immune checkpoints 
between high and low risk groups. (D) Kaplan-Meier curves of the H-TMB and L-TMB groups. (E) Kaplan-Meier curves of the four subgroups separated by TMB and risk score. 
(F) Waterfall plot for the low-risk group and (G) high-risk group. (H) Expression of C4orf48 in normal prostate cells and prostate cancer cells. (I) Expression of SLC26A1 in 
normal prostate cells and prostate cancer cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 

 
3.7. Immune infiltration analysis and tumor 
mutation burden 

To explore the correlation of tumor immune 
microenvironment in different groups, we performed 
several algorithms, such as CIBERSORT, EPIC, 
TIMER, and xCell in the TCGA-PRAD dataset. The 
results showed that the abundance of most of the 
immune cells, especially memory cells and helper 
cells, was higher in the high-risk group (Figure 7A). 
While immune cells that played a killing role 
exhibited a decline in the high-risk group. According 

to the heatmap of immune infiltration (Figure 7B), we 
could explore that with the increase of risk score, the 
abundance of most immune cells would significantly 
reduce. Subsequently, we investigated the expression 
of common immune checkpoint-related genes in both 
groups. As shown in Figure 7C, most of the significant 
immune checkpoint-related genes were upregulated 
in the low-risk group, while the expression of two 
genes, including TNFRSF18 and TNFRSF4, increased 
in the other group. 

Genomic mutation is an important risk factor for 
tumor genesis. To measure the levels of genomic 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

2773 

mutation, we calculated TMB, which could reflect the 
total number of mutations in different subgroups. 
Subsequently, KM analysis was performed to explore 
the impact of TMB on the survival probability, and the 
results suggested that patients with higher TMB 
demonstrated a worse prognosis (Figure 7D). 
Underlying TMB and risk score, we separated the 
patients into four groups, and discovered that in spite 
of group, the high-risk group exhibited worse 
prognosis (Figure 7E). As the waterfall plot displayed, 
the top 10 gene mutations in the low-risk group had 
frequencies of 12%, 5%, 5%, 6%, 4%, 4%, 5%, 4%, 3%, 
and 3% (Figure 7F). Whereas in the high-risk group, 
the frequency of alterations was 10%, 17%, 14%, 6%, 
7%, 7%, 5%, 5%, 5%, and 5% (Figure 7G). 

3.8. Verification of the expression of CARMRs 
genes 

We selected the two genes with the largest 
coefficient in Ridge regression analysis to verify their 
expression, C4orf48 and SLC26A1, which were 
measured in prostate normal or cancer cell lines by 
qPCR. As shown in Fig. 7H-7I, C4orf48 and SLC26A1 
exhibited higher expression in prostate cancer cells 
compared to normal cells. These results implied that 
C4orf48 and SLC26A1 affect the occurrence of 
prostate cancer. 

4. Discussion 
In our research, we have attempted to develop a 

novel gene signature composed of 9 CARMRs 
utilizing several machine learning approaches. 
Ultimately, we identified ATP5ME, BEND3, C4orf48, 
ENTPD5, ITGA2, LPP, MACIR, PIK3R1, and 
SLC26A1 as the key prognostic genes to construct our 
model in the TCGA-PRAD cohort and verified their 
predictive performance in the validation cohorts. 
After confirming the gene signature was an 
independent risk factor in our analysis, we further 
explored the potential biological function and the 
correlation between prognostic genes and immune 
infiltration, drug response, and TMB. Finally, we 
chose the top two genes with the largest coefficients 
for experimental validation. As mentioned above, we 
identified that copper could cause tumor growth and 
spread by regulating the activity of protein kinase and 
has an elevated requirement in tumor tissue [30, 31]. 
Therefore, the prognostic value of cuproptosis-related 
genes was investigated in a wide range of cancers 
[32-35]. Despite the prognostic value of them was 
being confirmed, we still ignored the role of RNA 
methylation regulators, which are significantly 
associated with tumor metabolism and may be 
synergistic with cuproptosis. Consequently, we 
decided to study the role of CARMRs in the prognosis 

for patients with PCa.  
Underlying CARMRs, the training and 

validation cohorts, we conducted machine learning 
utilizing 10 algorithms and 101 algorithm 
combinations, and finally, we constructed a 
prognostic model. As expected, the CARMRs 
signature was an independent risk factor of PCa, and 
the AUC in the TCGA-PRAD cohort proved the great 
performance of our prognostic model. Judging from 
the results, ATP5ME, BEND3, C4orf48, ENTPD5, 
ITGA2, LPP, MACIR, PIK3R1, SLC26A1 were 
identified as the prognostic genes. 

