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Abstract 

Background: Targeted combined immunotherapy (TCI) has shown certain antitumor effects in patients with 
unresectable hepatocellular carcinoma(uHCC), but only a subset of patients benefit. This study aims to develop 
a Transformer-based radiomics model to predict the objective response to combined therapy in patients with 
uHCC. 
Methods: This multicenter, retrospective study involved 264 HCC patients who underwent 
contrast-enhanced MRI prior to immunotherapy. The patients were divided into a training cohort(n=180) and 
a validation cohort(n=84). Using a multi-instance learning approach, tumor lesions in multi-sequence MRI were 
segmented into cross-sectional images, and features were extracted using the ResNet50 model. The 
Transformer model was then trained to predict the objective response rate (ORR). The prediction process 
was visualized using Grad-CAM and SHAP algorithms. Model performance was assessed using ROC and DCA 
curves, while survival analysis was conducted using Kaplan-Meier curves. 
Results: Among 264 patients, one achieved complete response (0.4%), 64 experienced partial response 
(24.2%). The ORR was 26.1% in the training group and 21.4% in the validation group. The model demonstrated 
high predictive accuracy, achieving a perfect area under the curve (AUC) of 1.000. Further validation using 
screenshot-based model inputs revealed an AUC of 0.929 (95% CI: 0.904, 0.947), confirming the model's 
clinical applicability. Kaplan-Meier analysis indicated that objective responders experienced better overall 
survival (OS) in both the training set (HR: 0.50, 95% CI: 0.27, 0.90) and the validation set (HR: 0.28, 95% CI: 
0.08, 0.91).  
Conclusion: The deep learning framework combining ResNet50 and Transformer has proven its clinical 
applicability in predicting and assessing the efficacy of targeted combination immunotherapy in unresectable 
hepatocellular carcinoma, providing crucial guidance for clinical treatment decisions. 
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Introduction 
Hepatocellular carcinoma (HCC) presents a 

global health challenge, with projected increases in 
new cases and mortality rates exceeding 55% by 2040 
[1-3]. In the realm of unresectable HCC (uHCC), 
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recent years have seen significant advancements in 
treatment approaches, marked by the use of tyrosine 
kinase inhibitors (TKIs) [4] and immune checkpoint 
inhibitors (ICIs) [5]. Notably, Nivolumab [6] and 
Pembrolizumab [7] as second-line treatment options 
have demonstrated substantial survival benefits, with 
overall response rates of 20% and 17%, respectively. 
In 2020, following the results of the IMbrave150 trial 
[8], the Food and Drug Administration (FDA) 
approved a combination of Atezolizumab and 
Bevacizumab as a new standard for first-line 
treatment [9], improving objective response rates to 
27%. However, 70% of patients still fail to respond to 
these therapies (targeted combined immunotherapy, 
TCIs), resulting in significant losses in medical 
resources and financial cost. Consequently, there is an 
urgent need for new biomarkers to predict the 
effectiveness of TCIs, thus enabling personalized 
treatment plans for patients. 

Current research indicates that artificial 
intelligence technologies, exemplified by radiomics 
[10], hold significant potential in the diagnosis [11], 
classification [12], and prognostic marker 
identification [13,14] of solid tumors. Wang et al. [15] 
developed an MRI-based radiomics model to predict 
the 5-year survival rate of HCC patients. Zhang et al. 
[16] combined deep learning features with clinical 
characteristics to develop a nomogram predicting 
individual prognosis for HCC patients undergoing 
TACE and Sorafenib treatments. Recent studies by Bo 
et al. [17] have also explored the feasibility of 
radiomics models in predicting responses to 
Lenvatinib treatment in patients with unresectable 
liver cancer. Despite these advancements, current 
research is often limited to single MRI sequence 
maximum regions of interest (ROI) features and does 
not fully utilize multidimensional MRI data [18] to 
capture comprehensive lesion information. 

The Transformer model, one of the most popular 
deep learning architectures, effectively integrates 
multidimensional medical image data through its 
self-attention mechanism, offering breakthroughs in 
tumor analysis. In various medical imaging tasks such 
as MRI tumor segmentation [19] and pathological 
image cancer classification [20], Transformers have 
demonstrated exceptional capabilities. However, the 
potential of utilizing Transformer models to predict 
the response of uHCC patients to TCI treatments 
using multidimensional MRI data remains 
underexplored. 

