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Abstract

Background: Dosage Suppressor of NNFI (DSNI) is a component of the MISI2 kinetochore
complex crucial in the cell cycle process. Recent evidence indicates its close association with cancer
progression. The study aims to further explore DSNI’s role in cancer.

Methods: Using public databases, we investigated the expression patterns of DSNI1 in mRNA,
protein, and single-cell sequencing data across cancer types. Prognostic associations were assessed
through survival analysis, and gene mutation frequencies were compared between high and low
DSN1 expression groups. Gene set enrichment analysis was conducted to identify relevant
biological pathways. We also examined the correlation of DSN1 with DNA methylation, tumor
mutation burden (TMB), microsatellite instability (MSI), immune infiltration, and immune-regulatory
genes.

Results: Our analysis revealed that DSNI is consistently overexpressed in tumor cells and actively
dividing cells compared to normal tissues. The overexpression of DSN1 showed a significant
correlation with either poor or favorable prognosis, depending on the cancer type. Notably, cancers
such as COAD, LUAD, and UCEC exhibited high mutation and amplification frequencies in the
DSN1-high group. Gene set enrichment analysis identified cell cycle-related pathways as the most
significantly associated with DSNI expression. Furthermore, DSNI expression was positively
correlated with DNA methylation, TMB, and MSI in most cancers. DSN1 was also closely associated
with tumor-infiltrating immune cells and immune-regulatory genes, as well as immune therapy
response and drug sensitivity.

Conclusion: Our findings highlight the importance of DSNI in tumorigenesis, progression, and
immune therapy across various cancer types. Further studies are needed to explore its specific
applications in individual cancer types.

Keywords: DSN1, pan-cancer, biomarker, prognosis, immunotherapy.

Introduction

Despite decades of research and advancements
in cancer care, its impact on global health remains
profound, underscoring the wurgent need for
innovative  therapeutic  strategies.  Globally,
approximately 20 million individuals were newly
diagnosed with cancer in 2022, resulting in 9.7 million
deaths to tumor-related causes [1]. Therefore, it is
imperative to develop new therapeutic approaches,

with a focus on immunotherapies that leverage tumor
biomarkers, to improve patient outcomes [2].

The Dosage Suppressor of NNF1 (DSN1) is a
protein in MIS12 kinetochore complex, essential for
kinetochore assembly and cell cycle progression. It
ensures the accurate transmission of genetic material
by facilitating proper chromosome segregation.
Consequently, dysfunction of DSN1 can lead to
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genomic instability, a favorable condition for
tumorigenesis [3,4]. While DSN1 is predominantly
studied in cancer, emerging evidence suggests its
functional relevance in non-cancerous contexts. For
instance, its expression is upregulated in high-risk
HPV-infected non-cancerous esophageal tissues,
implicating a role in early oncogenic alterations [5].
Additionally, a germline-specific splice isoform of
DSN1 regulates chromosome segregation fidelity
during  oocyte  maturation and embryonic
development, with dyslinked to fertility defects [6].
Importantly, DSN1 expression is closely associated
with the development of various cancers, including
colorectal cancer [7,8], hepatocellular carcinoma [9],
breast cancer [10], gastric cancer [11], low-grade
glioma [12], and osteosarcoma [13], by influencing
key biological processes such as cell proliferation,
apoptosis, migration, and invasion. For instance,
depletion of DSN1 leads to G2/M phase arrest and
impairs the migration, invasion, and
anchorage-independent proliferation of colorectal
adenoma cells [7]. Elevated DSN1 expression is also
linked to a poor prognosis in hepatocellular
carcinoma [9]. While the role of DSN1 in certain
malignancies is partially understood, comprehensive
research on its role across pan-cancer remains limited.

This study delves into the pan-cancer landscape
of DSNI1, examining its expression dynamics, its
contribution to cancer biology, and its clinical
implications across a spectrum of human cancers.
First, we analyzed the expression of DSN1, and
stratified patients into DSN1 high and DSN1 low
groups, and then compared the genetic variations and
pathway difference between these two groups. We
assessed the relationship between DSN1 expression
and patient prognosis, exploring its potential as a
pan-cancer biomarker. Furthermore, we investigated
its  association  with the tumor immune
microenvironment and evaluated its function in
anti-tumor immune responses. Lastly, we explored
the potential uses of DSN1 in cancer treatment by
integrating predictions for drug sensitivity and
immune therapy response.

Materials and Methods

Gene, Protein, and Single-Cell Expression
Analysis

DSN1 expression in pan-cancer and normal
tissues were obtained from TCGA database, the GTEx
database [14], and GEO database. DSN1 expression in
normal and pan-cancer tissues were plotted with
TIMER?2.0 [15]. The structure and expression levels of
DSN1 transcripts were obtained from Ensembl [16]
and the UCSC Xena database [17], respectively.

Protein levels of DSN1 in various cancer types from
the CPTAC database were obtained from the Ualcan
database [18]. Images of DSNI1 stained by
immunohistochemistry (IHC) in tumor and normal
tissues of different types of cancer were obtained from
the Human Protein Atlas (HPA) database [19]. The
single-cell expression of DSN1 in from various studies
were obtained from the TISCH database [20]. Data
were analyzed using the R software (v4.2.3) for all the
statistical analyses. The workflow in this study is
demonstrated in Fig. 1.