ATP5ME can encode a subunit of mitochondrial 
ATP synthase. Studies on this term have shown that 
ATP5ME increases mitochondrial membrane 
potential and proliferation and decreases apoptosis 
and the levels of a variety of oxidative enzymes. 
Meanwhile, ATP5ME can downgrade the level of 
inflammatory immune cells in the microenvironment 
of tissue, contributing to alleviating the damage of 
inflammation [36]. BEND3, serving as a transcription 
factor, is a crucial regulator for DNA methylation and 
bivalent promoters [37]. T cells, which express 
BEND3, tend to release large amounts of 
inflammatory factors to recruit immune cells, such as 
activated B cells and neutrophils, and regulate the 
inflammatory response [38]. Involving multiple 
signalling pathways, such as mTOR and AKT, 
ENTPD5 was discovered to contribute to the 
development, invasiveness, and chemotherapy 
response of PCa [39-41]. ENTPD5 was discovered to 
be negatively correlated with the level of mast cells 
and natural killer cells, and these cells can inhibit 
tumorigenesis [42]. Previous studies on ITGA2 have 
identified that ITGA2, which is enriched in exosomes 
of metastatic PCa, induces epithelial-mesenchymal 
transition and is supported by the results of functional 
enrichment analysis [43]. ITGA2 contributed to the 
formation of immunosuppressive TMB by upgrading 
the level of Tregs, which had the capacity of hindering 
the function of CD4+ and CD8+ T cells [44]. 
Macrophage Immunometabolism Regulator, also 
known as C5orf30, was discovered to regulate the 
migration and adhesion of cells and had an impact on 
the inflammatory responses that macrophages 
aroused [45, 46]. 

The heatmap of functional enrichment analysis 
has shown lipid and amino acid synthesis pathways 
were upgraded in the high-risk group, which 
confirms the view that in order to produce energy and 
avoid the citric acid cycle, PCa conducts proliferative 
activity through lipid consumption [47, 48]. 
Meanwhile, the synthesis of some amino acids plays a 
key role in the tumor vital activities, causing 
inflammation stimulation and endothelial cell 
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damage [49]. The inflammation-related pathways’ 
alteration indicated that metabolic reprogramming 
and the activation of inflammation potentially 
promote the formation of the tumor. Compared with 
dramatically upgraded metabolic processes, the 
high-risk group exhibited remarkably downgraded 
signaling pathways, encompassing epithelial cell 
activities (apical surface, androgen response, estrogen 
response, myogenesis, and protein secretion signaling 
pathways) and inflammatory processes 
(inflammatory response and TNF-α signaling 
pathways). Judging from previous articles, it’s 
noteworthy for us to identify that 20-30% of PCa cases 
culminate in castration resistant outcomes [50-52], and 
the high-risk group, which tends to develop into a 
fatal form, shows a low response to androgen. On the 
other hand, the interaction involving tumor cells and 
muscle cells facilitates the process of 
epithelial-mesenchymal transition and expands the 
subpopulations of cancer cells with features 
characteristic of cancer stem-like cells, thereby 
hindering the normal muscle development, as well. 
E2F, as a dominant transcription factor, contributes 
pivotally to nucleotide biosynthesis and cell cycle by 
activating downstream targeted genes [53]. 
Additionally, the E2F transcription factor exhibited 
strong correlation with chemotherapy resistance, 
higher Gleason score, advanced tumor stage, and 
tumor metastasis [54, 55]. Therefore, a significant 
upregulation of E2F was observed in the high-risk 
group patients. 

As shown in drug response analysis, Acetalax, 
Epirubicin, Oxaliplatin, 5-Fluorouracil, and Docetaxel 
reacted better in the high-risk group of PCa. Referring 
to some clinical research, we discovered that 
Epirubicin, Oxaliplatin, and 5-Fluorouracil achieved 
well-healing effects for the treatment of metastatic 
hormone-refractory prostate cancer, whether used as 
a single agent or in combination [56-59]. Furthermore, 
previous literature revealed that Oxaliplatin had the 
ability to induce cell-cycle arrest and cell death, and 
had an effect to obstruct angiogenesis, which 
contributes to the formation and metastasis of PCa 
[60]. Except for these common chemotherapeutic 
agents, Acetalax was detected as a potential 
therapeutic drug for PCa. Original research examined 
the function of Acetalax in terms of autophagy and 
mitochondrial dysfunction and discovered that it may 
inhibit tumor growth by the TNF-α signalling 
pathway, which was downgraded in the high-risk 
group [61, 62]. In a word, we validated the value of 
common chemotherapeutic drugs and identified some 
prospective drugs in this section. 

