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Abstract 

Background: The occurrence of papillary thyroid cancer (PTC) has risen substantially and tends to 
exhibit early-stage lymph node metastasis (LNM), increasing the risk of postoperative recurrence and 
decreasing survival. There is a lack of a machine learning (ML) model to predict delphian LNM (DLNM) in 
PTC. This investigation seeks to comprehensively assess the significance of standard clinical indicators for 
DLNM prediction, while constructing a dependable and widely applicable ensemble ML framework to 
support surgical planning and therapeutic decision-making. 
Methods: This investigation incorporated 1993 sequential PTC patients who underwent curative 
surgical procedures from 2020 to 2023. Based on the time to surgery, we divided the cohort into the 
training cohort (n=1395) and the validation cohort (n=598). The Boruta algorithm was applied to select 
feature variables, succeeded by the development of an innovative ML structure combining 12 ML 
techniques across 113 permutations to create a unified prediction model (DLNM index). ROC analysis, 
calibration curve, Bootstrapping, 10-fold cross validation, restricted cubic spline (RCS) regression, 
multivariable logistic regression, and subgroup analysis were utilised to evaluate the predictive accuracy 
and discriminative ability of the DLNM index. Model interpretation and feature impact visualisation were 
accomplished through the Shapley Additive Explanations (SHAP) methodology. 
Results: Based on 14 features via the Boruta algorithm selection, we integrated them into 12 ML 
approaches, yielding 113 permutations, from which we identified the superior algorithm to establish a 
consensus ML-derived diagnostic model (DLNM index). The DLNM index exhibited excellent diagnostic 
values with a mean AUC of 0.763 in two cohorts and discriminative ability, serving as an independent risk 
factor (P < 0.001). It performed better in predicting performance and yielded a larger net benefit than the 
published model (P < 0.05). Bootstrapping and 10-fold cross validation, and subgroup analysis showed 
that the DLNM index was generally robust and generalisable. SHAP explains the importance of ranking 
features (tumour size, right 4 region LN, FT4, TG, and T3) and visualises global and individual risk 
prediction. RCS regression suggested a nonlinear link between the DLNM index, TG, tumour size, FT3, 
and DLNM risk. 
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Conclusion: An optimised explainable model (DLNM index) comprising 12 clinical features based on 
multiple ML algorithms was constructed and validated to provide an economical, readily available, and 
precise diagnostic instrument for DLNM in PTC, which has potential implications for clinical practice. The 
SHAP explanation and RCS regression quantify and visualise tumour size and FT4 as the most important 
variables that increase DLNM risk. 

Keywords: delphian lymph node metastasis; papillary thyroid cancer; machine learning approaches; prediction model; model 
interpretability 

Introduction 
The incidence of thyroid cancer has substantially 

risen over recent decades, with papillary thyroid 
cancer (PTC) comprising the majority at roughly 80%–
90% [1,2]. While PTC patients experience low 
mortality rates, metastatic spread to cervical lymph 
nodes (LN) occurs promptly and commonly, with 
lymph node metastasis (LNM) rates ranging from 
20% to 90% [3]. The central cervical nodes, 
encompassing right and left paratracheal, pretracheal, 
and prelaryngeal LN, represent the primary sites of 
nodal metastasis in PTC cases [4]. Current research 
indicates that cervical LNM functions as a negative 
predictor associated with locoregional recurrence and 
distant metastasis [5,6]. Therefore, precise 
preoperative assessment of LNM extent and 
distribution is essential for developing targeted 
prevention and intervention approaches. 

The Delphian LN (DNL), also known as the 
prelaryngeal LN, is a central regional LN component, 
typically manifesting as an individual node or nodal 
cluster, facilitating lymphatic flow from the throat 
and thyroid structures [7]. Contemporary research 
suggests that DLN metastasis (DLNM) serves as a 
reliable indicator of regional nodal involvement and 
reoccurrence in diverse malignant head and neck 
tumours encompassing PTC [8,9]. Although DLNM is 
one of the common local LNMs in PTC, it has often 
been overlooked in the past, and its significance in 
PTC has recently garnered increased recognition. 
Investigations demonstrate that DLNM exhibits 
aggressive characteristics and suggests elevated 
recurrence probability in PTC [8,10]. Given that the 
location of the DLN is hidden, it is often difficult to 
identify metastasis based on imaging. Additionally, 
there remains debate regarding whether prophylactic 
central neck LN dissection should be performed in 
clinically LN-negative PTC cases, while current 
guidelines advise against prophylactic DLN 
dissection for PTC patients. More importantly, with 
the development of endoscopic thyroidectomy, there 
has been an increase in the development of 
endoscopic procedures such as transoral vestibular 
approach, trans-chin approach, trans-axillary 
approach, trans-subclavian approach, and 
trans-thoracic breast approach; however, there are 

difficulties in the presence of DLN clearance in these 
endoscopic thyroidectomy procedures, and surgeons 
tend to overlook the DLN clearance. Consequently, 
developing non-invasive, reliable, and accessible 
evaluation methods for preoperative DLNM 
identification becomes crucial for surgical planning. 

Prediction models could potentially aid in 
important decisions, such as the identification of PTC 
patients who may have a high DLNM risk based on 
clinical features. Only two risk prediction models 
[11,12] have been developed to assess DLNM in PTC 
patients. Nevertheless, these models’ transferability 
and robustness require additional verification, given 
that the sample sizes of these studies were small, the 
overall methodological quality (methods of model 
construction, overfitting problems, model evaluation, 
model comparison and model interpretation) was 
poor and lack of important biochemical markers. 
Most importantly, current models are unsuitable for 
identifying high-risk DLNM and providing 
preoperative decision support for prophylactic DLN 
dissection, as all models were developed in PTC 
patients, including the postoperative variable. 
Contemporary advancements in computational 
capabilities and large-scale data processing have 
facilitated machine learning (ML) applications that 
increasingly surpass conventional approaches in 
addressing complex decision-making challenges [13], 
which is especially important in this age of precision 
medicine. 

