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Abstract

Colorectal cancer (CRC) is one of the most common and deadly malignancies. Lack of efficient
biomarkers for prognosis has limited the improvement of survival outcome in patients with CRC.
Numerous studies have demonstrated the important roles of cancer stem cells (CSCs) in both
treatment resistance and disease recurrence of CRC. Thus, the current study aims to construct a
prognostic model based on expression level of CSC-related genes for precise molecular subtyping
of CRC patients with different prognoses, TME infiltration patterns and therapeutic responses. The
RNA sequencing data and clinical information were obtained from UCSC Xena database, followed
by identification of differential expressed genes, univariate Cox regression, and LASSO regression
to identify prognostic CSC-related genes and construct a novel prognostic risk scoring model
consisting of 21 CSC-related genes. The patients in high-risk group suffered poor survival outcome
(P<0.0001). Moreover, the performance of CSC-related prognostic model was validated in
individual GEO datasets including GSE41258 and GSE39582 (P<0.05). Furthermore, patients with
high-risk score exhibited lower response rate to immune checkpoint inhibitors as compared to
those in low-risk group (17.4% vs. 28.2%), indicating the potential of CSC-related prognostic model
to predict the immunotherapy response. Collectively, our findings provide an effective model to
predict the immunotherapy response and survival outcome in patients with CRC.
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Introduction

Colorectal cancer (CRC) is currently the third
most common malignancy and the second leading
cause of cancer-related mortality worldwide, with
1,931,590 newly diagnosed cases and 935,173 deaths
from cancer in 2020[1]. The long-term outcomes of
patients with CRC have substantially improved due
to considerable evolvement of surgical treatment,

chemotherapy, and immunotherapy[2]. However,
approximately one-fourth of patients present with
distant metastases at the time of diagnosis and
additional 25-50% of patients diagnosed at early
stages subsequently develop metastatic diseases,
which are major causes of treatment failure and thus
poor prognosis[3]. Therefore, there is an urgent need
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to identify effective biomarkers or indicators for
treatment guidance and prognosis prediction in
patients with CRC.

Cancer stem cells (CSCs) are a small subset of
cancer cells with the ability to self-renew and
dedifferentiate, which are critical for initiating and
sustaining the growth of tumor[4]. The aberrant
expression of CSC-related genes is supposed to play
important roles in regulating the proliferation,
metastasis, and therapeutic resistance of tumor cells,
and thus shed a new light on the CSC-targeted
therapies of tumor[5]. Recently, the gene
expression-based stemness index (mRNAsi) was
utilized for identification of therapeutic targets and
precise prognosis in multiple cancers including
gastric cancer[6,7], head and neck squamous cell
carcinomas|8,9], prostate adenocarcinoma[10],
esophageal cancer[11], bladder cancer[12], lung
cancer[13], and glioma[14]. Collectively, the findings
have revealed the potential of CSC-related genes as
biomarkers to satisfy the unmet need for risk
stratification and treatment optimization in patients
with cancer. However, the relationship between the
CSC-related genes and outcome in patients with CRC
has been rarely explored.

In the current study, a prognostic model based
on expression level of CSC-related genes was
established for precise treatment planning and
accurate prognosis of patients with CRC.

Materials and Methods

Data acquisition

The gene-level copy number data (SNP6.0 array),
DNA methylation (Methylation 450K array), mRNA
and miRNA expression data (z-score normalized), list
of somatic mutations (including SNPs and INDELSs)
and copy number variations (CNV, including AMP
and DEL), reverse phase protein array (RPPA) data,
stemness scores (DNA methylation based and RNA
expression-based), immune signature scores, and
corresponding phenotype data of TCGA Pan-Cancer
(PANCAN) cohort were collected by using UCSC
Xena[15]. The different sets of transcript expression
data were re-calculated and normalized by using
UCSC TOIL recompute pipeline. After exclusion of
subjects diagnosed under age 18, a total of 12,591
subjects and 33 cancer types were enrolled for further
analyses. In the TCGA-COAD cohort, patients with
age under 18, relapsed/secondary tumors, ambiguous
and/or missing clinical and follow-up data were
excluded. Eventually, a total of 450 patients were
included for subsequent analyses. Moreover, eight
expression profile datasets including GSE13507,
GSE4412, GSE21653, GSE41258, GSE84437, GSE42127,