Genomic and Epigenetic Characterization
Analysis

The pan-cancer gene mutation landscape based
on high and low DSN1 expression groups was
analyzed using the Comprehensive Analysis on
Multi-Omics of Immunotherapy in Pan-Cancer
(CAMOIP) platform [21]. Alteration frequency
statistics for DSN1 were retrieved from the cBioPortal
website [22] visualized wusing the R packages
“ggplot2”  (v3.51) and “ggprism”  (v1.5.0).
Methylation data from the TCGA database was
accessed through the UCSC Xena database [17]. The
correlation between DSN1  expression and
methylation levels was analyzed using custom R
scripts with the R package “psych” (v2.4.12) for
Spearman correlation.

Survival and Prognostic Analysis

To validate the clinical prognostic significance of
DSN1, expression data and survival data, including
overall survival (OS), disease-specific survival (DSS),
disease-free interval (DFI), and progression-free
interval (PFl), were downloaded from the TCGA
database. The optimal cutoff point for DSN1
expression were determined by the R packages
“survival” (v3.5-3) based on the OS data and patients
with different cancer types were split into DSN1-high
and DSN1-low groups accordingly. Cox regression
analysis and Kaplan-Meier survival analysis were
conducted with the R packages “survival” (v3.5-3)
and “survminer” (v0.4.9). Additionally, survival
analysis was performed on data from several studies
from the GEO database with the KM plot tool [23],
generating Kaplan-Meier plots for further evaluate
the prognostic importance of DSN1. The relationship
between DSN1 expression and clinical information
from TCGA, including age, gender, TNM staging,
tumor staging (tumor classification based on TNM
staging), and recurrence status, was investigated
using the t-test. Nomograms were created with the R
packages “survival” (v3.5-3), “rms” (v6.8-1), and
“regplot” (v1.1), and calibration curves were
generated to assess the calibration performance of the
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nomograms. Furthermore, the receiver operating  with the R package “survivalROC” (v1.0.3.1).
characteristic (ROC) curves analyses were performed
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Figure 1. Diagram of main workflow in this study.
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Gene Set Enrichment Analysis (GSEA)

Patients from different TCGA cohorts were
divided to DSN1 high and low groups based on the
top and bottom 30% of DSN1 expression levels. The
differential gene expression analysis between the two
groups were then performed with the Wilcoxon test.
The MSigDB database was used to retrieve the
hallmark gene sets (h.all.v2023.2.Hs.symbols.gmt).
The R package “clusterProfiler” [24] (v4.14.4) was
used to run GSEA on the differential gene expression
results.

Immune Score, Immune Cell Infiltration and
Immunogenomics Analysis

The R package “estimate” [25] (v1.0.13) were
used to compute immune score, stromal score, and
ESTIMATEScore (a combined score of immune and
stromal components) for various tumor samples.
Immune infiltration abundance data for different cell
types across 32 cancer types was downloaded from
the TIMER2.0 database [15]. Spearman correlation
analysis was conducted to assess the relationship
between DSN1 expression levels and immune/
stromal scores, as well as the correlation between
DSN1 expression and the immune infiltration
abundance of diverse cell types. Additionally, the
co-expression of immune regulatory genes with DSN1
was analyzed.

Anti-cancer Immune Response, Immune
Therapy and Drug Sensitivity Analysis

The anti-cancer immune activity ratings across
the cancer immune cycle were compared and
analyzed between high and low DSNI1 expression
groups across 33 cancer types using the Tracking
Tumor Immunophenotype (TIP) database [26].
Spearman correlation analysis was performed to
evaluate the association between DSN1 expression
levels and tumor mutational burden (TMB) or
microsatellite instability (MSI). Radar plots were
produced using the R package “fmsb” (v0.7.6). DSN1
expression data and associated clinical information
for SKCM and BLCA patients undergoing
anti-PD-1/PD-L1 treatment were obtained from the
dbGaP (phs000452) [27] and IMvigor210 datasets [28].
Survival analysis was conducted using the R packages
“survival” (v3.5-3) and “survminer” (v0.4.9). The
relationship between DSN1 expression and tumor cell
susceptibility to anti-cancer drugs was analyzed using
the R package “oncoPredict” [29] (v1.2) and data from
the Genomics of Drug susceptibility in Cancer (GDSC)
database [30].

Results

Elevated DSN1 Expression in Cancer Tissues
Compared to Normal Tissues

We first examined DSN1 mRNA expression
levels in normal tissues using data from the GTEx
database [14]. Relative higher expression levels of
DSN1 were observed in tissues with cell cycle activity
such as the testes, spleen, thyroid, lungs, and skin,
while  DSN1  expression was lower in
non-proliferative organs such as the heart and brain
(Fig. 2A). Single-cell RNA sequencing revealed that
DSN1 was highly expressed in various epithelial cells
across normal tissues (Fig. S1A). With data from the
TCGA and GTEx databases, we found that DSN1
expression was significantly elevated in most cancer
samples compared to normal samples (Fig. 2B and
S1B). Additionally, data from twelve independent
studies in the GEO database [31,32] consistently
confirmed that DSN1 was upregulated in most
cancers types (Fig. S1C). The analysis of 10 DSN1
transcripts, including 7 protein-coding, 3 non-coding
ones showed that, almost all protein-coding
transcripts were upregulated in most tumor tissues,
while non-coding ones did not exhibit a clear pattern
of upregulation or downregulation (Fig. 52).

