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Abstract 

Background: Dosage Suppressor of NNF1 (DSN1) is a component of the MIS12 kinetochore 
complex crucial in the cell cycle process. Recent evidence indicates its close association with cancer 
progression. The study aims to further explore DSN1’s role in cancer. 
Methods: Using public databases, we investigated the expression patterns of DSN1 in mRNA, 
protein, and single-cell sequencing data across cancer types. Prognostic associations were assessed 
through survival analysis, and gene mutation frequencies were compared between high and low 
DSN1 expression groups. Gene set enrichment analysis was conducted to identify relevant 
biological pathways. We also examined the correlation of DSN1 with DNA methylation, tumor 
mutation burden (TMB), microsatellite instability (MSI), immune infiltration, and immune-regulatory 
genes. 
Results: Our analysis revealed that DSN1 is consistently overexpressed in tumor cells and actively 
dividing cells compared to normal tissues. The overexpression of DSN1 showed a significant 
correlation with either poor or favorable prognosis, depending on the cancer type. Notably, cancers 
such as COAD, LUAD, and UCEC exhibited high mutation and amplification frequencies in the 
DSN1-high group. Gene set enrichment analysis identified cell cycle-related pathways as the most 
significantly associated with DSN1 expression. Furthermore, DSN1 expression was positively 
correlated with DNA methylation, TMB, and MSI in most cancers. DSN1 was also closely associated 
with tumor-infiltrating immune cells and immune-regulatory genes, as well as immune therapy 
response and drug sensitivity.  
Conclusion: Our findings highlight the importance of DSN1 in tumorigenesis, progression, and 
immune therapy across various cancer types. Further studies are needed to explore its specific 
applications in individual cancer types. 
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Introduction 
Despite decades of research and advancements 

in cancer care, its impact on global health remains 
profound, underscoring the urgent need for 
innovative therapeutic strategies. Globally, 
approximately 20 million individuals were newly 
diagnosed with cancer in 2022, resulting in 9.7 million 
deaths to tumor-related causes [1]. Therefore, it is 
imperative to develop new therapeutic approaches, 

with a focus on immunotherapies that leverage tumor 
biomarkers, to improve patient outcomes [2]. 

The Dosage Suppressor of NNF1 (DSN1) is a 
protein in MIS12 kinetochore complex, essential for 
kinetochore assembly and cell cycle progression. It 
ensures the accurate transmission of genetic material 
by facilitating proper chromosome segregation. 
Consequently, dysfunction of DSN1 can lead to 
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genomic instability, a favorable condition for 
tumorigenesis [3,4]. While DSN1 is predominantly 
studied in cancer, emerging evidence suggests its 
functional relevance in non-cancerous contexts. For 
instance, its expression is upregulated in high-risk 
HPV-infected non-cancerous esophageal tissues, 
implicating a role in early oncogenic alterations [5]. 
Additionally, a germline-specific splice isoform of 
DSN1 regulates chromosome segregation fidelity 
during oocyte maturation and embryonic 
development, with dyslinked to fertility defects [6]. 
Importantly, DSN1 expression is closely associated 
with the development of various cancers, including 
colorectal cancer [7,8], hepatocellular carcinoma [9], 
breast cancer [10], gastric cancer [11], low-grade 
glioma [12], and osteosarcoma [13], by influencing 
key biological processes such as cell proliferation, 
apoptosis, migration, and invasion. For instance, 
depletion of DSN1 leads to G2/M phase arrest and 
impairs the migration, invasion, and 
anchorage-independent proliferation of colorectal 
adenoma cells [7]. Elevated DSN1 expression is also 
linked to a poor prognosis in hepatocellular 
carcinoma [9]. While the role of DSN1 in certain 
malignancies is partially understood, comprehensive 
research on its role across pan-cancer remains limited. 

This study delves into the pan-cancer landscape 
of DSN1, examining its expression dynamics, its 
contribution to cancer biology, and its clinical 
implications across a spectrum of human cancers. 
First, we analyzed the expression of DSN1, and 
stratified patients into DSN1 high and DSN1 low 
groups, and then compared the genetic variations and 
pathway difference between these two groups. We 
assessed the relationship between DSN1 expression 
and patient prognosis, exploring its potential as a 
pan-cancer biomarker. Furthermore, we investigated 
its association with the tumor immune 
microenvironment and evaluated its function in 
anti-tumor immune responses. Lastly, we explored 
the potential uses of DSN1 in cancer treatment by 
integrating predictions for drug sensitivity and 
immune therapy response. 

Materials and Methods 
Gene, Protein, and Single-Cell Expression 
Analysis 

DSN1 expression in pan-cancer and normal 
tissues were obtained from TCGA database, the GTEx 
database [14], and GEO database. DSN1 expression in 
normal and pan-cancer tissues were plotted with 
TIMER2.0 [15]. The structure and expression levels of 
DSN1 transcripts were obtained from Ensembl [16] 
and the UCSC Xena database [17], respectively. 

Protein levels of DSN1 in various cancer types from 
the CPTAC database were obtained from the Ualcan 
database [18]. Images of DSN1 stained by 
immunohistochemistry (IHC) in tumor and normal 
tissues of different types of cancer were obtained from 
the Human Protein Atlas (HPA) database [19]. The 
single-cell expression of DSN1 in from various studies 
were obtained from the TISCH database [20]. Data 
were analyzed using the R software (v4.2.3) for all the 
statistical analyses. The workflow in this study is 
demonstrated in Fig. 1. 