Abundant evidence indicates that TME may play 
a key role in the development, metastasis, and drug 

resistance of tumors and particularly contributes to 
the failure of immunotherapy. From single-cell and 
spatial transcriptomic analyses, it could be identified 
that immunosuppressive TME existed in PCa tissue 
[63]. And the immunosuppression was associated 
with suppressive myeloid populations, exhausted 
T-cells, and high stromal angiogenic activity. To put it 
more clearly, the presence of low immune activation 
and low inflammatory response in PCa puts it in the 
category of “cold” tumors [64]. Judging from the box 
plot, there a significantly lower levels of immune cells 
with the ability to trigger an inflammatory response 
and kill tumor cells (including CD4+ T cells, CD8+ T 
cells, NK cells) in the high-risk subgroup. On the 
contrary, Tregs, which could contribute to immune 
evasion, increased in this subgroup, and this 
phenomenon corroborates the viewpoint proposed in 
the previous articles [64, 65]. Specifically, the 
enrichment extent of multiple immune cells was 
further validated in both risk subgroups by 
constructing the heatmap. Notably, a series of T cells, 
consisting of activated, central memory, helper T cells, 
and natural killer T cells, were observed to be 
remarkably lacking in the high-risk group, 
highlighting an immune cell deficiency and 
immunosuppression landscape. Previous studies also 
confirmed the potential inducing role of reduced and 
exhausted T cells in the onset and progression of 
diverse cancers [66-68]. 

To go further, we figured that the expression of 
common immune checkpoint-associated genes was 
significantly up-regulated in the low-risk group, 
which demonstrated that patients suffering from PCa 
in this group may respond better to the immune 
checkpoint inhibitors. Nevertheless, identifying the 
high expression of TNFRSF18 and TNFRSF4 
promoted the exploration of immune checkpoint 
inhibitors for the high-risk group. Both of them 
belong to the TNF Receptor Superfamily Member, 
which serves as an engine for the activation of T cells 
and plays a key role in programmed cell death. As a 
novel immune checkpoint, TNFRSF18 is expressed on 
the surface of tumor cells and leads to immune 
escape. Recent phase 1 trials have further confirmed 
its anti-tumor activity and contribute to the 
application for various tumors [69]. In addition, we 
perceived that compared with the low-risk group, the 
high-risk group had immunosuppressive TME, in 
which it had a significant decrease in T cells. 
Targeting TNFRSF4 and CTLA-4 pathways could 
arouse effective T cells to drive a robust anti-tumor 
response [70]. What’s more, Multiple studies have 
confirmed that other immune checkpoints have a 
strong correspond with the prognosis of PCa. In this 
case, the development of the CARMRs signature 
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could determine the efficacy of immunotherapy for 
patients [71-73]. Previous studies have shown that the 
tumorigenesis of PCa may be strongly associated with 
a variety of genetic mutations, which illustrate that 
TMB plays a key role in the tumor aggressiveness and 
therapy response of the related patients [2, 74]. By 
examining the waterfall diagram, it is obvious to find 
that the TMB of the high-risk group is significantly 
higher than that of the low-risk group, which tends to 
lead to an increased probability of tumorigenesis and 
metastasis. The scatter plot had revealed the same 
results. Nevertheless, high TMB, particularly in the 
context of altered DNA repair, may lead to a better 
response to immune checkpoint inhibitors. This could 
explain why the high-TMB and low-risk subgroup 
obtained the best prognosis [75]. 

Moreover, our study has some limitations to 
solve. Though we successfully developed a CARMRs 
signature in the training and validation cohorts, there 
is still has necessity to validate our prognostic model 
in the actual clinical cohorts. Potential biological 
functions of 9 CARMRs need to be validated by more 
basic in vitro and in vivo experiments. Although we 
predicted the sensitivity of common drugs for PCa 
patients, prospective clinical drug trials are required 
to validate our predictions. 

5. Conclusions 
In conclusion, we identified a CARMRs gene 

signature in PCa by integrating 101 combinations of 
10 algorithms to prevent overfitting. The construction 
of a prognostic model and nomogram held out the 
prospect for the diagnosis, personalized treatment, 
and prognostic evaluation of PCa. We not only certify 
the dependability of CARMRs’ function in serving as 
therapeutic targets, but also assess the efficacy of 
related drugs based on the expression of CARMRs. 
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