Next, we utilized the CPTAC protein expression
data from the UALCAN database [18] to compare
DSNT1 protein levels in normal and tumor tissues. The
results showed that DSN1 protein expression was
considerably elevated in 9 cancer types, including
BRCA, COAD, GBM, HNSC, KIRC, LIHC, LUAD,
LUSC, and OV (Fig. 2C). Furthermore, IHC images in
the HPA database [19] corroborated these findings,
showing higher DSN1 protein signals in the cancer
tissues compared to the normal counterparts (Fig.
2D).

To investigate DSN1 expression at single-cell
resolution, we analyzed a large dataset of single-cell
RNA-sequencing profiles from the TISCH database,
encompassing 61 studies across 19 different cancer
type [20]. Our findings revealed that DSN1 exhibited
elevated expression levels in both malignant and
immune cells, with particularly notable expression in
proliferating T cells (Tprolif) in many cancer types
(Fig. 3A). For example, in most glioma and Pancreatic
adenocarcinoma (PAAD) datasets, DSN1 was
predominantly expressed in malignant cells as well as
other cell types (Fig. 3B). In most CRC, KIRC, NSCLC,
and SKCM datasets, DSN1 was higher expressed in
Tprolif cells (Fig. 3C). We should notice that DSN1
was not found to be highly expressed in malignant
cells in some studies because these studies focused on
specific cells, and did not include a comprehensive
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analysis of all cell types. Collectively, these data  cellular processes that underpin tumor development.
suggest that DSN1 may be actively involved in the
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Figure 2. DSN1 expression levels in normal and tumor tissues of humans. (A) Violin plot showing DSN1 expression levels in various human normal tissues. (B) Box plot showing
DSN1 mRNA expression levels in normal and tumor tissues, derived from TCGA and GTEx datasets, with statistical significance assessed by Wilcoxon test. (C) Box plot
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Figure 3. Single-cell expression analysis of DSNI in tumor tissues. (A) Cluster heatmap showing mRNA levels of DSN1 across 37 cell types in tumor tissues. (B-C) Umap plots
illustrating the clustering of different cell types (upper panel) and DSN1 expression levels (lower panel) in Glioma (B) and CRC (C) tissues.

Pan-Cancer Genomic and Epigenomic
Differences Based on DSN1 Expression

To determine the pan-cancer genomic and
epigenetic characteristics of DSN1, we examined the
variations in the pan-cancer mutation landscape
between the DSN1-high and DSN1-low expression
groups using the CAMOIP platform [21]. Our
findings revealed significant differences in mutation
frequencies for several key genes across various
tumors. Notably, the frequency of TP53 mutations
varied significantly between the DSN1-high and

DSN1-low expression groups in many cancer types,
including LUAD, COAD, BRCA, BLCA, and others
(Fig. 4A).

Furthermore, we used the cBioPortal database to
investigate the mutation types and alteration
frequency of DSN1 across pan-cancer. The results
demonstrated significant differences in alteration
frequencies of DSN1 among different cancer types,
with COAD exhibiting the highest mutation
frequency (approximately 9.26%), followed by UCEC
and ESCA. Amplification was the most common
mutation type for DSN1, with high amplification

https://lwww.jcancer.org



Journal of Cancer 2025, Vol. 16

2455

frequencies observed in COAD, ESCA, OV, and
STAD. Additionally, deep deletion was observed in
COAD, LUAD, PAAD, PRAD, and LAML, while
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Methylation sites of DSNI1, analyzed using
TCGA data, were primarily located near the
Transcription Start Site (TSS) and in downstream
regions (Fig. S2D). Correlation analysis across various
cancer types indicated that methylation at most
TSS-proximal sites negatively correlated with DSN1
expression, suggesting a regulatory role in gene
suppression. Notably, methylation at cgl9753867
revealed a markedly positive correlation with DSN1
expression in nearly 40% of cancer types, including
BLCA, BRCA, and others (Fig. 4C).