In this large retrospective cohort study, we 
formulated an innovative multi-criteria decision- 
making system through the leave-one-out 
cross-validation (LOOCV) framework for diagnostic 
prediction by converting 12 classical ML algorithms 
into 113 combinations. Analogous to clinical practice’s 
multidisciplinary treatment approach, which 
synthesises various expert perspectives to achieve a 
unified medical determination, this framework strives 
to enhance diagnostic accuracy and optimise DLNM 
prediction performance. Generally speaking, we 
systematically evaluate the ability of preoperative 
routine clinical features to predict DLNM of PTC and 
develop a robust and generalisable DLNM model. 
Then, we perform various comprehensive statistical 
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methods for model evaluation, model comparison 
and model interpretation. 

Materials and Methods 
The Ethics Review Committee of the National 

Cancer Center/National Clinical Research Center for 
Cancer/Cancer Hospital & Shenzhen Hospital, 
Chinese Academy of Medical Sciences and Peking 
Union Medical College authorised this retrospective 
analysis (Approval No. KYKT2022-7-1), adhering to 
the World Medical Association Declaration of 
Helsinki’s ethical principles. The institutional review 
board waived the requirement for informed consent, 
and data were identified. This research follows the 
guidelines outlined in the Transparent Reporting of a 
Multivariable Prediction Model for Individual 
Prognosis or Diagnosis (TRIPOD). 

Study design 
The research design for this study comprises 5 

steps: feature selection, model construction and 
validation, model evaluation, model comparison, and 
model interpretation. Initially, the Boruta algorithm 
was applied to select feature variables, followed by 
developing and validating an innovative LOOCV 
framework integrating 12 ML techniques, resulting in 
113 combinations to construct a consensus prediction 
model. Furthermore, the performance, discrimination 
and stability of the model were comprehensively 
evaluated. Meanwhile, we compared it with the 
published model. Lastly, we employed the Shapley 
Additive Explanations (SHAP) algorithm and 
restricted cubic spline (RCS) regression to illuminate 
and demonstrate the predictive variables’ importance 
and identify nonlinear associations among risk 
indicators. 

Setting and population 
We executed a retrospective cohort analysis of 

consecutive individuals with PTC who received 
curative surgical treatment between January 2020 and 
December 2023. The inclusion criteria were as follows: 
(a) adult patients (> 18 years); (b) individuals with 
PTC diagnosed by multidisciplinary teams, 
encompassing clinicians, radiologists and 
pathologists; (c) surgical procedures following 
Chinese Thyroid Association guidelines [14,15], 
lobectomy or total thyroidectomy combined with 
central neck dissection (CND) was executed, and 
lateral neck dissection (LND) was performed if 
necessary. The exclusion criteria were as follows: (a) a 
previous history of thyroidectomy; (b) history or 
coexistence of other head and neck cancers; (c) DLN 
was not detected by pathological examination; and (d) 
incomplete or indeterminate clinicopathologic 

information. Following these criteria, 1993 PTC 
patients qualified for the investigation. The 
participants were chronologically allocated into a 
training cohort (January 2022 to December 2023; n = 
1395) and a validation cohort (January 2020 to 
December 2021; n = 598) according to the time to 
surgery. The trial was registered with 
ClinicalTrials.gov (NCT03604601). 

 Detailed surgical procedure, data extraction and 
outcomes are available in the Supplementary 
appendix. 

Statistical analysis 
Description and comparison of 

clinicopathologic features: Baseline data analysis of 
patients commenced with normality assessment of 
quantitative measurements. Skewed data were 
described using the median (interquartile range 
[IQR]), and group comparisons were executed via the 
Mann-Whitney U tests. Normally distributed 
continuous data were denoted as Mean±standard 
deviation (SD), and comparisons between groups 
were executed utilising independent samples t-tests. 
Categorical variables were denoted as frequency 
(percentage, %), with comparisons executed via the 
chi-square test or Fisher’s exact test when applicable.  

Feature selection: The meticulous identification 
of appropriate variables is essential in ensuring 
diagnostic model effectiveness. Consequently, we 
implemented the Boruta algorithm, which utilises 
random forest classification to conduct variable 
selection across multiple high-dimensional, 
multivariate datasets [17]. This methodology enables 
the identification of the most significant variables that 
enhance both model precision and reliability.  

Model construction and validation: Based on 
characterisation variables through Boruta algorithm 
selection, we developed and validated a consensus 
diagnostic model for DLNM. The following 
procedure was performed : (1) Integration of 12 
traditional algorithms: Stepglm (glmnet, version 
4.1.8), gradient boosting machine (GBM) (gbm version 
2.1.8.1), Linear Discriminant Analysis (LDA) (MASS 
version 7.3.60), eXtreme Gradient Boosting (XGBoost) 
(xgboost version 1.7.5.1), NaiveBayes (BART version 
1.7.5.1), SVM (e1071 version 1.7.13), random forest 
(RF) (randomForestSRC version 3.2.2), glmBoost 
(mboost, version 2.9.8), LASSO (glmnet, version 4.1.8), 
Partial Least Squares Regression for Generalized 
Linear Models (plsRglm) (plsRglm version 1.5.1), 
ridge regression (glmnet, version 4.1.8), elastic 
network (Enet) (glmnet, version 4.1.8). Among these, 
LASSO, RF, Stepglm, and glmBoost possess feature 
selection attributes. Furthermore, 113 algorithmic 
combinations were established as predictive 
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frameworks utilising the LOOCV structure. (2) 
Subsequently, for the training cohort, we employed 
113 combinations of ML to generate classifiers 
independently using selection features. (3) Lastly, we 
computed the DLNM index for each group in the 
validation cohort using the model obtained from the 
training cohort. The optimal consensus diagnostic 
model for DLNM was determined by evaluating the 
average area under the curve (AUC) of both cohorts 
while considering model parsimony and 
generalizability. 