This study aims to propose a multidimensional 
MRI-based radiomics model to predict the response of 
uHCC patients to TCI treatment, thereby supporting 
clinicians in selecting the most appropriate treatment 
options. 

Methods  
Study Design and Patients 

This retrospective multicenter study included 
378 patients who were clinically or pathologically 
diagnosed with HCC between September 2017 and 
January 2023. These patients were recruited from four 
tertiary hospitals in China: Mengchao Hepatobiliary 
Hospital (Institution I), Xiangya Hospital (Institution 
II), Fujian Provincial Hospital (Institution III), and the 
900th Hospital of PLA (Institution IV). All patients 
underwent Gd-EOB-DTPA-enhanced MRI 
examinations within two weeks prior to receiving 
combination therapy. The study was approved by the 
Ethics Committee of Mengchao Hepatobiliary 
Hospital (approval number: 2023_143_01), and the 
requirement for informed consent was waived. 

Clinical Data Collection and Follow-up 
Comprehensive clinical data were obtained from 

electronic medical records, and contrast-enhanced 
magnetic resonance images (CE-MRI) in DICOM 
format were retrieved from the PACS system. In line 
with real-world clinical settings, patients were eligible 
to receive various anti-PD-1 antibody therapies. 
Tumor response was assessed bi-monthly (±2 weeks) 
following targeted combination immunotherapy 
(TCI) using CT or MRI. The responses were classified 
based on the RECIST v1.1 [21] criteria into complete 
response (CR), partial response (PR), stable disease 
(SD), and progressive disease (PD). CR and PR 
conditions were required to be sustained for a 
minimum duration of two weeks. The follow-up 
period for this study concluded on November 15, 
2023. 

CE-MRI Acquisition and Image Pre-processing 
All patients underwent T2-weighted imaging 

(T2WI)-enhanced MRI scans using a Siemens Verio 
3.0T superconducting MRI scanner equipped with an 
8-channel body coil. The imaging protocol included 
multiple phases: pre-contrast (PRE), arterial phase 
(AP), portal venous phase (PVP), and delayed 
post-contrast phase (DP). Prior to feature extraction, 
the images were processed with grayscale 
discretization and resampling to standardize data 
across different institutions and scanners. The 
resampling parameters were set at 1 mm×1 mm×1 
mm, and Hounsfield units were discretized into 25 
bins to address potential variations in imaging 
acquisition. 

Regions of Interest Segmentation 
Two experienced oncologists manually 

delineated the tumor boundaries layer-by-layer using 
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ITK-SNAP software (version 3.8.0; 
http://www.itksnap.org/pmwiki/pmwiki.php) on 
axial T2-weighted images (T2WI) and sagittal 3D 
contrast-enhanced T1-weighted images (3D-CET1WI). 
The largest lesion in each layer was identified and 
saved as the ROI. In cases where there were 
disagreements regarding the ROI, a senior oncology 
expert provided the final decision. For patients with 
multiple tumors, the largest visible lesion on the MR 
images was selected as the ROI, given that multiple 
tumors generally indicate a higher tumor burden. 

2.5D Segmentation Methods and Feature 
Extraction 

The framework for developing and validating 
the predictive model is illustrated in Fig. 2. To balance 
parameter efficiency and preserve spatial 
heterogeneity in 3D convolutional neural networks, 
an improved 2.5D feature extraction strategy was 
implemented. Specifically, for 3D MRI data, the 
tumor's largest cross-sectional layer is first located in 
the sagittal plane. A ROI is then extracted within a ±4 
voxel layer range along the longitudinal axis, and the 
2.5D image data volume is constructed by stacking 
along the channel dimension to generate 
multi-channel input data. Feature extraction is 
performed using a pre-trained ResNet50 network, 
where the convolutional layers capture local texture 
features, and the 1024×N-dimensional feature vector 
output from the global average pooling (GAP) layer 
serves as the high-level representation. Z-score 
normalization is applied using statistics from the 
entire dataset. 