DSNI as a Prognostic Biomarker Across
Multiple Cancer Types

To evaluate the clinical prognostic significance of
DSN1 across various cancer types, we conducted a
comprehensive analysis of its association with overall
survival (OS), disease-specific survival (DSS),
disease-free interval (DFl), and progression-free
interval (PFI) using data from 33 cancer types in the
TCGA database. The results indicated that DSN1
overexpression was related to poorer OS and DSS in
multiple cancer types, including ACC, BRCA, HNSC,
KICH, KIRP, LGG, LIHC, MESO, PRAD, and UVM
(Fig. 5A, 5B, and S3A). Conversely, high DSN1
expression correlated with better OS and DSS in
patients with CESC, KIRC, READ, STAD, and THYM.
Additionally, elevated DSN1 level were identified as a
risk factor for DFI and PFI in various cancer types
(Fig. 5A and S3A). Kaplan-Meier survival analysis
using multiple GEO datasets confirmed that high
DSN1 expression was associated with poor OS in
patients with BRCA, COAD, LAML, LUAD, OV, and
PAAD, while it served as a protective factor for OS in
patients with LUSC and STAD (Fig. S3B). Moreover,
TCGA phenotype data analysis indicated that DSN1
expression was associated with several clinical
features in cancer patients (Fig. S4). Higher DSN1
levels were found in older patients with BLCA, LGG,
and UVM. Significant gender-based differences in
DSN1 expression are observed in DLBC, HNSC,
SARC, and SKCM. DSN1 expression is associated
with proliferation and invasion (T stage) in several
cancers, including HNSC, LIHC, LUAD, PRAD,
TGCT, and THCA. Additionally, it is linked to
regional lymph node metastasis (N stage) in ACC,
HNSC, and PRAD. Interestingly, in CESC, LIHC, and
STAD, higher DSN1 levels are negatively correlated
with distant metastasis (M stage). DSN1 expression
was associated with tumor staging in ACC, KIRP,
LIHC, and SKCM, and high DSN1 levels were linked
to increased recurrence risk in ACC, BLCA, LGG,
LIHC, PRAD, SARC, and UVM.

To assess the predictive effect of DSN1 across
pan-cancer types, we employed univariate and

multivariate Cox regression analyses, which revealed
that DSN1 expression, along with age, gender, TNM T
stage, TNM M stage, tumor stage, recurrence, and
cancer type, independently predicted patient survival
(Fig. 5B and 5C). Based on multivariate Cox
regression and clinical factors, a nomogram was
conducted to predict the 1-, 3-, and 5-year overall
survival for pan-cancer patients (Fig. 5E). The
predictive ability of the model was validated using
receiver operating characteristic (ROC) curves (Fig.
5F), and the nomogram's effectiveness was confirmed
by calibration curves (Fig. 5G).

DSN1 Overexpression Correlates with Cell
Proliferation Pathways

We performed a pan-cancer Gene Set
Enrichment  Analysis (GSEA) to  compare
differentially expressed genes (DGEs) between high
and low DSNI1 expression groups across various
cancer types to investigate the influence of DSN1 in
cancer development. High DSN1 expression in most
cancer types was notably enriched in cell
proliferation-related signaling pathways, such as
MYC (which drives transcriptional activation of
oncogenic targets) [33], mTORC1 (central to nutrient
sensing and mitotic progression) [34], Mitotic spindle
(regulating spindle formation), G2M (a critical phase
of mitosis regulated by DNA damage response
proteins) [35], and E2F (transcription factors
controlling S-phase entry and cell cycle progression)
[36] pathways (Fig. 5H and S5). High DSN1
expression (as a centromere component) is associated
with the activation of cell proliferation pathways and
cell cycle progression, potentially promoting genomic
instability that triggers DNA damage checkpoints or
apoptosis, thereby contributing to tumor growth and
progression [37]. This association is consistent with
the function of DSN1 as a centromere protein, which
plays a critical role in cell division and chromosome
segregation.

DSNI1 Associates with Reduced Immune and
Stromal Activity

To investigate the immune-related role of DSN1
across various cancers, we initially assessed the
relationship between DSN1 expression and immune
and stromal scores across 32 cancer types. The results
demonstrated a significant negative correlation
(p<0.01) between DSN1 expression and these scores in
several cancers, including BRCA, CESC, COAD,
ESCA, GBM, HNSC, KIRP, LIHC, LUAD, LUSC, OV,
SARC, STAD, THCA, THYM, and UCEC (Fig. 6A).
Furthermore, we explored the correlation between
DSN1 levels and immune cell infiltration across
multiple cancer types. The analysis revealed a
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negative correlation between DSN1 expression and
the infiltration of various immune cells, as determined
by the XCELL algorithm, except for CD4+ T helper 2

(Th2) cells and common lymphoid progenitors, which
showed a positive association (Fig. 6B and 6C).
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Figure 5. Prognostic and GSEA analysis based on DSN1 expression. (A) Heatmap showing the correlation between DSN1 expression levels and for survival outcomes (OS, DSS,
DFl, PFl), derived from the TCGA database. Survival analysis was performed using Kaplan-Meier (KM) test and univariate Cox regression. Red, green, white, and gray boxes
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indicate risk factors, protective factors, non-significant analysis, and unavailable data, respectively. (B) Survival curves comparing the prognosis of DSN1-high and DSN1-low
expression groups across 9 cancers in the TCGA database. (C) Univariate Cox regression analysis of DSNI. (D) Multivariate Cox regression analysis of DSNI. (E) Nomogram
for predicting 1-year, 3-year, and 5-year overall survival rates for pan-cancer patients. (F) Time-dependent ROC curves of the DSN1 Cox regression model predicting 1-year,
3-year, and 5-year overall survival. (G) Calibration plots for the nomogram predicting 1-year, 3-year, and 5-year overall survival. (H) Bubble plot of GSEA results between high
and low DSN1 expression in tumors using hallmark gene sets. Circle size represents p-value magnitude, and color gradient (red to blue) indicates normalized enrichment scores

(NES).