Model evaluation: The discriminatory ability of 
the DLNM index was examined utilising Receiver 
operating characteristic (ROC) curves analysis 
alongside AUC measurements. In addressing model 
performance assessment, the data imbalance issue 
was tackled through adaptive synthetic sampling, 
employing a 0.5 balancing ratio. The predictive 
capabilities were measured using multiple evaluation 
metrics, encompassing accuracy, prevalence, recall, 
F1-score, Matthews correlation coefficient (MCC), 
precision, specificity, false negative rate (FNR), and 
false positive rate (FPR). To examine the DLNM index 
calibration, plots were generated showing the 
relationship between predicted probabilities and 
actual observed probabilities. The clinical value of the 
DLNM index was investigated through decision 
curve analysis (DCA), which served as a 
comprehensive approach to assess and contrast the 
DLNM index against the baseline by calculating net 
benefits across various threshold probabilities. 

Additionally, to investigate the degree of 
multicollinearity among variables in the DLNM 
index, the variance inflation factor (VIF) was 
computed in the multiple linear regression analysis. If 
VIF was > 3 or tolerance < 0.1, then multicollinearity 
was high. 

Finally, in order to evaluate and improve the 
reliability and generalisation ability of the DLNM 
index, Bootstrap and 10-fold cross-validation were 
used [18]. Cross-validation represents an analytical 
approach that evaluates and compares the 
performance of different models on a finite data set by 
splitting the data set into training and testing 
components to verify model outcomes. By using 
cross-validation, researchers can avoid relying on a 
single experiment and can therefore better evaluate 
the generalisation ability of the model. 

Multivariable logistic regression (MLR), 
subgroup analysis and interaction effect: MLR was 
utilised to ascertain the DLNM index as an 
independent risk factor for DLNM in PTC patients. To 
investigate possible differences among distinct 
subpopulations, subgroup analysis was executed by 
stratifying patients according to sex, age, time to 

diagnose the tumour, tumour size, PTC subtype, 
fibrosis, small foci of squamous lesions, hashimoto 
thyroiditis, pT stage, pN stage, pM, pTNM, 
multifocal, vascular invasion, intra-glandular 
dissemination, capsular invasion, extracapsular 
spread, trachea invasion, nerve invasion, superior 
mediastinal metastasis, left CLN metastasis, left 3 
region LN metastasis, left 4 region LN metastasis, 
right CLN metastasis, right 2 region LN metastasis, 
right 3 region LN metastasis, right 4 region LN 
metastasis. The link between the DLNM metric and 
these stratification parameters in subgroup 
assessment was examined utilising likelihood ratio 
testing. 

Model comparison: Multiple ROC analysis was 
executed to evaluate and contrast the discriminative 
capabilities of the DLNM index with other published 
models [11,12]. DCA was implemented to assess the 
net benefit of the DLNM index relative to existing 
published models. 

Model interpretability: To help interpret the 
model, the SHAP method was used [19]. The SHAP 
value [20] was computed to evaluate the significance 
of individual clinical characteristics and deliver a 
numerical analysis of the relationship connecting 
DLNM with all 12 attributes based on the pre-model. 
Furthermore, the SHAP method supplied both 
comprehensive and specific interpretations for model 
clarification. The comprehensive interpretation could 
present reliable and precise attribution measurements 
for each characteristic within a model to illustrate the 
connections between input attributes and DLNM. The 
specific interpretation could reveal a particular 
forecast for an individual PTC through data input. 
SHAP dependence visualisations can reveal 
meaningful nonlinear correlations between predictive 
variables and DLNM. 

Associations between DLNM index as well as 
predictive variables and DLNM: To further explore 
the importance of characteristics in the predictive 
model, we analysed both linear and nonlinear 
associations between the DLNM index as well as 
predictive variables and DLNM. Linear associations 
were assessed using univariable logistic regression 
models, where each model included DLNM and 
clinical variables as predictors. Linearity was 
inspected by applying the Wald test to the regression 
coefficient. Additionally, we explored the potential 
nonlinear associations using RCS regression between 
the DLNM index as well as predictive variables and 
DLNM.  

Statistical computations were performed 
utilising SPSS statistics 22.0, DecisionLinnc1.0 
software (Python) [21], and R software (R version 
4.3.1). DecisionLinnc1.0 functions as an integrated 
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platform that combines various programming 
language environments, facilitating data processing, 
analysis, and ML through a graphical user interface. 
Statistical significance was established at a two-sided 
P < 0.05. 

Results 
Study population and patient characteristics 

There were a sum of 1993 patients in the study 
cohort. DLNM was observed in 405 
(405/1993=20.32%) patients. This investigation 
carried out an initial comparison among two cohorts: 
the training cohort (n=1395) and the validation cohort 
(n=598). The comparison focused on their 
preoperative 28 baseline characteristics and DLNM 
rate (288/1395=20.65% vs 117/598=19.57%; P=0.583) 
(Supplementary Material 1). No variations in 
preoperative clinical characteristics were detected 
between the training cohort and validation cohort 
except for age (P < 0.001) and T4 (P = 0.013).  