Genomic and Epigenetic Characterization 
Analysis 

The pan-cancer gene mutation landscape based 
on high and low DSN1 expression groups was 
analyzed using the Comprehensive Analysis on 
Multi-Omics of Immunotherapy in Pan-Cancer 
(CAMOIP) platform [21]. Alteration frequency 
statistics for DSN1 were retrieved from the cBioPortal 
website [22] visualized using the R packages 
“ggplot2” (v3.5.1) and “ggprism” (v1.5.0). 
Methylation data from the TCGA database was 
accessed through the UCSC Xena database [17]. The 
correlation between DSN1 expression and 
methylation levels was analyzed using custom R 
scripts with the R package “psych” (v2.4.12) for 
Spearman correlation. 

Survival and Prognostic Analysis 
To validate the clinical prognostic significance of 

DSN1, expression data and survival data, including 
overall survival (OS), disease-specific survival (DSS), 
disease-free interval (DFI), and progression-free 
interval (PFI), were downloaded from the TCGA 
database. The optimal cutoff point for DSN1 
expression were determined by the R packages 
“survival” (v3.5-3) based on the OS data and patients 
with different cancer types were split into DSN1-high 
and DSN1-low groups accordingly. Cox regression 
analysis and Kaplan-Meier survival analysis were 
conducted with the R packages “survival” (v3.5-3) 
and “survminer” (v0.4.9). Additionally, survival 
analysis was performed on data from several studies 
from the GEO database with the KM plot tool [23], 
generating Kaplan-Meier plots for further evaluate 
the prognostic importance of DSN1. The relationship 
between DSN1 expression and clinical information 
from TCGA, including age, gender, TNM staging, 
tumor staging (tumor classification based on TNM 
staging), and recurrence status, was investigated 
using the t-test. Nomograms were created with the R 
packages “survival” (v3.5-3), “rms” (v6.8-1), and 
“regplot” (v1.1), and calibration curves were 
generated to assess the calibration performance of the 
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nomograms. Furthermore, the receiver operating 
characteristic (ROC) curves analyses were performed 

with the R package “survivalROC” (v1.0.3.1). 

 
 

 
Figure 1. Diagram of main workflow in this study. 
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Gene Set Enrichment Analysis (GSEA) 
Patients from different TCGA cohorts were 

divided to DSN1 high and low groups based on the 
top and bottom 30% of DSN1 expression levels. The 
differential gene expression analysis between the two 
groups were then performed with the Wilcoxon test. 
The MSigDB database was used to retrieve the 
hallmark gene sets (h.all.v2023.2.Hs.symbols.gmt). 
The R package “clusterProfiler” [24] (v4.14.4) was 
used to run GSEA on the differential gene expression 
results. 

Immune Score, Immune Cell Infiltration and 
Immunogenomics Analysis 

The R package “estimate” [25] (v1.0.13) were 
used to compute immune score, stromal score, and 
ESTIMATEScore (a combined score of immune and 
stromal components) for various tumor samples. 
Immune infiltration abundance data for different cell 
types across 32 cancer types was downloaded from 
the TIMER2.0 database [15]. Spearman correlation 
analysis was conducted to assess the relationship 
between DSN1 expression levels and immune/ 
stromal scores, as well as the correlation between 
DSN1 expression and the immune infiltration 
abundance of diverse cell types. Additionally, the 
co-expression of immune regulatory genes with DSN1 
was analyzed. 

Anti-cancer Immune Response, Immune 
Therapy and Drug Sensitivity Analysis 

The anti-cancer immune activity ratings across 
the cancer immune cycle were compared and 
analyzed between high and low DSN1 expression 
groups across 33 cancer types using the Tracking 
Tumor Immunophenotype (TIP) database [26]. 
Spearman correlation analysis was performed to 
evaluate the association between DSN1 expression 
levels and tumor mutational burden (TMB) or 
microsatellite instability (MSI). Radar plots were 
produced using the R package “fmsb” (v0.7.6). DSN1 
expression data and associated clinical information 
for SKCM and BLCA patients undergoing 
anti-PD-1/PD-L1 treatment were obtained from the 
dbGaP (phs000452) [27] and IMvigor210 datasets [28]. 
Survival analysis was conducted using the R packages 
“survival” (v3.5-3) and “survminer” (v0.4.9). The 
relationship between DSN1 expression and tumor cell 
susceptibility to anti-cancer drugs was analyzed using 
the R package “oncoPredict” [29] (v1.2) and data from 
the Genomics of Drug susceptibility in Cancer (GDSC) 
database [30]. 

Results 

Elevated DSN1 Expression in Cancer Tissues 
Compared to Normal Tissues 

We first examined DSN1 mRNA expression 
levels in normal tissues using data from the GTEx 
database [14]. Relative higher expression levels of 
DSN1 were observed in tissues with cell cycle activity 
such as the testes, spleen, thyroid, lungs, and skin, 
while DSN1 expression was lower in 
non-proliferative organs such as the heart and brain 
(Fig. 2A). Single-cell RNA sequencing revealed that 
DSN1 was highly expressed in various epithelial cells 
across normal tissues (Fig. S1A). With data from the 
TCGA and GTEx databases, we found that DSN1 
expression was significantly elevated in most cancer 
samples compared to normal samples (Fig. 2B and 
S1B). Additionally, data from twelve independent 
studies in the GEO database [31,32] consistently 
confirmed that DSN1 was upregulated in most 
cancers types (Fig. S1C). The analysis of 10 DSN1 
transcripts, including 7 protein-coding, 3 non-coding 
ones showed that, almost all protein-coding 
transcripts were upregulated in most tumor tissues, 
while non-coding ones did not exhibit a clear pattern 
of upregulation or downregulation (Fig. S2). 