Additionally, a co-expression analysis of DSN1
and immune-related genes indicated that DSN1
expression was positively correlated with several
immune-stimulatory genes, including ULBP1, MICB,
TNSF4, CD276, PVR, and TNFRSF13C, among 43

immune-stimulatory genes (Fig. 6D). Moreover,
DSN1 was positively  correlated with 23
immune-suppressive  genes, including IL10RB,

TGFBR1, KDR, ADORA2A, and CD274 (Fig. 6E).
DSN1 expression also showed significant associations
with immune checkpoint genes, chemokines, and
chemokine receptors (Fig. 6F-H). Notably, DSN1
expression showed a negative correlation with many
immune-related genes in LUSC, which is different
from many other cancer types. These findings suggest
a complex and multifaceted co-expression pattern
between DSN1 and immune-related genes.

DSNI1 as a Prognostic Biomarker in Tumor
Immunotherapy and Predictor of Drug
Sensitivity

To elucidate the role of DSN1 expression in
pan-cancer immunotherapy, we utilized the TIP
database to obtain immune activity ratings for the
cancer immune cycle. Our findings indicated that
high DSN1 levels were positively correlated with
neutrophil recruitment (step 4), Th2 cell recruitment
(step 4), and cancer cell killing (step 7). Conversely, in
most cancer types, elevated DSN1 expression was
negatively correlated with CD4* T cell recruitment
(step 4), macrophage recruitment (step 4), and Thl7
cell recruitment (step 4) (Fig. 7A). The observed
reduction in CD4" T cells, macrophages, and Th17
cells [38] may impair anti-tumor immune
surveillance, as these cells are crucial for antigen
presentation, modulation of the tumor
microenvironment, and inflammatory responses.
Additionally, in patients with CESC, COAD, and
LUSC, high DSN1 levels were negatively associated
with immune activity scores at several stages of the
immune cycle.

To further explore the significance of DSN1 in
tumor microenvironment (TME) immunotherapy, we
analyzed the correlation between DSN1 expression
and tumor mutational burden (TMB) as well as

microsatellite instability (MSI). The results revealed a
positive correlation between DSN1 expression and
TMB scores in ACC, BLCA, BRCA, LGG, LUAD,
LUSC, PAAD, SARC, and STAD, whereas a negative
correlation was observed in COAD and THYM (Fig.
7B). Additionally, DSN1 expression exhibited a
positive correlation with MSI scores in many cancer
types including ACC, BLCA, BRCA, CESC, ESCA,
and others (Fig. 7C).

Furthermore, we explored the potential
predictive role of DSN1 in anti-PD-1/PD-L1 therapy
by analyzing immune therapy cohorts from the
dbGaP (phs000452) and IMvigor210 datasets. The
analysis revealed that patients with high DSN1
expression had a longer overall survival (OS) in
melanoma, while a shorter OS was observed in BLCA
(Fig. 7D). Additionally, patients with high DSN1
expression in melanoma and BLCA exhibited higher
response rates to immunotherapy (Fig. 7E). These
results indicate that DSN1 may be a useful biomarker
for predicting the effectiveness of immunotherapy.

To evaluate the role of DSN1 in drug sensitivity
screening, we used the GDSC v2 database to
calculated sensitivity scores for anticancer drugs and
conducted a correlation analysis. The findings
revealed a strong correlation between DSN1
expression and various anticancer drugs across
multiple cancer types (Fig. 7F). In nearly all cancer
types, high DSN1 expression was significantly
negatively = correlated  with  Tozasertib and
Sepantronium (indicating high drug sensitivity) and
significantly positively correlated with Selumetinib
(indicating high drug resistance). Interestingly,
Tozasertib, an Aurora kinase and BCR-ABL inhibitor
evaluated in early-phase clinical trials for refractory
hematologic malignancies, demonstrated hematologic
responses in Phase 1/II studies [39]. Similarly,
Sepantronium, a survivin inhibitor studied in Phase I
trials for advanced solid tumors and lymphomas,
achieved preliminary antitumor activity with defined
maximum tolerated doses and manageable toxicity
[40]. These findings align with our analysis and
suggest that DSN1 has potential clinical applications
in selecting anticancer drugs.
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Figure 6. Pan-cancer immune correlation analysis of DSNI. (A) Heatmap showing the correlation between DSNI expression and immune score, stromal score, and
ESTIMATEScore calculated by the R package “estimate” (v4.14.4). (B) Heatmap displaying the correlation between DSN1 expression and immune cell infiltration levels, based on
the XCELL algorithm. (C) Scatter plot showing the Spearman correlation analysis between DSN1 expression and Th2 cell infiltration in pan-cancer using the XCELL algorithm.
(D-H) Heatmaps illustrating the Spearman correlation results between DSNI expression and genes related to immune stimulatory factors (D), immune suppressive factors (E),
immune checkpoints (F), chemokines (G), and chemokine receptors (H) across pan-cancer. The symbols *, *¥, and *** represent p < 0.05, p < 0.01, and p < 0.001, respectively.
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Figure 7. Immune therapy and drug sensitivity analysis of DSN1. (A) Heatmap clustering showing the differences in cancer immune cycle stages between DSN- high and
DSNI1-low expression groups. Patients were categorized into DSN1-high and DSN1-low expression groups based on their DSN1 expression levels, with the top 30% of patients
classified as DSN1-high and the bottom 30% classified as DSN1-low. Those with p < 0.05 were considered significant. Red boxes indicate positive correlations, green boxes
indicate negative correlations, and white boxes represent non-significant correlations. (B-C) Radar plots showing the correlation between DSN1 expression and TMB (B) and MSI
(C). (D) Predictive value of DSNI expression on overall survival (OS) in Melanoma (left) and BLCA (right) patients receiving anti-PD-1/PD-L1 immunotherapy. (E) Immune