Model Construction, Validation, and 
Visualization 

Multi-phase MRI sequences (PRE, AP, PVP, DP) 
were processed as independent instances, forming a 
1024×N dataset (where N represents the number of 
instances). Feature training and efficacy prediction 
were conducted using an 8-head attention 
Transformer model[22]. The model was employed for 
parallel computation to capture inter-phase feature 
correlations and dynamically generate an attention 
weight matrix to adaptively select key imaging 
biomarkers. Initially, the data passed through a linear 
layer to reduce the dimensionality to 512×N, then 
passes through two layers of self-attention neural 
networks, followed by a multilayer perceptron (MLP) 
layer that outputs patient-level prediction labels and 
linear prediction values followed by two layers of 
self-attention neural networks. The training process 
employs the AdamW optimizer (learning rate = 

1×10-5, weight decay = 1×10-5), with a maximum 
training period of 50 epochs. Early stopping is 
applied, halting training if the loss function does not 
change for five consecutive epochs. To enhance 
clinical interpretability, Grad-CAM is integrated to 
generate class activation heatmaps for localizing 
spatially sensitive regions. Additionally, SHAP value 
back-projection is used to map the contribution of 
higher-order features back to the original image 
space. 

Statistical Analysis 
Categorical variables were analyzed using the 

Chi-square test or Fisher's exact test, while continuous 
variables were compared using the Mann-Whitney U 
test and the Kruskal-Wallis test. A significance level of 
P <0.05 was applied. Model performance was 
evaluated through area under the curve (AUC) , with 
net benefits assessed using Decision Curve Analysis 
(DCA). Overall survival (OS) curves were plotted 
using the Kaplan-Meier method. All statistical 
analyses were conducted using R software (version 
4.3.1) and Python (version 3.9). 

Results 
Patient Characteristics 

A total of 264 eligible patients were included in 
the study, with 180 from Institution I comprising the 
training cohort, and 84 from other hospitals forming 
the independent validation cohort (Fig. 1). Of these, 
206 (78%) received first-line therapy, 55 (20.8%) 
underwent second-line therapy, and 3 (1.2%) were 
treated with third-line therapy. In the training cohort, 
patients exhibited more adverse prognostic indicators 
(PS Score, Child-Pugh class, BCLC stage), a higher 
number of intrahepatic tumors, and more frequent 
portal vein invasion, all statistically significant (P < 
0.05). No significant differences were observed 
between the training and validation cohorts in other 
baseline demographic and disease characteristics 
(Table 1). The ORR for the two cohorts were 26.1% 
(47/180) and 21.4% (18/84), respectively (P = 0.108). 

In the univariate analysis of the entire cohort 
(Table S1), we examined the relationships between 
adverse tumor response and several clinical factors: 
Child-Pugh class B (OR 0.57; 95% CI: 0.26, 1.23), HBV 
infection (OR 0.72; 95% CI: 0.28, 1.85), portal 
hypertension (OR 0.77; 95% CI: 0.44, 1.34), and the 
presence of three or more tumors (OR 0.62; 95% CI: 
0.33, 1.17). However, none of these relationships 
reached statistical significance (P > 0.05). 
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Figure 1. Flowchart of inclusion and exclusion criteria for eligible patients. uHCC=unresectable hepatocellular carcinoma; TCI=Targeted Combined Immunotherapy; 
CE-MRI=Contrast-enhanced MR images.  

 
Table 1. Baseline characteristics of patients in the training cohort 
and validation cohort 

Variables Training cohort 
(N=180) 

Validation cohort 
(N=84) 