GSE23554, GSE57495, and  GSE39582  were
downloaded from Gene Expression Omnibus (GEO)
database[16] as validation sets. Furthermore, the
clinical characteristics and RNA expression data of
patients with urothelium carcinoma in IMvigor 210
cohort were downloaded by using R package
IMvigor210CoreBiologies to assess the response to
immunotherapy[17]. Responders are referred to as
patients with complete remission (CR), or partial
remission (PR), whereas non-responders are defined
as those with stable disease (SD) or progressive
disease (PD). The infiltration of immune cells and
response to therapies were evaluated by using
CIBERSORT][18] algorithm, ESTIMATE[19] algorithm,
TIDE[20] algorithm, and GDSC[21] database,
respectively. The list of CSC-related genes was
obtained by searching in the molecular signatures
database (MSigDB)[22], cancer stem cells database
(CSCdb)[23], and published literatures.

Classification of molecular subtypes

CSC-related genes associated with survival of
cancer patients were identified by univariate Cox
regression analysis, followed by consensus clustering
using R package ConsensusClusterPlus[24]. The
relative change in area under the CDF curve was
evaluated to determine the optimal k value and thus
the number of clusters. The difference in length of
survival time between distinct molecular subtypes
was assessed by weighted log-rank test, and
Kaplan-Meier (K-M) curves were plotted by using R
package survival. The hazard ratio (HR) and P were
calculated by using Cox regression analyses between
molecular subtypes with the most favorable or
poorest prognosis in multiple cancers, followed by
validation in additional GEO datasets.

Identification of Differentially Expressed
Genes (DEGs) among different subtypes

DEGs between molecular subtypes with either
best or poorest prognosis were identified by using R
package limma[25] according to the threshold of |log>
fold change (FC)| = 1 and false discovery rate
(FDR) <0.05. Subsequently, R packages
EnhancedVolcano and pheatmap were employed to
visualize the results of differential expression
analyses.

Construction and validation of prognostic
model based on CSC-related genes

Candidate genes represented in both lists of
DEGs among different subtypes and CSC-related
genes were further analyzed by using univariate Cox
regression, and genes with P < 0.01 were identified as
prognosis-associated genes. Subsequently, Lasso
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regression was applied to perform dimensionality
reduction and establish the prognostic model. The
risk score for each patient with CRC was calculated
according to the following formula, in which G
represents the regression coefficient for gene j and
expij represents the expression of gene j in sample i.

n
Risk score; = 2 C; * expy;
j=1

The same formula was used in both the training
set and external validation cohorts. Patients were
assigned to low-risk or high-risk subset using the
median of risk scores as threshold. Kaplan-Meier
(K-M) curves and log-rank tests were applied to
assess the difference in outcome of patients. R
package timeROC was employed to generate ROC
curve and calculate area under time dependent ROC
curve (AUC). The risk scores of 298 patients from
IMvigor210CoreBiologies dataset were calculated to

Statistical analysis

Statistical analyses were carried out by using R
(version 4.1.2). Statistical significance between two
groups was tested using Student’s t-test. For variables
more than three groups, a one-way analysis of
variance or the Kruskal-Wallis test was used,
depending on the type of data. Correlation
coefficients were calculated using Spearman’s
correlation analysis. P < 0.05 was considered to
indicate a significant difference, unless otherwise
stated.

Results

Identification of Molecular Subtypes based on
CSC-related Genes

Thirty-four out of 206 selected CSC-related genes
were differentially expressed in CRC tissues as
compared with normal tissues, as well as in other

evaluate their predictive ability of cancers .cataloged in. TCGA database (Figure S1,
immunotherapeutic ~ responsiveness by using Supporting Information). On  the basic of the
Kruskal-Wallis test. expression level of 34 differentially expressed genes
(DEGs), patients with CRC were divided into four
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Figure 1. Identification of CSC-related subtypes by K-means analysis. (A-B). K = 4 was identified as the optimal value for consensus clustering, the patients were divided into 4
distinct gene clusters. C. Kaplan-Meier survival curve showing survival probability for the 4 subtypes.

https://lwww.jcancer.org



Journal of Cancer 2025, Vol. 16

2378

molecular subtypes with different lengths of
progression free survival time (Figure 1A-B), patients
in subtype 2 had significantly better clinical outcome
than those in subtype 3(Figure 1C). Furthermore, the
differences in survival outcome were observed
between subtypes classified based on the expression
of DEGs in patients with diverse types of cancer in
TCGA database (Figure S2A, Supporting Information)
and GEO datasets (Figure S2B, Supporting
Information).