https://lwww.jcancer.org



Journal of Cancer 2025, Vol. 16 2461

response rates in Melanoma (left) and BLCA (right) patients. PD, progressive disease; SD, stable disease; CR, complete response; PR, partial response. (F) Heatmap of the
correlation between DSNI expression and sensitivity scores for various anticancer drugs. Red boxes indicate positive correlations (high DSNI1 expression associated with
increased drug resistance), while blue boxes represent negative correlations (high DSN1 expression associated with increased drug sensitivity), with lower drug sensitivity scores
reflecting higher drug sensitivity. The symbols *, **, and *** represent p < 0.05, p < 0.01, and p < 0.001, respectively.

Table 1. Summary of the multidimensional biological roles and associations of DSN1 across various cancers. Column “mRNA”, mRNA
expression comparison between normal and tumor tissues. “+”/*-” means significant upregulation/downregulation based on TCGA/GEO
studies while “++” means upregulation in both. Column “Pr.”, DSNI protein levels in tumor vs. normal tissues. “+” means significant
upregulation based on CPTAC studies. Column “SC”, single cell analysis. “T” means higher expressed in proliferating T cells while “M”
means in malignant cells. Column “TP53 Mut.”, “+” means TP53 mutation were significantly different in DSN1 high and DSN1 low groups.
Column “KM OS”, Kaplan-Meier overall survival analysis of DSNI high and low expression groups. “+”/*“-” indicates DSNI as a
risk/protective factor based on TCGA/GEO studies, while “++”/“--" denotes DSN1 as a risk/protective factor in both. Column “Met”,
methylation levels. “-” indicates a negative correlation between DSNI expression and methylation levels. Column “MSI”, Microsatellite
Instability. “+” denotes a positive correlation between DSNI expression and MSI (p < 0.05). Column “Th2”, “+” indicates a positive
correlation between DSN1 and Th2 immune infiltration score based on the XCELL algorithm (p < 0.05). Column “ES”, ESTIMATEScore.
“-” represents a negative correlation with DSNI (p < 0.05). Column “Mac.”, macrophage recruitment. “+”/“-” means a positive/negative
relationship between DSN1 and macrophage recruitment (p < 0.05). Columns “IF”, “ISTF”, “ISUF”, “ICP”, “CK”, and “CKR” represent
immune cell infiltration, immune stimulatory factors, immune suppressive factors, immune checkpoints, chemokines, and chemokine
receptors, respectively. Values indicate the difference between the number of significant positive and negative correlations with DSN1
expression. Column “TMB”, tumor mutation burden. “+”/*-” means a positive/negative correlation between DSN1 expression and TMB
(p < 0.05). Column “PD1”, “+”/*“-” represents better/poorer overall survival for the high DSNI expression group in the anti-PD-1/PD-L1
therapy cohort. ns, not significant; empty cell, data not available (NA).

Cancer mRNA Pr. SC TP53 KM Met. MSI Th2 ES Mac. IF ISTF  ISUF ICP CK CKR TMB PD1

Mut. (O3]
ACC ns ns + ns ns + ns - -8 13 2 0 4 3 +
BLCA + T + ns - + + ns + -6 18 15 9 23 4 -
BRCA ++ + MT + ++ - + + - ns -1 10 10 8 0 2 +
CESC + M ns - - + ns - - -14 0 -2 -5 -12 1 ns
CHOL ++ MT ns ns ns ns ns ns ns -2 0 0 0 0 0 ns
COAD ++ + T + + - ns ns - - -11 -5 -3 -1 2 -1 -
DLBC + ns ns - ns + ns ns 2 8 3 0 -1 1 ns
ESCA + MT ns ns - + - - -8 3 -1 -2 2 -3 ns
GBM + + M+ ns - + + - - -10 1 0 -7 -1 ns ns
HNSC ++ + MT ns + - + - ns -7 21 3 3 ns
KICH + ns + ns + + ns ns -1 11 1 1 ns
KIRC ++ + T ns - ns ns ns ns ns 0 34 18 7 20 13 ns ns
KIRP + ns + - + ns - - -15 10 4 0 -5 2 ns
LGG + ns + - + ns - 2 26 18 9 5 13 +
LIHC ++ + MT + - + - ns -4 32 16 8 15 12 ns
LUAD ++ + T + - + - ns -14 2 7 4 6 -6
LUSC + + T ns - - + ns - - -22 -22 -9 -5 -25 -16 +
MESO ns + ns ns + ns ns -4 11 3 1 -1 0 ns
oV ++ + MT ns + ns + + - - -12 26 18 8 9 ns
PAAD ++ ns M ns ++ ns + + ns - -4 13 4 1 1 +
PCPG ns ns ns ns ns ns ns - -2 12 1 4 3 ns
PRAD + M ns + - + ns ns ns 5 41 21 9 23 15 ns
READ + + - - + ns ns - -2 5 1 0 8 1 ns
SARC + + + - + + - - -19 -3 1 2 -5 0 +
SKCM + T ns ns - + - ns -11 10 3 3 1 ns +
STAD ++ ns + - - + ns - - -19 -7 -1 -1 0 -10 +
TGCT - ns ns - ns + ns ns 10 14 10 9 -14 5 ns
THCA ns MT ns ns ns ns ns - - -16 5 -1 -4 -7 -1 ns
THYM + ns - - ns - - -3 -6 -2 -16 -3 -
UCEC ++ ns MT + ns ns ns + - ns -12 7 -2 -2 1 ns
ucs + ns ns ns ns ns ns - -1 0 0 -1 -1 ns
UvM ns ns + ns + + + 11 37 21 10 25 14 ns
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Discussion