 Sequentially, we compared preoperative 28 
baseline characteristics between the DLNM cohort 
and the non-DLNM cohort in the entire cohort, 
training cohort, and validation cohort (Table 1). It was 
observed that the B ultrasound tumour size, left CLN 
suspicious metastasis, left 3 regions LN suspicious 
metastasis, left 4 region LN suspicious metastasis, 
right CLN suspicious metastasis, right 2 region LN 
suspicious metastasis, right 3 region LN suspicious 
metastasis, right 4 region LN suspicious metastasis, 
CT CLN suspicious metastasis, lateral cervical LN 
suspicious metastasis, TG, T3, FT3, and FT4 were 
elevated in the DLNM cohort (all P < 0.05). In 
contrast, the time to diagnose the tumour was 
shortened in the DLNM cohort versus the non-DLNM 
cohort (P < 0.05). These findings suggest a notable link 
between these routine preoperative parameters and 
DLNM occurrence in PTC. 

Variable selection 
To control for confounding factors and find 

robust variables, the Boruta algorithm facilitated a 
comprehensive evaluation of the 28 independent 
variables. Through the Boruta algorithm’s selection 
process, we confirmed 14 variables in the entire cohort 
(Figure 1A and 1B), 14 variables in the training cohort 
(Figure 1C and 1D), and 6 variables in the validation 
cohort (Figure 1E and 1F). We take the intersection of 
three results to acquire 14 indicators (B ultrasound 
tumour size, left CLN metastasis, left 3 region LN 
metastasis, left 4 region LN metastasis, right CLN 
metastasis, right 2 regions LN metastasis, right 3 
regions LN metastasis, right 4 regions LN metastasis, 
CT CLN metastasis, TG, TGAB, T3, T4, FT3, and FT4) 

shared by ≥ two results. Detailed variable selection 
information is presented in Supplementary Material 
2. Noticeably, tumour size and TG features exhibited 
a higher predictive capacity for DLNM.  

Optimised model construction and validation 
To establish a reliable diagnostic model for 

DLNM, we integrated 14 feature variables into our 
analytical system (LOOCV framework). We 
constructed predictive models utilising 12 ML 
algorithms and 113 algorithmic combinations, 
implementing 10-fold cross-validation within the 
training cohort. For training and validation cohorts, 
the AUC value was computed for the individual 
algorithms, as well as the average AUC in the two 
cohorts. We note that the “Lasso+RF”, “RF”, 
“glmBoost + RF”, “Stepglm[both]+RF”, and 
“Stepglm[backward] + RF” models have very high 
AUC values in the training cohort, but their 
performances degrade in the validation cohort. This 
suggests an overfitting phenomenon. Thus, the most 
effective model emerged as an integration of Lasso 
and GBM with a higher average AUC (0.763), least 
variable and more stability from the two cohorts, as 
illustrated in Figure 2A and Figure S2. In the Lasso 
regression, the optimal λ (λ =12; B ultrasound tumour 
size, left CLN metastasis, left 3 region LN metastasis, 
right CLN metastasis, right 3 region LN metastasis, 
right 4 region LN metastasis, CT CLN metastasis, TG, 
TGAB, T3, T4, and FT4) was obtained when the 
mean−squared error reached its minimum within the 
LOOCV framework (Figure 2B-D). Eventually, we 
developed a unified diagnostic model designated as 
the DLNM index, incorporating these 12 features. 
Comprehensive information regarding feature 
selection for each model, predictive classification, and 
individual patient risk scores is available in 
Supplementary material 3. 

Model evaluation and cross-validation 
First, the examination of multi-collinearity 

among the 12 variables showed a VIF score of less 
than 2 and tolerance exceeding 0.5, suggesting no 
substantial multi-collinearity issues between the 
variables in the DLNM model (Supplementary 
material 4).  

Second, ROC curves suggested that the DLNM 
index exhibited exceptional predictive capability, 
achieving an AUC of 0.763 in the entire cohort (Figure 
3A), an AUC of 0.785 in the training cohort (Figure 
3B), and an AUC of 0.709 in the validation cohort 
(Figure 3C). The data imbalance was corrected after 
the adaptive synthetic sampling method; the 
accuracy, prevalence, recall, F1-score, MCC, precision, 
specificity, FNR, and FPR in three cohorts were 
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calculated and presented in Table 2. All three cohorts 
showed high predictive performance. The calibration 
curves aligned closely with the reference line (y=x) in 

three cohorts (Figure 3D-F), indicating that the 
predicted probability of the model fitted well with the 
actual probability. 

 

Table 1. Comparison of baseline characteristics and biochemical indicators between DLNM and non-DLNM groups in the three cohorts. 