Next, we utilized the CPTAC protein expression 
data from the UALCAN database [18] to compare 
DSN1 protein levels in normal and tumor tissues. The 
results showed that DSN1 protein expression was 
considerably elevated in 9 cancer types, including 
BRCA, COAD, GBM, HNSC, KIRC, LIHC, LUAD, 
LUSC, and OV (Fig. 2C). Furthermore, IHC images in 
the HPA database [19] corroborated these findings, 
showing higher DSN1 protein signals in the cancer 
tissues compared to the normal counterparts (Fig. 
2D). 

To investigate DSN1 expression at single-cell 
resolution, we analyzed a large dataset of single-cell 
RNA-sequencing profiles from the TISCH database, 
encompassing 61 studies across 19 different cancer 
type [20]. Our findings revealed that DSN1 exhibited 
elevated expression levels in both malignant and 
immune cells, with particularly notable expression in 
proliferating T cells (Tprolif) in many cancer types 
(Fig. 3A). For example, in most glioma and Pancreatic 
adenocarcinoma (PAAD) datasets, DSN1 was 
predominantly expressed in malignant cells as well as 
other cell types (Fig. 3B). In most CRC, KIRC, NSCLC, 
and SKCM datasets, DSN1 was higher expressed in 
Tprolif cells (Fig. 3C). We should notice that DSN1 
was not found to be highly expressed in malignant 
cells in some studies because these studies focused on 
specific cells, and did not include a comprehensive 
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analysis of all cell types. Collectively, these data 
suggest that DSN1 may be actively involved in the 

cellular processes that underpin tumor development. 

 
 

 
Figure 2. DSN1 expression levels in normal and tumor tissues of humans. (A) Violin plot showing DSN1 expression levels in various human normal tissues. (B) Box plot showing 
DSN1 mRNA expression levels in normal and tumor tissues, derived from TCGA and GTEx datasets, with statistical significance assessed by Wilcoxon test. (C) Box plot 
illustrating DSN1 protein levels in normal and tumor tissues, with blue and red representing normal and tumor tissues, respectively. (D) Representative immunohistochemistry 
staining images of DSN1 in 10 types of normal and tumor tissues. The symbols ns, *, **, and *** represent not significant, p < 0.05, p < 0.01, and p < 0.001, respectively. 
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Figure 3. Single-cell expression analysis of DSN1 in tumor tissues. (A) Cluster heatmap showing mRNA levels of DSN1 across 37 cell types in tumor tissues. (B-C) Umap plots 
illustrating the clustering of different cell types (upper panel) and DSN1 expression levels (lower panel) in Glioma (B) and CRC (C) tissues. 

 
Pan-Cancer Genomic and Epigenomic 
Differences Based on DSN1 Expression 

To determine the pan-cancer genomic and 
epigenetic characteristics of DSN1, we examined the 
variations in the pan-cancer mutation landscape 
between the DSN1-high and DSN1-low expression 
groups using the CAMOIP platform [21]. Our 
findings revealed significant differences in mutation 
frequencies for several key genes across various 
tumors. Notably, the frequency of TP53 mutations 
varied significantly between the DSN1-high and 

DSN1-low expression groups in many cancer types, 
including LUAD, COAD, BRCA, BLCA, and others 
(Fig. 4A). 

Furthermore, we used the cBioPortal database to 
investigate the mutation types and alteration 
frequency of DSN1 across pan-cancer. The results 
demonstrated significant differences in alteration 
frequencies of DSN1 among different cancer types, 
with COAD exhibiting the highest mutation 
frequency (approximately 9.26%), followed by UCEC 
and ESCA. Amplification was the most common 
mutation type for DSN1, with high amplification 
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frequencies observed in COAD, ESCA, OV, and 
STAD. Additionally, deep deletion was observed in 
COAD, LUAD, PAAD, PRAD, and LAML, while 

multiple alterations were only found in SKCM (Fig. 
4B). 

 

 
Figure 4. Genomic epigenetic variation profiling based on DSN1 expression. (A) A panorama of the top 10 frequently mutated genes with significant differences between 
high-expression and low-expression groups based on the median DSN1 expression across pan-cancer. Fisher's exact test and BH-corrected p-values were applied. (B) Alteration 
frequency of DSN1 across various cancer types. (C) DNA methylation analysis of DSN1 across 32 cancer types, highlighting probes targeting the promoter region (red ID 
probes). The symbols *, **, ***, and **** represent p < 0.05, p < 0.01, p < 0.001, and p < 0.0001, respectively. 
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Methylation sites of DSN1, analyzed using 
TCGA data, were primarily located near the 
Transcription Start Site (TSS) and in downstream 
regions (Fig. S2D). Correlation analysis across various 
cancer types indicated that methylation at most 
TSS-proximal sites negatively correlated with DSN1 
expression, suggesting a regulatory role in gene 
suppression. Notably, methylation at cg19753867 
revealed a markedly positive correlation with DSN1 
expression in nearly 40% of cancer types, including 
BLCA, BRCA, and others (Fig. 4C). 