Cancer's high global mortality rate drives the
imperative for developing new and effective
therapeutic strategies and the identification of reliable
biomarkers for early detection, prognosis, and
treatment response prediction [41,42]. While the
crucial role of DSN1 in maintaining genomic stability
through proper chromosome segregation is
established [37,43], its pan-cancer implications remain
under investigation. Previous studies have linked
DSN1 overexpression to poor prognosis in specific
cancers, such as colorectal cancer [7], liver cancer [9],
breast cancer [10] and lower-grade glioma [12]. This
study provides the first comprehensive pan-cancer
analysis of DSN1, revealing its diverse roles in
tumorigenesis and progression, and establishing its
potential as a  promising biomarker for
immunotherapy and drug sensitivity prediction
(Table 1, Fig. S6).

Our findings, in conjunction with previous
research, demonstrate that DSN1 is frequently
overexpressed in a wide array of cancers. This
overexpression is evident at both the mRNA and
protein levels (Table 1), as shown by the analysis of
TCGA, GTEx, and CPTAC databases. The elevated
expression of DSN1 in both cancerous tissues and
normal tissues with high cell turnover, further
supports its role in actively dividing cells and its
potential ~ contribution to tumorigenesis. The
consistent upregulation across diverse cancer types,
highlights its potential as a common driver of
oncogenesis.

The observed upregulation of DSN1 in cancer is
likely driven by a combination of genomic and
epigenomic alterations. Our analysis reveals that gene
amplification is a significant contributor, particularly
in cancers like COAD, ESCA, OV, and STAD, where
high frequencies of DSN1 amplification were
observed. Furthermore, the differential TP53 mutation
frequencies between DSN1-high and DSN1-low
groups in several cancers, including LUAD, COAD,
BRCA, BLCA, GBM, LIHC, READ, SARC, and UCEC,
intimate a complex interplay between DSN1 and this
crucial tumor suppressor. DSN1 overexpression
caused genomic instability may create a cellular
environment that selects for TP53 mutations, thereby
compromising its ability to safeguard genomic
integrity. The observed negative correlation between
methylation at TSS-proximal sites and DSN1
expression suggests that DNA methylation likely
plays a role in suppressing DSN1 levels, adding
another layer of regulation to its expression.

The prognostic significance of DSN1 exhibits
marked variability across different cancer types.

While elevated DSN1 expression is associated with
poor prognosis in numerous cancers, including ACC,
BRCA, HNSC, KICH, KIRP, LGG, LIHC, MESO,
PRAD, and UVM, it paradoxically correlates with a
favorable prognosis in others, such as CESC, KIRC,
READ, STAD, and THYM. This dichotomy likely
reflects the diverse tumor microenvironments and the
specific oncogenic pathways that predominate in
different cancer types. In cancers where DSN1
overexpression drives aggressive proliferation and
genomic instability (e.g., BRCA LIHC), its association
with poor outcomes is consistent with its role in
promoting uncontrolled cell division. Conversely, in
cancers like KIRC and STAD, where other oncogenic
pathways might be more dominant or where a higher
degree of differentiation is maintained, high DSN1
expression could reflect a less aggressive subtype or
distinct underlying biology where excessive DSN1
triggers immunogenicity (via elevated TMB/MSI) and
mitotic catastrophe (through unresolved chromosome
missegregation), tipping the balance toward tumor
suppression [44]. These findings underscore the
importance of considering the specific cellular and
molecular context when evaluating DSN1’s
prognostic value.