P 
value 

Age(yr) 55.5 ± 12.3 54.2 ± 12.0 0.411 
Sex   0.728 
Female 27 (15.0%) 14 (16.7%)  
Male 153 (85.0%) 70 (83.3%)  
HBV   0.209 
No 13 (7.2%) 10 (11.9%)  
Yes 167 (92.8%) 74 (88.1%)  
Child-Pugh class   0.003 
A 135 (75.0%) 76 (90.5%)  
B 45 (25.0%) 8 (9.5%)  
Log AFP 2.1 ± 1.3 2.4 ± 1.3 0.221 
Portal hypertension   0.002 
No 79 (43.9%) 54 (64.3%)  
Yes 101 (56.1%) 30 (35.7%)  
PVTT   <0.001 
No 76 (42.2%) 57 (67.9%)  
Yes 104 (57.8%) 27 (32.1%)  
PS Score   <0.001 
0 41 (22.8%) 43 (51.2%)  
1 104 (57.8%) 40 (47.6%)  
2 35 (19.4%) 1 (1.2%)  
Largest tumor size(cm) 8.1 ± 4.6 7.7 ± 4.6 0.513 
Tumor number   <0.001 
1 56 (31.1%) 33 (39.3%)  
2 43 (23.9%) 6 (7.1%)  
3 32 (17.8%) 5 (6.0%)  
>3 49 (27.2%) 40 (47.6%)  

Variables Training cohort 
(N=180) 

Validation cohort 
(N=84) 

P 
value 

Extrahepatic 
metastasis 

  0.779 

No 119 (66.1%) 57 (67.9%)  
Yes 61 (33.9%) 27 (32.1%)  
BCLC stage   0.003 
A 8 (4.4%) 14 (16.7%)  
B 32 (17.8%) 15 (17.9%)  
C 140 (77.8%) 55 (65.5%)  
Response   0.108 
CR 0 (0.0%) 1 (1.2%)  
PR 47 (26.1%) 17 (20.2%)  
SD 44 (24.4%) 30 (35.7%)  
PD 89 (49.4%) 36 (42.9%)  
Treatment line   0.205 
1 145 (80.6%) 61 (72.6%)  
2 34 (18.9%) 21 (25.0%)  
3 1 (0.6%) 2 (2.4%)  

Differences are compared using the chi-square test (or Fisher's exact test) for 
categorical measures and Kruskal–Wallis test for continuous measures. 
AFP=α-fetoprotein; PVTT=portal vein tumor thrombus; PS=Eastern Cooperative 
Oncology Group performance status; BCLC=Barcelona Clinic Liver Cancer. 

 

Deep Learning Features Predicted the 
Objective Tumor Response 

Based on expert evaluations using RECIST v1.1 
criteria, patients were stratified into two groups: those 
with objective responses (CR/PR group) and those 
without (SD/PD group). Fig. S1. A, B illustrate the 
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distribution of deep learning scores for patients in 
both the training and validation sets. Notably, 
patients in the CR and PR groups received high 
scores, whereas those in the SD and PD groups were 
assigned low scores. The analysis revealed significant 
differences between these groups. Importantly, the 
model demonstrated high concordance between its 
predictions of TCI responses in uHCC patients and 
the actual tumor response outcomes. 

Fig. 3. A and B illustrate the ROC curves for the 
TCI model in the training and validation cohorts, with 
both achieving AUC values of 1.000. Fig. 3. C and D 
show the DCA results, indicating that the proposed 
model yields superior net benefits within a reasonable 
range of threshold probabilities. 

We performed random occlusions of series and 
layers in MRI scans to evaluate model performance 
sensitivity (Table 2). The occlusions of the PRE and 
AP series resulted in AUC decreases of 3.8% and 3.1%, 
respectively; however, these decreases were not 
statistically significant compared to the optimal AUC 
of 1.000 in the complete dataset. Moreover, occlusions 
in other layers minimally affected the AUC, 
demonstrating the model's robustness to partial data 
occlusion. This study confirms that the multi-instance 
learning and Transformer strategy effectively 
maintain high stability and performance, even with 
incomplete medical imaging data. 

To demonstrate the interpretability of the deep 
learning model, heatmaps were generated for two 
patients selected from the validation set using the 
Grad-CAM and SHAP algorithms. These heatmaps 
(Fig. 4) highlight the image regions that contribute 
most significantly to the network's decision-making 

process. Notably, hotspot regions are concentrated 
around the tumor, whereas areas of necrosis or 
liquefaction contribute less to the efficacy predictions. 
This aligns with the common understanding that 
regions of high malignancy are closely associated 
with prognosis. 