Clinical parameters Entire cohort (n=1993) Training cohort (n = 1395) Validation cohort (n = 598) 
Non-DLNM 
(n=1588) 

DLNM (n=405) P-value Non-DLNM 
(n=1107) 

DLNM (n=288) P-value Non-DLNM 
(n=481) 

DLNM (n=117) P-value 

Male sex, No. (%) 451 (28.40)  119 (29.38) 0.742 325 (29.36) 81 (28.12) 0.736 126 (26.20) 38 (32.48) 0.211 
Age, median (IQR), year 37 (18-76) 38 (21-78) 0.011* 37 (18-76) 39 (21-78) 0.065 34 (20-84) 36 (24-69) 0.081 
Time to diagnose the tumor, 
median (IQR), day 

60 (1-12775) 60 (1-3650) 0.016* 60 (1-12775) 60 (1-3285) 0.021* 60 (1-4746) 60 (3-3650) 0.410 

B ultrasound report          
Tumor size, median (IQR), cm 1.1 (0.1-7.8) 1.53 (0.38-11.8) <0.001* 1.14 (0.1-7.21) 1.5 (0.38-11.8) <0.001* 1.02 (0.38-7.8) 1.64 (0.5-11.55) <0.001* 
Tumor site, upper, No. (%) 151 (9.51) 27 (6.67)  

 
0.078 

105 (9.49) 15 (5.21)  
 
0.043* 

46 (9.56) 12 (10.26)  
 
0.239 

Tumor site, middle, No. (%) 179 (11.27) 35 (8.64) 124 (11.20) 30 (10.42) 55 (11.43) 5 (4.27) 
Tumor site, below, No. (%) 631 (39.74) 170 (41.98) 436 (39.39) 120 (41.67) 195 (40.54) 50 (42.74) 
Tumor site, isthmus, No. (%) 98 (6.17) 35 (8.64) 61 (5.51) 26 (9.03) 37 (7.69) 9 (7.69) 
Tumor site, multiple sites, No. (%) 529 (33.31) 138 (34.07) 529 (33.31) 97 (33.68) 148 (30.77) 41 (35.04) 
Bilateral tumor, No. (%) 391 (24.62) 109 (26.91) 0.376 276 (24.93) 76 (26.39) 0.667 115 (23.91) 33 (28.21) 0.397 
Close to anterior capsule, No. (%) 142 (8.94) 28 (6.91) 0.228 101 (9.12) 25 (8.68) 0.906 41 (8.52) 3 (2.56) 0.044* 
Close to posterior capsule, No. (%) 171 (10.77) 42 (10.37) 0.888 107 (9.67) 31 (10.76) 0.656 64 (13.31) 11 (9.40) 0.323 
Close to trachea, No. (%) 62 (3.90) 8 (1.98) 0.083 46 (4.16) 6 (2.08) 0.139 16 (3.33) 2 (1.71) 0.538 
Left CLN suspicious metastasis, 
No. (%) 

277 (17.44) 132 (32.59) <0.001* 191 (17.25) 91 (31.60) <0.001* 86 (17.88) 41 (35.04) <0.001* 

Left 2 region LN suspicious 
metastasis, No. (%) 

32 (2.02) 15 (3.70) 0.069 27 (2.44) 10 (3.47) 0.444 5 (1.04) 5 (4.27) 0.041 

Left 3 region LN suspicious 
metastasis, No. (%) 

77 (4.85) 49 (12.10) <0.001* 57 (5.15) 34 (11.81) <0.001* 20 (4.16) 15 (12.82) 0.001* 

Left 4 region LN suspicious 
metastasis, No. (%) 

181 (11.40) 86 (21.23) <0.001* 120 (10.84) 57 (19.79) <0.001* 61 (12.68) 29 (24.79) 0.002* 

Right CLN suspicious metastasis, 
No. (%) 

278 (17.51) 139 (34.32) <0.001* 204 (18.43) 103 (35.76) <0.001* 74 (15.38) 36 (30.77) <0.001* 

Right 2 region LN suspicious 
metastasis, No. (%) 

38 (2.39) 27 (6.67) <0.001* 24 (2.17) 17 (5.90) 0.002* 14 (2.91) 10 (8.55) 0.012* 

Right 3 region LN suspicious 
metastasis, No. (%) 

78 (4.91) 59 (14.57) <0.001* 51 (4.61) 45 (15.62) <0.001* 27 (5.61) 14 (11.97) 0.014* 

Right 4 region LN suspicious 
metastasis, No. (%) 

179 (11.27) 104 (25.68) <0.001* 126 (11.38) 76 (26.39) <0.001* 53 (11.02) 28 (23.93) <0.001* 

CT report          
CLN suspicious metastasis, No. 
(%) 

615 (38.73) 236 (58.27) <0.001* 439 (39.66) 168 (58.33) <0.001* 176 (36.59) 68 (58.12) <0.001* 

Lateral cervical LN suspicious 
metastasis, No. (%) 

697 (43.89) 247 (60.99) <0.001* 488 (44.08) 183 (63.54) <0.001* 209 (43.45) 64 (54.70) <0.037* 

Superior mediastinum LN 
suspicious metastasis, No. (%) 

36 (2.27) 8 (1.98) 0.867 29 (2.62) 6 (2.08) 0.759 7 (1.46) 2 (1.71) 1.000 

Lung suspicious metastasis, No. 
(%) 

42 (2.64) 4 (0.99) 0.072 31 (2.80) 3 (1.04) 0.131 11 (2.29) 1 (0.85) 0.533 

TSH, median (IQR), mIU/L 2.176 
(0.005-30.072) 

2.299 
(0.005-16.363) 

0.396 2.176 
(0.005-30.072) 

2.269 
(0.009-16.363) 

0.601 2.179 
(0.005-17.235) 

2.435 
(0.005-13.905) 

0.450 

TG, median (IQR), ng/ml 11.5 (0.1-1699.56) 16.7 
(0.12-2263.87) 

<0.001* 11.5 (0.1-1699.56) 16.225 
(0.17-2263.87) 

0.006* 11.5 (0.1-1509.57) 18.38 
(0.12-1713.99) 