Across multiple cancer types, high DSN1
expression was significantly associated with the
activation of key cell cycle-related pathways,
suggesting that DSN1 may promote tumor cell
proliferation by influencing these pathways. This
aligns with previous studies that DSN1 directly
promotes colorectal cancer progression by regulating
the G2/M phase of the cell cycle [7]. Previous study in
gastric cancer demonstrated that silencing of the
transcription factor estrogen-related receptor alpha
(ESRRA) downregulates DSN1, leading to inhibition
of the CDC25C-CDK1-Cyclin Bl pathway and
subsequent G2/M arrest [45]. While ESRRA is
recognized for its role in various cancers, including
breast cancer [46], glioma [47], and gallbladder cancer
[48], its regulation of DSN1 provides a mechanistic
link between this transcription factor and the cell
cycle machinery. This highlights DSN1 as a potential
key downstream target of ESRRA, mediating its
oncogenic effects through modulation of cell cycle
pathways.

The relationship between DSN1 and the tumor
immune microenvironment exhibited striking
variations across different cancer types. While high
DSN1 expression in many cancers correlates
negatively with immune and stromal scores, the
underlying mechanisms appear to be cancer-type
specific. In most cases, high DSN1 is associated with
reduced infiltration of most immune cell types,
potentially facilitating immune evasion by rapidly
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proliferating tumor cells. However, the notable
positive correlation with Th2 cell infiltration across
various cancers suggests another potential
mechanism by which DSN1 may promote tumor
progression. Th2 cells, known for their
immunosuppressive functions and ability to dampen
cytotoxic T cell responses, could create a feedback
loop favoring tumor growth in DSN1-high tumors
[49]. The distinct immune landscape of LUSC, where
DSN1 is negatively correlated with many
immune-related genes, further emphasizes this
cancer-type specificity. The heterogeneity in DSN1's
interaction with the immune landscape underscores
the necessity for a context-dependent understanding
of its immunomodulatory role in different cancers.
Immune checkpoint inhibitor (ICI)-based
immunotherapy has emerged as a highly promising
strategy in cancer treatment [50], and DSN1 showed a
potential as a biomarker for immunotherapy and drug
sensitivity. The positive correlation between DSN1
expression and TMB, as well as MSI, in a substantial
number of cancers suggests that DSN1-high tumors
might be more immunogenic, potentially due to
increased neoantigen presentation resulting from
genomic instability. This could, in part, explain the
higher response rates to immunotherapy observed in
DSN1-high patients with melanoma and BLCA (Fig.
7E). However, the contrasting prognostic implications
of high DSN1 expression in these two cancers during
immunotherapy —favorable in BLCA and
unfavorable in SKCM — highlight the critical influence
of the specific tumor immune microenvironment. In
BLCA, DSN1 correlates positively with CD4+ Thl
cells (Fig. 6B), PDCD1, LAG3 (Fig. 6F), CXCR5 (Fig.
6H), and enhanced T-cell recruitment (Fig. 7A),
indicative of a pro-inflammatory and
immunoresponsive microenvironment. Conversely,
in SKCM, DSN1 is associated with reduced Thl
infiltration (Fig. 6B), downregulated PDCD1 and
LAG3 (Fig. 6F), suppressed CXCRS5 (Fig. 6H), and
impaired T-cell recruitment (Fig. 7A), collectively
fostering an immunosuppressive milieu resistant to
checkpoint inhibition. Furthermore, the association
between DSN1 expression and drug sensitivity,
particularly the increased sensitivity to Tozasertib and
Sepantronium in DSN1-high tumors, provides a
compelling rationale for exploring DSN1 as a
predictive biomarker for selecting personalized
therapeutic strategies. The fact that these drugs target
pathways involved in apoptosis, cell proliferation,
and protein degradation aligns with DSN1's functions
in cell cycle regulation and suggests a mechanistic
link between DSN1 expression and drug response. In
particular, Tozasertib, an Aurora kinase inhibitor, is
hypothesized to interfere with the Aurora B

phosphorylation of DNSI, thereby inhibiting the
CENP-C:MIS12-C interaction and ultimately blocking
mitosis and tumor proliferation [51,52].

Our study provides a comprehensive pan-cancer
analysis of DSN1, revealing its multifaceted roles in
tumorigenesis and its context-dependent impact on
prognosis and the tumor immune microenvironment
(Table 1, Fig. S6). While these findings are promising,
they require validation through in vitro and in vivo
experiments with more clinical data, as well as further
investigation with larger clinical datasets to confirm
the potential differential roles of DSN1 across various
cancer types.

Conclusion

DSN1 emerges as a critical player in cancer with
multifaceted clinical implications: (a) as a prognostic
biomarker, its dual prognostic significance (poor
outcome in aggressive cancers like BRCA/LIHC
versus favorable prognosis in KIRC/STAD) reflects
tumor microenvironment heterogeneity; (b) a as an
immunotherapy response indicator, where its
association with elevated TMB/MSI and differential
immune microenvironment features (e.g., Thl/Th2
balance, PDCD1/LAG3 expression) predicts response
variability in melanoma and bladder cancer; and (c) as
a therapeutic target, with DSN1-high tumors showing
heightened sensitivity to mitotic kinases inhibitors
(Tozasertib) and survivin antagonists (Sepantronium,).
These context-specific roles, combined with its
impacts on genomic instability, immune modulation,
and drug sensitivity, establish DSN1 as a versatile
candidate for precision oncology strategies to
improve diagnostic and therapeutic outcomes.
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