 

Table 2. The change of AUC after random occlusion series or 
layers of MRI 

 Cohort Model AUC 95%CI change 
Series Baseline 1.000 (1.000, 1.000) 0.0% 

-PRE 0.962 (0.922, 0.992) -3.8% 
-AP 0.969 (0.939, 0.993) -3.1% 
-PVP 0.990 (0.971, 1.000) -1.0% 
-DP 1.000 (1.000, 1.000) 0.0% 

Layers -0 0.992 (0.975, 1.000) -0.8% 
±2 1.000 (1.000, 1.000) 0.0% 
±4 0.992 (0.975, 1.000) -0.8% 

 

Radiomic Features Associated with OS and 
PFS 

We evaluated survival outcomes based on the 
presence of objective responses in patients, finding 
that those predicted to respond favorably 
demonstrated significantly better prognoses than 
non-responders. Kaplan-Meier analysis revealed that 
the mortality and disease progression rates for the 
predicted responder group were 27.7% and 53.2%, 
respectively, compared to 50.4% and 85.7% for the 
non-responder group (Fig. 5). The responder group 
showed significant survival advantages in OS (HR 
0.50; 95% CI: 0.27, 0.90, P=0.0019) and PFS (HR 0.46; 
95% CI: 0.30, 0.72, P=0.00036). Similar results were 
observed in the validation set. 

 

 
Figure 2. Workflow of developing deep learning models. A Clinical data and image acquisition. B 2.5D ROI segmentation, the largest tumor area was segmented into regions 
of interest (ROIs) for contrast-enhanced MRI, extracting the largest ROI layer along with its longitudinal layers from -4 to +4. C Deep learning feature extraction, utilize 
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RESNET50 to extract features from 2.5D slices, selecting the deep learning features with the highest relevance through five-fold cross-validation. D Construct a predictive model 
based on the Transformer architecture. E Model performance verification, validate the efficacy of the model using Receiver Operating Characteristic (ROC) curves, Decision 
Curve Analysis (DCA) curves, and Kaplan-Meier curves. 

 
Figure 3. Performance and comparison of prediction models in the training and validation cohorts. A, B Analysis and comparison of the receiver operating characteristic curves 
for the predictive model in the training and validation sets. C, D Decision curve analysis of the predictive model in the training and validation cohorts. 

 
Figure 4. Visualization of feature mappings derived through ResNet50. A-D Visualization analysis of Patient A's full-sequence CE-MRI was conducted using the Grad-CAM 
algorithm. E-H Visualization analysis of Patient B's full-sequence CE-MRI was conducted using the SHAP algorithm. The full sequence is ordered as PRE, AP, PVP and DP. 
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Figure 5. Survival prognosis analysis using a transformer model for uHCC patients receiving TCI treatment. A1, B1 Kaplan-Meier curves for OS between predicted tumor 
response and non-response groups in the training and validation cohorts based on the transformer model. A2, B2 Kaplan-Meier curves for PFS between predicted tumor 
response and non-response groups in the training and validation cohorts based on the transformer model. 

 
Assessment of the Model's Clinical 
Applicability 

To assess the clinical applicability of the model, 
JPEG images of tumor target lesions captured via 
screenshots were used as input. Fig. S2. A and B 
compare the model's performance using screenshot 
images versus original image inputs, with AUC 
values of 0.929 (95% CI: 0.904, 0.947) and 1.000, 
respectively. The confusion matrix in Supplementary 
Fig. S2. C indicates that the model based on 
screenshot images is reasonably accurate in predicting 
tumor response, though a few misclassifications were 
observed. 

Discussion 
In this study, we developed a Transformer 

model based on CE-MRI to predict long-term survival 

and treatment responses in uHCC patients 
undergoing TCI. Validated with a multicenter dataset, 
our model demonstrated a strong correlation between 
deep learning features and both OS and PFS following 
treatment. We visualized the prediction process using 
Grad-CAM and SHAP algorithms, and assessed the 
impact of using raw MR images versus screenshot 
images as inputs on model performance. To the best 
of our knowledge, this may be the first successful 
application of a multi-instance learning and 
Transformer strategy in the field of HCC MRI 
radiomics. 