Characteristics of CSC-related clusters for
COAD

To explore the characteristics of CSC-related
clusters, immune infiltration levels of 22 immune cells
among the 4 subtypes in COAD were obtained from
known studies and shown in Figure 2A. Moreover,
clinical characteristics including the number of lymph
nodes, whether MMR is deficient (dAMMR), MSI
statues treatment statues, pathological stage, TNM
stage, age, and gender were interrogated among
different subtypes (Figure 2B). A total of 1065
differentially expressed genes (DEGs) were identified
(|logoFC| = 1, P< 0.05), and the volcano map
accurately reflected the gene expression differences

between subtype 2 and subtype 3 (Figure 2C). The top
50 differentially expressed genes among different
subtypes was shown in heatmap (Figure 2D).

Construction of CSC-related genes signature
for COAD

The differential expressed genes were combined
with CSC-related genes. After Univariate Cox
regression analysis and least absolute shrinkage and
selection operator (LASSO) regression analysis
(Figure 3A-B), 15 potential pro-oncogenes (HR > 1,
INTS3, LINGO1, GRB7, PLXNB3, PTPRN, GRP,
FABP4, Ceorfl5, DKK1, CALB2, RARG, PCOLCE2,
GADD458, L1CAM, INHBA) and 6 potential
suppressor genes (HR < 1, HSPB7, TNS1, DPYSL4,
ISM1, FABP5, SPEG) were identified (Figure 3C). The
above CSC-related genes were used to develop the
risk score prognostic signature, and the risk score for
each COAD sample was calculated according to the
following formula: coefficient x Expr (INTS3,
LINGO1, GRB7, PLXNB3, PTPRN, GRP, FABP4,
Céorfl5, DKK1, CALB2, RARG, PCOLCE2, GADD458,
LICAM, INHBA, HSPB7, TNS1, DPYSL4, ISMI,
FABP5, SPEG). Patients were divided into high-risk
and low-risk groups according to the median risk
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Figure 2. Characteristics of CSC-related clusters for COAD. (A). The immune infiltration levels of 22 immune cells among the 4 subtypes in COAD. (B). Heatmap showing the
4 subtypes in different clinical characteristics and clusters. (C). The volcano map reflects the differential expressed genes identified (|Log2FC| >1 and P <0.05). (D). Heatmap

showing the top 50 differential expressed genes among the 4 subtypes.
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score. The high-risk group had significant worse
clinical outcomes (PFS: P<0.0001, Figure 3D; OS:
P=0.0038, Figure S3, Supporting Information). Risk
score curve plot and curve plot were shown in Figure
3E-F. The survival ROC curves predicted by the
signature showed that the AUCs were all greater than
0.8, indicating the effectiveness of the CSC-related
signature in predicting prognosis for COAD at the
1-year (AUC=0.64), 3-year (AUC=0.7), and 5-year
(AUC=0.67) time points (Figure 3G). Heatmap
displayed the distribution of 21 genes in the
prognostic signature between the two groups (Figure
3H).

Validation of the prognostic signature in GEO
Cohort

To validate the performance of the CSC-related
signature in predicting OS, risk scores were calculated
with the same formula for patients in GSE41258 and
GSE39582. Similarly, the survival curve in GEO cohort
also demonstrated that the high-risk group showed a
poor overall survival compared to the low-risk group
(Figure 4). Moreover, the survival ROC curves
showed good effectiveness in predicting prognosis
(Figure 4).

Immunotherapy response prediction

The results based on the wuse of the
Imvigor210CoreBiologies  dataset showed that
patients in the high-risk group exhibited no adverse
OS compared to those in the low-risk group (P = 0.31,
log rank test; Figure 5A). However, the response rate
to ICIs was significantly higher in the low-risk group
than that in the high-risk group (28.2% vs. 17.4%,
respectively; Figure 5B). Concurrently,
non-responders to ICIs (SD + PD) presented with
higher risk scores than responders (CR + PR, Figure
5C). This finding indicates that the risk score can be
used as a prognostic marker of the immune response.

The landscape of CSC-related score in
pan-cancers

The CSC-related score was calculated among all
types of cancers and shown in Figure 6A. Samples
with CNV had significantly higher CSC-related score
than those without (Figure 6B). The CSC-related score
showed a correlation with CNV in pan-cancers
(Figure 6C). For example, the KIRP patients with
AMP had a significant higher CSC-related score.
Meanwhile, the HNSC patients with DEL had a
significant higher CSC-related score. Genome-wide
variation with CNV and somatic mutation was shown
as the CSC-related score increased in GI cancers,
including COAD (Figure 6D) and STAD (Figure 6E).