DSN1 as a Prognostic Biomarker Across 
Multiple Cancer Types 

To evaluate the clinical prognostic significance of 
DSN1 across various cancer types, we conducted a 
comprehensive analysis of its association with overall 
survival (OS), disease-specific survival (DSS), 
disease-free interval (DFI), and progression-free 
interval (PFI) using data from 33 cancer types in the 
TCGA database. The results indicated that DSN1 
overexpression was related to poorer OS and DSS in 
multiple cancer types, including ACC, BRCA, HNSC, 
KICH, KIRP, LGG, LIHC, MESO, PRAD, and UVM 
(Fig. 5A, 5B, and S3A). Conversely, high DSN1 
expression correlated with better OS and DSS in 
patients with CESC, KIRC, READ, STAD, and THYM. 
Additionally, elevated DSN1 level were identified as a 
risk factor for DFI and PFI in various cancer types 
(Fig. 5A and S3A). Kaplan-Meier survival analysis 
using multiple GEO datasets confirmed that high 
DSN1 expression was associated with poor OS in 
patients with BRCA, COAD, LAML, LUAD, OV, and 
PAAD, while it served as a protective factor for OS in 
patients with LUSC and STAD (Fig. S3B). Moreover, 
TCGA phenotype data analysis indicated that DSN1 
expression was associated with several clinical 
features in cancer patients (Fig. S4). Higher DSN1 
levels were found in older patients with BLCA, LGG, 
and UVM. Significant gender-based differences in 
DSN1 expression are observed in DLBC, HNSC, 
SARC, and SKCM. DSN1 expression is associated 
with proliferation and invasion (T stage) in several 
cancers, including HNSC, LIHC, LUAD, PRAD, 
TGCT, and THCA. Additionally, it is linked to 
regional lymph node metastasis (N stage) in ACC, 
HNSC, and PRAD. Interestingly, in CESC, LIHC, and 
STAD, higher DSN1 levels are negatively correlated 
with distant metastasis (M stage). DSN1 expression 
was associated with tumor staging in ACC, KIRP, 
LIHC, and SKCM, and high DSN1 levels were linked 
to increased recurrence risk in ACC, BLCA, LGG, 
LIHC, PRAD, SARC, and UVM. 

To assess the predictive effect of DSN1 across 
pan-cancer types, we employed univariate and 

multivariate Cox regression analyses, which revealed 
that DSN1 expression, along with age, gender, TNM T 
stage, TNM M stage, tumor stage, recurrence, and 
cancer type, independently predicted patient survival 
(Fig. 5B and 5C). Based on multivariate Cox 
regression and clinical factors, a nomogram was 
conducted to predict the 1-, 3-, and 5-year overall 
survival for pan-cancer patients (Fig. 5E). The 
predictive ability of the model was validated using 
receiver operating characteristic (ROC) curves (Fig. 
5F), and the nomogram's effectiveness was confirmed 
by calibration curves (Fig. 5G). 

DSN1 Overexpression Correlates with Cell 
Proliferation Pathways 

We performed a pan-cancer Gene Set 
Enrichment Analysis (GSEA) to compare 
differentially expressed genes (DGEs) between high 
and low DSN1 expression groups across various 
cancer types to investigate the influence of DSN1 in 
cancer development. High DSN1 expression in most 
cancer types was notably enriched in cell 
proliferation-related signaling pathways, such as 
MYC (which drives transcriptional activation of 
oncogenic targets) [33], mTORC1 (central to nutrient 
sensing and mitotic progression) [34], Mitotic spindle 
(regulating spindle formation), G2M (a critical phase 
of mitosis regulated by DNA damage response 
proteins) [35], and E2F (transcription factors 
controlling S-phase entry and cell cycle progression) 
[36] pathways (Fig. 5H and S5). High DSN1 
expression (as a centromere component) is associated 
with the activation of cell proliferation pathways and 
cell cycle progression, potentially promoting genomic 
instability that triggers DNA damage checkpoints or 
apoptosis, thereby contributing to tumor growth and 
progression [37]. This association is consistent with 
the function of DSN1 as a centromere protein, which 
plays a critical role in cell division and chromosome 
segregation. 

DSN1 Associates with Reduced Immune and 
Stromal Activity 

To investigate the immune-related role of DSN1 
across various cancers, we initially assessed the 
relationship between DSN1 expression and immune 
and stromal scores across 32 cancer types. The results 
demonstrated a significant negative correlation 
(p<0.01) between DSN1 expression and these scores in 
several cancers, including BRCA, CESC, COAD, 
ESCA, GBM, HNSC, KIRP, LIHC, LUAD, LUSC, OV, 
SARC, STAD, THCA, THYM, and UCEC (Fig. 6A). 
Furthermore, we explored the correlation between 
DSN1 levels and immune cell infiltration across 
multiple cancer types. The analysis revealed a 
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negative correlation between DSN1 expression and 
the infiltration of various immune cells, as determined 
by the XCELL algorithm, except for CD4+ T helper 2 

(Th2) cells and common lymphoid progenitors, which 
showed a positive association (Fig. 6B and 6C). 

 

 
Figure 5. Prognostic and GSEA analysis based on DSN1 expression. (A) Heatmap showing the correlation between DSN1 expression levels and for survival outcomes (OS, DSS, 
DFI, PFI), derived from the TCGA database. Survival analysis was performed using Kaplan-Meier (KM) test and univariate Cox regression. Red, green, white, and gray boxes 
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indicate risk factors, protective factors, non-significant analysis, and unavailable data, respectively. (B) Survival curves comparing the prognosis of DSN1-high and DSN1-low 
expression groups across 9 cancers in the TCGA database. (C) Univariate Cox regression analysis of DSN1. (D) Multivariate Cox regression analysis of DSN1. (E) Nomogram 
for predicting 1-year, 3-year, and 5-year overall survival rates for pan-cancer patients. (F) Time-dependent ROC curves of the DSN1 Cox regression model predicting 1-year, 
3-year, and 5-year overall survival. (G) Calibration plots for the nomogram predicting 1-year, 3-year, and 5-year overall survival. (H) Bubble plot of GSEA results between high 
and low DSN1 expression in tumors using hallmark gene sets. Circle size represents p-value magnitude, and color gradient (red to blue) indicates normalized enrichment scores 
(NES). 