0.027* 

TGAB, median (IQR), IU/ml 0.9 (0.9-2500) 0.9 (0.9-2500) 0.690 0.9 (0.9-2500) 0.9 (0.9-2500) 0.655 0.9 (0.9-2500) 0.9 (0.9-460.5) 0.084 
T3, median (IQR), nmol/L 1.39 (0.48-5.57) 1.42 (0.76-2.49) 0.011* 1.39 (0.67-5.57) 1.42 (0.76-2.17) 0.080 1.39 (0.48-2.38) 1.43 (0.92-2.49) 0.037* 
T4, median (IQR), nmol/L 100.35 

(26.3-315.25) 
99.86 
(1.78-226.55) 

0.172 100.3 
(26.3-240.63) 

100.08 
(41.9-226.55) 

0.613 101.4 
(42.9-315.25) 

99.59 
(1.78-160.11) 

0.113 

FT3, median (IQR), pmol/L 4.28 (2.31-24.29) 4.49 
(2.88-109.38) 

0.003* 4.28 (3.08-24.29) 4.455 (3.23-6.19) 0.009* 4.28 (2.31-7.42) 4.53 
(2.88-109.38) 

0.017* 

FT4, median (IQR), pmol/L 15.735 
(6.39-70.06) 

16.28 
(4.39-31.75) 

0.005* 15.7 (7.52-70.06) 16.24 
(8.85-23.36) 

0.010* 15.8 (6.39-25.96) 16.32 
(4.39-31.75) 

0.261 

Abbreviations: No., number; DLNM, delphian lymph node metastasis; LN, lymph node; CLN, central lymph node; IQR, interquartile range; CT, computed tomography; 
TSH, thyroid stimulating hormone; TG, thyroglobulin; TGAB, anti-thyroglobulin antibodies; T3, triiodothyronine; T4, thyroxine; FT3, free triiodothyronine; FT4, free 
thyroxine. *P < 0.05. 
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Figure 1. Important characteristic variables identified by the Boruta algorithm. The horizontal axis shows the names of variables, and the vertical axis shows the Z-score of 
variables. The boxplot shows the Z-score of variables during the model calculation process. (A, B) Entire cohort. (C, D) Training cohort. (E, F) Validation cohort. 

 

Table 2. Predictive performance of the DLNM index in the three cohorts. 

Cohort Accuracy Prevalence Recall F1-Score MCC Presicion Specificity FNR FPR 
Entire cohort  0.890 0.529 0.861 0.892 0.781 0.924 0.920 0.139 0.080 
Training cohort 0.918 0.531 0.892 0.920 0.837 0.950 0.947 0.108 0.053 
Validation cohort 0.846 0.518 0.771 0.839 0.703 0.918 0.926 0.229 0.074 

Abbreviations: DLNM, delphian lymph node metastasis; MCC, Matthews correlation coefficient; FNR, false negative rate; FPR, false positive rate 
 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

2048 

 
Figure 2. Establishment and validations of a consensus diagnostic model for DLNM via 12 the machine learning (ML)-based integrative procedure. (A) A total of 113 ML 
algorithm combinations of prediction models using the LOOCV framework and further calculated the area under curve (AUC) of each model in all datasets in Figure S2. (B, C) 
Lasso coefficient profiles of the 12 predictors. A vertical line is drawn at the optimal value by 1 - s.e. criteria and results in 12 non-zero coefficients (B ultrasound tumor size, left 
CLN metastasis, left 3 region LN metastasis, right CLN metastasis, right 3 region LN metastasis, right 4 region LN metastasis, CT CLN metastasis, TG, TGAB, T3, T4, and FT4). 
(D) Lasso was used to identify candidate features with 10-fold cross-validation. The Y-axis shows mean-square error and the X-axis is Log (λ), dotted vertical lines represent 
minimum and 1 standard error values of λ. The features selected at minimum standard error values of λ were finally used for DLNM model. 
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Figure 3. Evaluation of diagnostic value and fitting ability of DLNM index. (A-C) Receiver operating characteristic (ROC) curves with AUC values to evaluate predictive efficacy 
of DLNM index in entire cohort (A), training cohort (B), validation cohort (C). (D-F) Calibration curves for DLNM index in entire cohort (D), training cohort (E), validation 
cohort (F). X-axis is predicted probability of DLNM. Y-axis is observed probability of DLNM. 

 
Third, the DCA plot revealed that across 

threshold probabilities ranging from 0 to 1, utilising 
the DLNM index (predictive model) yielded superior 
net benefits compared to strategies of universal 
intervention or non-intervention across all three 
cohorts (Figure 4A-C). RCS regression uncovered that 
the significant nonlinear associations between the 

DLNM index and DLNM (P for nonlinearity < 0.001 in 
the entire cohort; P for nonlinearity = 0.013 in the 
training cohort; P for nonlinearity = 0.003 in the 
validation cohort) (Figure 4D-F). As the DLNM index 
increased, the odds ratio (OR) of DLNM dramatically 
increased. 
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Figure 4. Evaluation of clinical usefulness and nonlinear relationship of DLNM index. (A-C) Decision curve analysis was applied to evaluate the clinical usefulness of DLNM index 
in entire cohort (A), training cohort (B), validation cohort (C). The Y-axis represents the net benefit. The black line represents the hypothesis that no patients treatment. The 
X-axis represents the threshold probability. The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment. (D-F) 
Potential nonlinear for the levels of DLNM index with DLNM risk measured by restricted cubic spline regression with 3 knots in entire cohort (D), training cohort (E), validation 
cohort (F). The brown line and shadow area represent the estimated OR and the 95% CI. 

 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

2051 

Table 3. Univariable and multivariable logistic regression analysis for prediction of DLNM.  