Survival analyses of CSC-related signature in
pan-cancers

Univariate Cox regression analysis and
multivariate Cox regression analysis (adjusted for age,
gender, and tumor grade) were applied to calculate
the risk of CSC-related score on patient survival time
(including PFS and OS, Figure 7A-B). The samples
were divided into high-risk and low-risk groups
according to the median CSC-related score.
Kaplan-Meier curves for progression-free survival
(PFS, Figure 7C-]) and overall survival (OS, Figure S4,
Supporting Information) in pan-cancers were
significant, the low-risk group had a higher survival
rate.

Correlation of CSC-related score with
immune characteristics and stemness score in
pan-cancer

The Immune characteristics between high-risk
and low-risk groups were demonstrated, including
differences in Immune score, TIDE score and TMB
(Figure 8A-C). Meanwhile, the correlation between
CSC-related score and tumor stemness index
(including mRNAsi, EREG-mRNAsi and mDNAsi)
were presented in scatter plots (Figure 8D).

Marker counts of mMRNA, miRNA, protein,
mutation, SCNV and drug sensitivity analysis
between groups based on CSC-related score

We utilized a performance score algorithm in
pan-cancer using logistic regression analysis,
corrected for clinical factors (including confounding
factors such as age), and screened genes for which
confounding factors were balanced between the two
groups (Methods and Materials). For mRNA, 19,793
marker genes were screened; For miRNA, 743 marker
genes were screened. For protein level, 214 marker
genes were screened; For the mutation level, 135
marker genes were screened; For SCNV, 1671 marker
genes were screened. Then, we calculated and
obtained differentially expressed marker genes at
mRNA, miRNA, protein, mutation and SCNV levels
according to the high-risk and low-risk groups
(Methods and Materials) (Figure 9A). The Ratio of
characteristic marker genes with significant
differences between high and low groups was
calculated.

For mRNA marker genes in the high CSC-related
score group (genes present in at least 10 cancer types),
we performed drug sensitivity analysis based on cell
line drug response data. A total of 104 marker genes
was associated with 141 significant drugs (|R| = 0.3
and FDR < 0.05, Figure 9B). In addition, we found that
most of the mRNA marker genes showed a positive
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correlation with drug small molecules (R 2 0.3 and  as DNA replication and WNT signaling (Figure 9B). In
FDR < 0.05), such as FN1 and FLNA (Figure 9B). The  addition, we found that drugs related to chromatin
corresponding signaling pathways of drug targets  histone acetylation pathway showed correlation with
were explored, and a total of 23 were involved, such ~ the most marker genes (Figure 9B).
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Figure 3. Construction of CSC-related genes signature for COAD. (A, B) The LASSO regression analysis of CSC-related genes associated with prognosis. (C). The coefficient
score of the final selected genes. (D). Kaplan-Meier survival curve showing survival probability of high-risk or low-risk subgroups. (E). Risk score curve plot. The dotted line
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by the signature. (H). Heatmap showing the distribution of 21 genes in the prognostic signature between the two groups.
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Discussion

CRC is one of the most prevalent malignant
tumors worldwide, resulting in high morbidity and
mortality[26]. Although CRC might be cured by

radical surgery combined with chemo- and
radiotherapy, drug resistance, recurrence and
metastasis are still the main causes of CRC-associated
mortality. Accumulating evidence showing CRC
originates from cancer stem cells (CSCs)[27,28]. CSCs
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are capable of forming metastatic tumors owing to
their  proliferative  capability[4], and it is
acknowledged that CSCs are the main reasons
resulting in treatment resistance and disease
recurrence in CRC[29], which make them as
promising therapeutic targets. In this study, we
focused on the treatment planning and prognosis
prediction value of CSC-related genes in pan-cancers
especially CRC. We suggest that precise molecular
subtyping of CSC-related genes would prospectively
stratify CRC patients with different prognoses, TME
infiltration patterns and therapeutic responses.
Among the 4 diverse molecular subtypes
identified by consensus clustering based on the
CSC-related genes, subtype 2 had significant better
clinical outcome than subtype 3. To further elucidate
the expression characteristics of the two subtypes, we

LASSO regression analysis was performed, and a
prognosis signature comprising 21 CSC-related genes
in CRC was construted. The risk score of each patient
was calculated and divided into high-risk and
low-risk groups. The high-risk group had significant
lower survival time than the low-risk group. With
respect to immunotherapy, low-risk patients received
better clinical benefits from ICIs when applying our
signature to IMvigor210. Then we explored the
application of the signature in pan-cancer. Patients
with CNV exhibited significantly higher CSC-related
scores compared to those without. Patients in
high-risk group had better survival rate, immune
score and TIDE score.