 
 
Additionally, a co-expression analysis of DSN1 

and immune-related genes indicated that DSN1 
expression was positively correlated with several 
immune-stimulatory genes, including ULBP1, MICB, 
TNSF4, CD276, PVR, and TNFRSF13C, among 43 
immune-stimulatory genes (Fig. 6D). Moreover, 
DSN1 was positively correlated with 23 
immune-suppressive genes, including IL10RB, 
TGFBR1, KDR, ADORA2A, and CD274 (Fig. 6E). 
DSN1 expression also showed significant associations 
with immune checkpoint genes, chemokines, and 
chemokine receptors (Fig. 6F-H). Notably, DSN1 
expression showed a negative correlation with many 
immune-related genes in LUSC, which is different 
from many other cancer types. These findings suggest 
a complex and multifaceted co-expression pattern 
between DSN1 and immune-related genes. 

DSN1 as a Prognostic Biomarker in Tumor 
Immunotherapy and Predictor of Drug 
Sensitivity 

To elucidate the role of DSN1 expression in 
pan-cancer immunotherapy, we utilized the TIP 
database to obtain immune activity ratings for the 
cancer immune cycle. Our findings indicated that 
high DSN1 levels were positively correlated with 
neutrophil recruitment (step 4), Th2 cell recruitment 
(step 4), and cancer cell killing (step 7). Conversely, in 
most cancer types, elevated DSN1 expression was 
negatively correlated with CD4⁺ T cell recruitment 
(step 4), macrophage recruitment (step 4), and Th17 
cell recruitment (step 4) (Fig. 7A). The observed 
reduction in CD4⁺ T cells, macrophages, and Th17 
cells [38] may impair anti-tumor immune 
surveillance, as these cells are crucial for antigen 
presentation, modulation of the tumor 
microenvironment, and inflammatory responses. 
Additionally, in patients with CESC, COAD, and 
LUSC, high DSN1 levels were negatively associated 
with immune activity scores at several stages of the 
immune cycle. 

To further explore the significance of DSN1 in 
tumor microenvironment (TME) immunotherapy, we 
analyzed the correlation between DSN1 expression 
and tumor mutational burden (TMB) as well as 

microsatellite instability (MSI). The results revealed a 
positive correlation between DSN1 expression and 
TMB scores in ACC, BLCA, BRCA, LGG, LUAD, 
LUSC, PAAD, SARC, and STAD, whereas a negative 
correlation was observed in COAD and THYM (Fig. 
7B). Additionally, DSN1 expression exhibited a 
positive correlation with MSI scores in many cancer 
types including ACC, BLCA, BRCA, CESC, ESCA, 
and others (Fig. 7C). 

Furthermore, we explored the potential 
predictive role of DSN1 in anti-PD-1/PD-L1 therapy 
by analyzing immune therapy cohorts from the 
dbGaP (phs000452) and IMvigor210 datasets. The 
analysis revealed that patients with high DSN1 
expression had a longer overall survival (OS) in 
melanoma, while a shorter OS was observed in BLCA 
(Fig. 7D). Additionally, patients with high DSN1 
expression in melanoma and BLCA exhibited higher 
response rates to immunotherapy (Fig. 7E). These 
results indicate that DSN1 may be a useful biomarker 
for predicting the effectiveness of immunotherapy. 

To evaluate the role of DSN1 in drug sensitivity 
screening, we used the GDSC v2 database to 
calculated sensitivity scores for anticancer drugs and 
conducted a correlation analysis. The findings 
revealed a strong correlation between DSN1 
expression and various anticancer drugs across 
multiple cancer types (Fig. 7F). In nearly all cancer 
types, high DSN1 expression was significantly 
negatively correlated with Tozasertib and 
Sepantronium (indicating high drug sensitivity) and 
significantly positively correlated with Selumetinib 
(indicating high drug resistance). Interestingly, 
Tozasertib, an Aurora kinase and BCR–ABL inhibitor 
evaluated in early-phase clinical trials for refractory 
hematologic malignancies, demonstrated hematologic 
responses in Phase I/II studies [39]. Similarly, 
Sepantronium, a survivin inhibitor studied in Phase I 
trials for advanced solid tumors and lymphomas, 
achieved preliminary antitumor activity with defined 
maximum tolerated doses and manageable toxicity 
[40]. These findings align with our analysis and 
suggest that DSN1 has potential clinical applications 
in selecting anticancer drugs. 
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Figure 6. Pan-cancer immune correlation analysis of DSN1. (A) Heatmap showing the correlation between DSN1 expression and immune score, stromal score, and 
ESTIMATEScore calculated by the R package “estimate” (v4.14.4). (B) Heatmap displaying the correlation between DSN1 expression and immune cell infiltration levels, based on 
the XCELL algorithm. (C) Scatter plot showing the Spearman correlation analysis between DSN1 expression and Th2 cell infiltration in pan-cancer using the XCELL algorithm. 
(D-H) Heatmaps illustrating the Spearman correlation results between DSN1 expression and genes related to immune stimulatory factors (D), immune suppressive factors (E), 
immune checkpoints (F), chemokines (G), and chemokine receptors (H) across pan-cancer. The symbols *, **, and *** represent p < 0.05, p < 0.01, and p < 0.001, respectively. 
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Figure 7.  Immune therapy and drug sensitivity analysis of DSN1. (A) Heatmap clustering showing the differences in cancer immune cycle stages between DSN- high and 
DSN1-low expression groups. Patients were categorized into DSN1-high and DSN1-low expression groups based on their DSN1 expression levels, with the top 30% of patients 
classified as DSN1-high and the bottom 30% classified as DSN1-low. Those with p < 0.05 were considered significant. Red boxes indicate positive correlations, green boxes 
indicate negative correlations, and white boxes represent non-significant correlations. (B-C) Radar plots showing the correlation between DSN1 expression and TMB (B) and MSI 
(C). (D) Predictive value of DSN1 expression on overall survival (OS) in Melanoma (left) and BLCA (right) patients receiving anti-PD-1/PD-L1 immunotherapy. (E) Immune 
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response rates in Melanoma (left) and BLCA (right) patients. PD, progressive disease; SD, stable disease; CR, complete response; PR, partial response. (F) Heatmap of the 
correlation between DSN1 expression and sensitivity scores for various anticancer drugs. Red boxes indicate positive correlations (high DSN1 expression associated with 
increased drug resistance), while blue boxes represent negative correlations (high DSN1 expression associated with increased drug sensitivity), with lower drug sensitivity scores 
reflecting higher drug sensitivity. The symbols *, **, and *** represent p < 0.05, p < 0.01, and p < 0.001, respectively. 