 Training cohort Validation cohort Entire cohort 
 OR (95 % CI) P-value OR (95 % CI) P-value OR (95 % CI) P-value 
Coarse model 2.49 (2.19-2.83) < 0.001* 1.69 (1.44-1.99) < 0.001* 2.19 (1.98-2.42) < 0.001* 
Model 1 2.50 (2.20-2.84) < 0.001* 1.67 (1.42-1.96) < 0.001* 2.18 (1.97-2.41) < 0.001* 
Model 2 2.71 (2.32-3.16) < 0.001* 1.67 (1.32-2.06) < 0.001* 2.29 (2.04-2.57) < 0.001* 
Model 3 5.18 (3.90-6.89) < 0.001* 1.37 (1.07-1.76)  0.014* 3.04 (2.48-3.72) < 0.001* 

Coarse model, no covariate was adjusted.  
Model 1, Sex, age, and time to diagnose the tumor were adjusted.  
Model 2, Sex, age, time to diagnose the tumor, B ultrasound tumor location, B ultrasound bilateral tumor, B ultrasound close to anterior capsule, B ultrasound close to 
posterior capsule, B ultrasound close to trachea, B ultrasound left 2 region LN, B ultrasound left 4 region LN, B ultrasound right 2 region LN, CT lateral cervical LN, CT 
superior mediastinum LN, CT lung metastasis, TSH, and FT3 were adjusted.  
Model 3, Sex, age, time to diagnose the tumor, B ultrasound tumor size, B ultrasound tumor location, B ultrasound bilateral tumor, B ultrasound close to anterior capsule, B 
ultrasound close to posterior capsule, B ultrasound close to trachea, B ultrasound left CLN, B ultrasound left 2 region LN, B ultrasound left 3 region LN,B ultrasound left 4 
region LN, B ultrasound right CLN, B ultrasound right 2 region LN, B ultrasound right 3 region LN, B ultrasound right 4 region LN, CT CLN, CT lateral cervical LN, CT 
superior mediastinum LN, CT lung metastasis, TSH, TG, TGAB, T3, T4, FT3, and FT4 were adjusted.  
Abbreviations: DLNM, delphian lymph node metastasis; LN, lymph node; CLN, central lymph node; OR, odds ratio; CI, confidence interval; CT, computed tomography; 
TSH, thyroid stimulating hormone; TG, thyroglobulin; TGAB, anti-thyroglobulin antibodies; T3, triiodothyronine; T4, thyroxine; FT3, free triiodothyronine; FT4, free 
thyroxine. *P < 0.05. 

 
 
Fourth, to further assess the stability of the 

model, we performed bootstrap and 10-fold 
cross-validation in the entire cohort. As a result, ROC, 
calibration curve, and DCA analysis found that the 
predictive power of the DLNM index was consistently 
superior across 10 different cohorts through bootstrap 
cross-validation (Figure S1A-C). Similar results were 
observed for 10-fold cross-validation (Figure S1D-F). 
Additionally, the accuracy, prevalence, recall, 
F1-score, MCC, precision, specificity, FNR, and FPR 
were used to evaluate the DLNM index in 10 different 
cohorts (Supplementary material 5), revealing that 
the DLNM index is generally stability.  

MLR, subgroup analysis and interaction effect 
Univariable and MLR analyses were executed to 

determine whether the DLNM index remains an 
independent risk factor for DLNM, regardless of other 
clinicopathological features. Univariate logistic 
regression analysis indicated a positive correlation 
between DLNM index and DLNM in patients PTC 
according to in the crude model (no covariate was 
adjusted), with an OR and 95%CI of 2.19 (1.98, 2.42) (P 
< 0.001), with an OR and 95%CI of 2.49 (2.19, 2.83) (P < 
0.001), with an OR and 95%CI of 1.69 (1.44, 1.99) (P < 
0.001) (Table 3). After adjusting for all covariates, 
multivariate multivariable regression analyses 
suggested that DLNM index was an independent 
predictor of DLNM risk, with an OR and 95%CI of 
3.04 (2.48, 3.72) (P < 0.001), with an OR and 95%CI of 
5.18 (3.90, 6.89) (P < 0.001), with an OR and 95%CI of 
1.37 (1.07, 1.76) (P = 0.014). 

To examine potential differences among distinct 
populations, we performed logistic regression 
evaluations across multiple subgroups. The analysis 
demonstrated a notable positive link between the 
DLNM index and DLNM across all subgroups (P < 
0.05), except for several small sample size subgroups 
(pM positive, n=45; superior mediastinal metastasis, 

n=17) (Table 4), revealed that DLNM index is 
generally robust. Interaction tests revealed significant 
interactions between DLNM index and PTC subtype 
(P = 0.036 for interaction), small foci of squamous 
lesions (P = 0.021 for interaction), pTNM stage (P = 
0.023 for interaction), vascular invasion (P = 0.01 for 
interaction). The positive association between DLNM 
index and DLNM appeared stronger in patients with 
classical PTC (OR: 2.25; 95 % CI: 2.03-2.5; P < 0.001) 
than follicular PTC (OR: 1.31; 95 % CI: 0.8-2.15; P = 
0.288). 

Comparison of optimised DLNM index to 
other models 

Multiple ROC analyses found the DLNM index 
performed better in predicting DLNM than the Li 
model [11] (AUC = 0.649) and the Zhou model [12] 
(AUC = 0.656) (Figure 5A) (P < 0.05). Additionally, the 
accuracy, prevalence, recall, F1-score, MCC, precision, 
specificity, FNR, and FPR of the DLNM model are 
superior to the Li model and Zhou model (Figure 5B). 
Notably, the DCA plot demonstrates that the DLNM 
index exhibits superior performance versus Li’s 
approach or Zhou’s framework, as evidenced by the 
consistency of mortality thresholds (x-axis) and the 
stratification advantages in risk assessment (y-axis) 
(Figure 5C). 