Previous research has partially elucidated the
roles of CSC-related genes in cancer occurrence and
development, as well as their potential as targets for

performed differential expressed gene analysis, and a  cancer  treatment. GRB?, growth  factor
total of 1065 differential expressed genes were receptor-bound protein 7, played an important role in
identified. The DEGs were intersected with  MEKi resistance in CRC cells with KRAS
CSC-related genes that connected with the lengh of  mutations[30]. The overexpression of Protein
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Figure 6. CSC-related score in pan-cancer and the relation with CNV. (A). Scatter plot of CSC-related score in pan-cancer. (B). Boxplot of samples with CNV (including AMP
and DEL) versus wild type (WT). (C). Relative difference value and significance distribution of samples with CNV in pan-cancer. Genes with significant CNV and genes with
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promoted LUAD cell migration and the expression of
EMT markers by influencing MEK/ERK and
PI3K/AKT signaling[31]. Gastrin Releasing Peptide
(GRP) is a kind of secretory protein and regulates
numerous functions of gastrointestinal and central
nervous system. GRP exerted mitogenic effect to
accelerate proliferation of CRC and head and neck
squamous cancer cells[32]. Fatty acid-binding protein
4 (FABP4), as a carrier protein for fatty acids, is widely
expressed in adipocytes, macrophages, dendritic cells,
and microvascular endothelial cells. It participates in
lipid transport, metabolism, and intracellular signal
transduction. FABP4 may promote CRC progression
related to  epithelial-mesenchymal  transition
(EMT)[33]. Wnt signalling inhibitor DKK1 Promotes
tumor immune evasion and impedes Anti-PD-1
treatment[34]. The L1 cell adhesion molecule
(LICAM) promotes tumor growth and metastasis[35].
As a secretory protein, Inhibin BA (INHBA) is a

member of the TGF-B superfamily. INHBA was
aberrant overexpression in CRC tissues and closely
related to the poor prognosis of CRC patients[36].
TNS1 encodes cytoskeletal protein that maintains
structural integrity and mediates signal transduction.
Elevated TNS1 expression in CRC cells had been
revealed to increase cell proliferation and
invasiveness[37,38]. DPYSL4 is a member of the
collapsin response mediator protein family, which is
involved in cancer invasion and progression. DPYSL4
plays a key role in the tumor-suppressor function of
p53 by regulating oxidative phosphorylation and the
cellular energy supply via its association with
mitochondrial supercomplexes, possibly linking to
the pathophysiology of both cancer and obesity[39].
ISM1 promoted EMT and colon cancer cell migration
and proliferation[40]. Different from the above, Fatty
Acid Binding Protein 5 (FABP5) suppresses colorectal
cancer progression[41].
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Figure 7. Survival analyses of CSC-related signature in pan-cancers. Univariate and multivariate Cox regression analysis of CSC-related score on the risk of PFS (A) and OS (B)

in pan-cancer. (C-J). Survival curves (PFS) of high-risk and low-risk groups in pan-cancer.
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Figure 8. Correlation of CSC-related score with immune characteristics and stemnes

(A), TIDE score (B), and TMB (C) between high and low CSC-related score groups.

s score in pan-cancer. Boxplot displaying immune characteristics including immune score
(D) Correlation of CSC-related score with mDNAsi, EREG mRNAsi and mRNAsi in

pan-cancer. The redder color indicates a stronger positive correlation, and the bluer color indicates a stronger negative correlation.

Taken together, through consensus clustering on
CSC-related genes in CRC, 4 subtypes with diverse
prognosis, immune infiltration levels and clinical
characteristics were identified. By applying
Univariate Cox regression analysis and LASSO
analysis, a 21-gene CSC-related signature was
constructed and validated in GEO cohorts of CRC
patients. The model has prospective clinical
implications for prognosis evaluation and and
preferential use of ICIs in CRC. Furthermore, the
expression levels of CSC-related genes in tumor cells
are also  related to  prognosis,  tumor

mircroenvironment, treatment outcome, stemness
score and the efficacy of different
chemotherapy-related drugs in pan-cancer. These
results thus provide a reference for future research on
CSC-related genes as potential pan-cancer targets.
Our study also has some limitations including lack of
internal or external laboratorial validation of the
newly developed prognostic model, as well as
comparison ~ with  other existing prognostic
markers/models, which is warranted in the future
study.
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