 

Table 1. Summary of the multidimensional biological roles and associations of DSN1 across various cancers. Column “mRNA”, mRNA 
expression comparison between normal and tumor tissues. “+”/“-” means significant upregulation/downregulation based on TCGA/GEO 
studies while “++” means upregulation in both. Column “Pr.”, DSN1 protein levels in tumor vs. normal tissues. “+” means significant 
upregulation based on CPTAC studies. Column “SC”, single cell analysis. “T” means higher expressed in proliferating T cells while “M” 
means in malignant cells. Column “TP53 Mut.”, “+” means TP53 mutation were significantly different in DSN1 high and DSN1 low groups. 
Column “KM OS”, Kaplan-Meier overall survival analysis of DSN1 high and low expression groups. “+”/“-” indicates DSN1 as a 
risk/protective factor based on TCGA/GEO studies, while “++”/“--” denotes DSN1 as a risk/protective factor in both. Column “Met”, 
methylation levels. “-” indicates a negative correlation between DSN1 expression and methylation levels. Column “MSI”, Microsatellite 
Instability. “+” denotes a positive correlation between DSN1 expression and MSI (p < 0.05). Column “Th2”, “+” indicates a positive 
correlation between DSN1 and Th2 immune infiltration score based on the XCELL algorithm (p < 0.05). Column “ES”, ESTIMATEScore. 
“-” represents a negative correlation with DSN1 (p < 0.05). Column “Mac.”, macrophage recruitment. “+”/“-” means a positive/negative 
relationship between DSN1 and macrophage recruitment (p < 0.05). Columns “IF”, “ISTF”, “ISUF”, “ICP”, “CK”, and “CKR” represent 
immune cell infiltration, immune stimulatory factors, immune suppressive factors, immune checkpoints, chemokines, and chemokine 
receptors, respectively. Values indicate the difference between the number of significant positive and negative correlations with DSN1 
expression. Column “TMB”, tumor mutation burden. “+”/“-” means a positive/negative correlation between DSN1 expression and TMB 
(p < 0.05). Column “PD1”, “+”/“-” represents better/poorer overall survival for the high DSN1 expression group in the anti-PD-1/PD-L1 
therapy cohort. ns, not significant; empty cell, data not available (NA). 

Cancer mRNA Pr. SC TP53  
Mut. 

KM 
OS 

Met. MSI Th2 ES Mac. IF ISTF ISUF ICP CK CKR TMB PD1 

ACC ns 
  

ns + ns ns + ns - -8 13 2 0 4 3 + 
 

BLCA + 
 

T + ns - + + ns + -6 18 15 9 23 4 + - 
BRCA ++ + MT + ++ - + + - ns -1 10 10 8 0 2 + 

 

CESC + 
 

M ns - - + ns - - -14 0 -2 -5 -12 1 ns 
 

CHOL ++ 
 

MT ns ns ns ns ns ns ns -2 0 0 0 0 0 ns 
 

COAD ++ + T + + - ns ns - - -11 -5 -3 -1 2 -1 - 
 

DLBC + 
  

ns ns - ns + ns ns 2 8 3 0 -1 1 ns 
 

ESCA + 
 

MT ns ns - + + - - -8 3 -1 -2 2 -3 ns 
 

GBM + + M + ns - + + - - -10 1 3 0 -7 -1 ns ns 
HNSC ++ + MT ns + - + + - ns -7 21 9 3 7 3 ns 

 

KICH + 
  

ns + ns + + ns ns -1 11 3 1 2 1 ns 
 

KIRC ++ + T ns - ns ns ns ns ns 0 34 18 7 20 13 ns ns 
KIRP + 

  
ns + - + ns - - -15 10 4 0 -5 2 ns 

 