Although TCI protocols are effective in some 
uHCC patients, less than 30% experience benefits 
[6-8]. Previous studies have identified various 
biomarkers related to immunotherapy prognosis, 
including tumor characteristics (PD-1/PD-L1 
expression [23], TMB [24]), tumor microenvironment 
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(CD3/CD8 tumor-infiltrating lymphocytes [25], 
dMMR/MSI [26]), peripheral blood markers 
(NLR/PLR [27], ctDNA [28] ALFP score [29]), and gut 
microbiota [30]. Despite this, the high heterogeneity of 
HCC and complex immune response mechanisms 
[31-33] challenge the practicality and efficacy of these 
biomarkers. 

Radiomics-based approaches have shown 
promising potential, including models proposed by 
Xu et al. [34], Wei et al. [35], and Shen et al. [36]. 
Notably, the first two studies reported AUC values of 
0.820 and 0.882, respectively, for predicting treatment 
response. A recent multi-parametric MRI fusion 
model proposed by Kang et al. [37] achieved an AUC 
of 0.869 for similar tasks. Additionally, a recent study 
[38] using a machine learning classifier to predict the 
effects of LPI treatment, achieved an AUC of 0.893, 
further validating the applicability of radiomics in 
predicting immunotherapy outcomes. In comparison 
with these studies, the significant increase in AUC 
observed in this study can be attributed to the use of 
more advanced strategies. The combination of MIL 
and Transformer models enables dynamic 
establishment of image feature correlations across 
anatomical regions, thereby more effectively 
integrating complementary information from 
multi-sequence MRI. In a multicenter study [39] of 
over 13,000 individuals assessing microsatellite 
instability in colorectal cancer HE-WSI, researchers 
extracted essential features from each patch and 
synthesized them into WSI labels using a five-fold 
cross-validation Transformer model. The findings 
indicated that both the negative and positive 
predictive values of the model achieved 0.99, reaching 
clinical-grade accuracy. This study confirms the 
efficacy of this advanced methodological integration 
in pathological research. 

Our dataset included patients undergoing 
various lines of combination immunotherapy, 
enhancing the clinical generalizability of findings. 
Although traditional clinical-pathological features 
(such as AFP levels, extrahepatic metastasis, and 
maximum tumor diameter) showed no significant 
correlation with treatment response (P >0.05), the 
radiomics-based predictive model maintained 
excellent stability in validation across three 
independent medical centers, confirming its 
robustness against equipment variations. In this 
study, there was no statistically significant difference 
in predictive performance between screenshot JPG 
data and original DICOM images (AUC: 0.89 vs. 0.91, 
P =0.12), consistent with the findings of Sedlaczek et 
al. [40], indicating that screenshot-based analysis can 
reduce data coordination costs and streamline clinical 
translation pathways. Through visual analysis, we 

explored potential connections between deep learning 
features, tumor heterogeneity, and the immune 
microenvironment. However, these associations need 
further validation through additional genomic and 
histopathological studies. 

This study has several limitations. First, as a 
multicenter study, differences in MRI scanner 
performance and imaging techniques, despite efforts 
to standardize images, may have influenced feature 
extraction. Second, subjectivity involved in manually 
delineating ROIs and the potential loss of crucial 
information related to the tumor microenvironment 
represent additional limitations. In future studies, we 
plan to expand the cohort to five centers and apply an 
automatic segmentation algorithm based on 3D U-Net 
[41] to systematically assess quantitative feature 
variations in the tumor/liver parenchyma. Third, the 
retrospective nature of the study and the relatively 
limited sample size also introduce potential selection 
bias. Future work should focus on larger, prospective 
studies to optimize and refine the model. 

This study preliminarily validates the efficacy of 
combining multi-instance learning with the 
Transformer method in radiomics, demonstrating that 
the model, which utilizes screenshot data, achieves 
high accuracy in predicting treatment outcomes. 
Currently, the use of radiomics technology for 
predicting HCC immunotherapy outcomes is 
confined to small-scale exploratory studies. Future 
research will necessitate larger sample sizes and more 
extensive data from multiple centers to further 
confirm the reliability of these findings. Specifically, 
robust validation of the stability of MRI screenshot 
data could significantly facilitate clinical applications. 

Supplementary Material 
Supplementary figures and table.  
https://www.jcancer.org/v16p2663s1.pdf 
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