LGG + 
  

ns + - + + ns - -2 26 18 9 5 13 + 
 

LIHC ++ + MT + + - + + - ns -4 32 16 8 15 12 ns 
 

LUAD ++ + T + + - + + - ns -14 2 7 4 6 -6 + 
 

LUSC + + T ns - - + ns - - -22 -22 -9 -5 -25 -16 + 
 

MESO 
   

ns + ns ns + ns ns -4 11 3 1 -1 0 ns 
 

OV ++ + MT ns + ns + + - - -12 26 18 8 9 9 ns 
 

PAAD ++ ns M ns ++ ns + + ns - -4 13 8 4 1 1 + 
 

PCPG ns 
  

ns ns ns ns ns ns - -2 12 5 1 4 3 ns 
 

PRAD + 
 

M ns + - + ns ns ns 5 41 21 9 23 15 ns 
 

READ + 
  

+ - - + ns ns - -2 5 1 0 8 1 ns 
 

SARC + 
  

+ + - + + - - -19 -3 1 2 -5 0 + 
 

SKCM + 
 

T ns ns - + + - ns -11 10 8 3 3 1 ns + 
STAD ++ 

 
ns + -- - + ns - - -19 -7 -1 -1 0 -10 + 

 

TGCT - 
  

ns ns - ns + ns ns 10 14 10 9 -14 5 ns 
 

THCA ns 
 

MT ns ns ns ns ns - - -16 5 -1 -4 -7 -1 ns 
 

THYM + 
  

ns - - ns + - - -3 -6 0 -2 -16 -3 - 
 

UCEC ++ ns MT + ns ns ns + - ns -12 7 2 -2 -2 1 ns 
 

UCS + 
  

ns ns ns ns ns ns - -1 0 2 0 -1 -1 ns 
 

UVM 
  

ns ns + ns + + + 
 

11 37 21 10 25 14 ns 
 

 
 
 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

2462 

Discussion 
Cancer's high global mortality rate drives the 

imperative for developing new and effective 
therapeutic strategies and the identification of reliable 
biomarkers for early detection, prognosis, and 
treatment response prediction [41,42]. While the 
crucial role of DSN1 in maintaining genomic stability 
through proper chromosome segregation is 
established [37,43], its pan-cancer implications remain 
under investigation. Previous studies have linked 
DSN1 overexpression to poor prognosis in specific 
cancers, such as colorectal cancer [7], liver cancer [9], 
breast cancer [10] and lower-grade glioma [12]. This 
study provides the first comprehensive pan-cancer 
analysis of DSN1, revealing its diverse roles in 
tumorigenesis and progression, and establishing its 
potential as a promising biomarker for 
immunotherapy and drug sensitivity prediction 
(Table 1, Fig. S6). 

Our findings, in conjunction with previous 
research, demonstrate that DSN1 is frequently 
overexpressed in a wide array of cancers. This 
overexpression is evident at both the mRNA and 
protein levels (Table 1), as shown by the analysis of 
TCGA, GTEx, and CPTAC databases. The elevated 
expression of DSN1 in both cancerous tissues and 
normal tissues with high cell turnover, further 
supports its role in actively dividing cells and its 
potential contribution to tumorigenesis. The 
consistent upregulation across diverse cancer types, 
highlights its potential as a common driver of 
oncogenesis. 

The observed upregulation of DSN1 in cancer is 
likely driven by a combination of genomic and 
epigenomic alterations. Our analysis reveals that gene 
amplification is a significant contributor, particularly 
in cancers like COAD, ESCA, OV, and STAD, where 
high frequencies of DSN1 amplification were 
observed. Furthermore, the differential TP53 mutation 
frequencies between DSN1-high and DSN1-low 
groups in several cancers, including LUAD, COAD, 
BRCA, BLCA, GBM, LIHC, READ, SARC, and UCEC, 
intimate a complex interplay between DSN1 and this 
crucial tumor suppressor. DSN1 overexpression 
caused genomic instability may create a cellular 
environment that selects for TP53 mutations, thereby 
compromising its ability to safeguard genomic 
integrity. The observed negative correlation between 
methylation at TSS-proximal sites and DSN1 
expression suggests that DNA methylation likely 
plays a role in suppressing DSN1 levels, adding 
another layer of regulation to its expression. 

The prognostic significance of DSN1 exhibits 
marked variability across different cancer types. 

While elevated DSN1 expression is associated with 
poor prognosis in numerous cancers, including ACC, 
BRCA, HNSC, KICH, KIRP, LGG, LIHC, MESO, 
PRAD, and UVM, it paradoxically correlates with a 
favorable prognosis in others, such as CESC, KIRC, 
READ, STAD, and THYM. This dichotomy likely 
reflects the diverse tumor microenvironments and the 
specific oncogenic pathways that predominate in 
different cancer types. In cancers where DSN1 
overexpression drives aggressive proliferation and 
genomic instability (e.g., BRCA LIHC), its association 
with poor outcomes is consistent with its role in 
promoting uncontrolled cell division. Conversely, in 
cancers like KIRC and STAD, where other oncogenic 
pathways might be more dominant or where a higher 
degree of differentiation is maintained, high DSN1 
expression could reflect a less aggressive subtype or 
distinct underlying biology where excessive DSN1 
triggers immunogenicity (via elevated TMB/MSI) and 
mitotic catastrophe (through unresolved chromosome 
missegregation), tipping the balance toward tumor 
suppression [44]. These findings underscore the 
importance of considering the specific cellular and 
molecular context when evaluating DSN1’s 
prognostic value.  

Across multiple cancer types, high DSN1 
expression was significantly associated with the 
activation of key cell cycle-related pathways, 
suggesting that DSN1 may promote tumor cell 
proliferation by influencing these pathways. This 
aligns with previous studies that DSN1 directly 
promotes colorectal cancer progression by regulating 
the G2/M phase of the cell cycle [7]. Previous study in 
gastric cancer demonstrated that silencing of the 
transcription factor estrogen-related receptor alpha 
(ESRRA) downregulates DSN1, leading to inhibition 
of the CDC25C-CDK1-Cyclin B1 pathway and 
subsequent G2/M arrest [45]. While ESRRA is 
recognized for its role in various cancers, including 
breast cancer [46], glioma [47], and gallbladder cancer 
[48], its regulation of DSN1 provides a mechanistic 
link between this transcription factor and the cell 
cycle machinery. This highlights DSN1 as a potential 
key downstream target of ESRRA, mediating its 
oncogenic effects through modulation of cell cycle 
pathways. 

The relationship between DSN1 and the tumor 
immune microenvironment exhibited striking 
variations across different cancer types. While high 
DSN1 expression in many cancers correlates 
negatively with immune and stromal scores, the 
underlying mechanisms appear to be cancer-type 
specific. In most cases, high DSN1 is associated with 
reduced infiltration of most immune cell types, 
potentially facilitating immune evasion by rapidly 
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proliferating tumor cells. However, the notable 
positive correlation with Th2 cell infiltration across 
various cancers suggests another potential 
mechanism by which DSN1 may promote tumor 
progression. Th2 cells, known for their 
immunosuppressive functions and ability to dampen 
cytotoxic T cell responses, could create a feedback 
loop favoring tumor growth in DSN1-high tumors 
[49]. The distinct immune landscape of LUSC, where 
DSN1 is negatively correlated with many 
immune-related genes, further emphasizes this 
cancer-type specificity. The heterogeneity in DSN1's 
interaction with the immune landscape underscores 
the necessity for a context-dependent understanding 
of its immunomodulatory role in different cancers. 

Immune checkpoint inhibitor (ICI)-based 
immunotherapy has emerged as a highly promising 
strategy in cancer treatment [50], and DSN1 showed a 
potential as a biomarker for immunotherapy and drug 
sensitivity. The positive correlation between DSN1 
expression and TMB, as well as MSI, in a substantial 
number of cancers suggests that DSN1-high tumors 
might be more immunogenic, potentially due to 
increased neoantigen presentation resulting from 
genomic instability. This could, in part, explain the 
higher response rates to immunotherapy observed in 
DSN1-high patients with melanoma and BLCA (Fig. 
7E). However, the contrasting prognostic implications 
of high DSN1 expression in these two cancers during 
immunotherapy—favorable in BLCA and 
unfavorable in SKCM—highlight the critical influence 
of the specific tumor immune microenvironment. In 
BLCA, DSN1 correlates positively with CD4+ Th1 
cells (Fig. 6B), PDCD1, LAG3 (Fig. 6F), CXCR5 (Fig. 
6H), and enhanced T-cell recruitment (Fig. 7A), 
indicative of a pro-inflammatory and 
immunoresponsive microenvironment. Conversely, 
in SKCM, DSN1 is associated with reduced Th1 
infiltration (Fig. 6B), downregulated PDCD1 and 
LAG3 (Fig. 6F), suppressed CXCR5 (Fig. 6H), and 
impaired T-cell recruitment (Fig. 7A), collectively 
fostering an immunosuppressive milieu resistant to 
checkpoint inhibition. Furthermore, the association 
between DSN1 expression and drug sensitivity, 
particularly the increased sensitivity to Tozasertib and 
Sepantronium in DSN1-high tumors, provides a 
compelling rationale for exploring DSN1 as a 
predictive biomarker for selecting personalized 
therapeutic strategies. The fact that these drugs target 
pathways involved in apoptosis, cell proliferation, 
and protein degradation aligns with DSN1's functions 
in cell cycle regulation and suggests a mechanistic 
link between DSN1 expression and drug response. In 
particular, Tozasertib, an Aurora kinase inhibitor, is 
hypothesized to interfere with the Aurora B 

phosphorylation of DNS1, thereby inhibiting the 
CENP-C:MIS12-C interaction and ultimately blocking 
mitosis and tumor proliferation [51,52]. 

Our study provides a comprehensive pan-cancer 
analysis of DSN1, revealing its multifaceted roles in 
tumorigenesis and its context-dependent impact on 
prognosis and the tumor immune microenvironment 
(Table 1, Fig. S6). While these findings are promising, 
they require validation through in vitro and in vivo 
experiments with more clinical data, as well as further 
investigation with larger clinical datasets to confirm 
the potential differential roles of DSN1 across various 
cancer types. 

Conclusion 
DSN1 emerges as a critical player in cancer with 

multifaceted clinical implications: (a) as a prognostic 
biomarker, its dual prognostic significance (poor 
outcome in aggressive cancers like BRCA/LIHC 
versus favorable prognosis in KIRC/STAD) reflects 
tumor microenvironment heterogeneity; (b) a as an 
immunotherapy response indicator, where its 
association with elevated TMB/MSI and differential 
immune microenvironment features (e.g., Th1/Th2 
balance, PDCD1/LAG3 expression) predicts response 
variability in melanoma and bladder cancer; and (c) as 
a therapeutic target, with DSN1-high tumors showing 
heightened sensitivity to mitotic kinases inhibitors 
(Tozasertib) and survivin antagonists (Sepantronium). 
These context-specific roles, combined with its 
impacts on genomic instability, immune modulation, 
and drug sensitivity, establish DSN1 as a versatile 
candidate for precision oncology strategies to 
improve diagnostic and therapeutic outcomes. 
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