Model interpretation 
To gain a thorough insight into the chosen 

parameters, we utilised the SHAP methodology to 
emphasise their predictive significance in the 
optimised DLNM framework. The comparative 
significance and impact of the leading 12 
characteristics on the DLNM framework are depicted 
in Figure 6A, derived through the SHAP 
methodology’s interpretation of the DLNM 
framework predictions. The analysis identified 
tumour dimensions as the primary determinant for 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

2052 

the prediction framework, succeeded by FT4, right 4 
region LN, TG, T3, T4, right 3 regions LN, right CLN, 
left 3 regions LN, TGAB, left CLN and CT CLN 
metastasis. Figure 6B provides a visual representation 
of the scope and patterns of these 12 essential 
characteristics regarding framework effectiveness. 
Individual characteristic impacts are depicted 
through distinct colour points: yellow signifies 
elevated risk values, and purple indicates reduced 
ones. The positively correlated characteristics 
encompass tumour dimensions and FT4 (elevated 
values of these characteristics corresponded to an 
increased likelihood of DLNM development in PTC 
patients). Notably, characteristics can influence 
predictions bidirectionally (enhancing or diminishing 
DLNM) for patients with varying characteristics, 
distinguishing it from earlier frameworks (such as the 
Li model [11] and Zhou model [12]), where a specific 
characteristic value's influence on prediction remains 
constant. 

To enhance our understanding of the optimised 
DLNM model, we initially analysed patient-specific 
risk predictions and their risk origins identified 
through SHAP values. Examining the case with the 
highest predicted SHAP value (specifically 2.05), we 
found that enhanced tumour dimensions (4.08 cm, 
SHAP value = 1.73), suspected left CLN metastasis 
(SHAP value = 0.439), FT4 levels (16.5 pmol/L, SHAP 
value = 0.315), and TG measurements (10.4 ng/ml, 
SHAP value = 0.305) constituted the primary risk 
factors contributing to the elevated SHAP value 

(Figure 6C). Furthermore, partial dependence plots 
were generated for the 6 continuous predictors 
(Figure 6D-I). These plots provided a visual 
representation of the comprehensive relationship 
between features and risk distribution. The plots 
revealed distinct linear or nonlinear correlations 
between tumour size, FT4, T3, TG and SHAP value. In 
particular, DLNM risk probability increased 
substantially when tumour size, FT4, T3, and TG 
exceeded specific threshold values. 

Associations between the DLNM index, as well 
as predictive variables and DLNM  

To further explore the importance of variables in 
the predictive model, we performed univariable 
logistic and RCS regression to investigate the linear 
and nonlinear associations. We observed 11 and 3 
predictors to have linear and nonlinear associations 
with DLNM risk, respectively (all P < 0.013) (Table 5). 
We visualised the corresponding results for 
continuous variables (Figure 7). Tumour size (P for 
linearity < 0.001, P for nonlinearity < 0.001), TG (P for 
linearity = 0.003, P for nonlinearity < 0.001), and FT3 
(P for linearity = 0.003, P for nonlinearity = 0.0011) 
showed strong nonlinear relationships with DLNM 
risk. However, FT4 (P for linearity = 0.008, P for 
nonlinearity = 0.263) and T3 (P for linearity = 0.013, P 
for nonlinearity = 0.464) showed significant linear but 
no significant nonlinear associations with DLNM risk.  

 

 
Figure 5. Comparison of optimized DLNM index to other models. (A) Multiple ROC analysis was performed to compare the diagnostic performance of the DLNM index against 
Li model [11] and Zhou model [12]. (B) The model’s predictive performance was compared through a comprehensive array of metrics including accuracy, prevalence, recall, 
F1-score, Matthews correlation coefficient (MCC), precision, specificity, false negative rate (FNR), false positive rate (FPR). (C): Decision curve analysis was applied to evaluate 
the clinical usefulness of DLNM index against Li model [11] and Zhou model [12]. The Y-axis represents the net benefit. The black line represents the hypothesis that no patients 
die. The Xaxis represents the threshold probability. The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment. 
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Table 4. Subgroup analysis for the correlation between the DLNM index and the risk of DLNM in entire cohort. 

Variable Count Percent OR Lower Upper P value P for interaction 
Overall 1993 100 2.19 1.98 2.42 <0.001  
Sex       0.06 
 Female 1423 71.4 2.36 2.07 2.67 <0.001  
 Male 570 28.6 1.94 1.65 2.27 <0.001  
Age, year       0.952 
 ≤ 36 1000 50.2 2.17 1.87 2.53 <0.001  
 > 36 993 49.8 2.19 1.91 2.5 <0.001  
Time, day       0.068 
 ≤ 60 1123 56.3 2.04 1.81 2.3 <0.001  
 > 60 870 43.7 2.48 2.08 2.95 <0.001  
PTC subtype       0.036 
 Follicular 176 8.8 1.31 0.8 2.15 0.288  
 Classical  1817 91.2 2.25 2.03 2.5 <0.001  
Fibrosis       0.4 
 No 1476 74.1 2.13 1.91 2.38 <0.001  
 Yes 517 25.9 2.37 1.91 2.94 <0.001  
Small foci of squamous lesions       0.021 
 No 1893 95 2.24 2.02 2.49 <0.001  
 Yes 100 5 1.46 1.02 2.07 0.036  
Hashimoto thyroiditis       0.763 
 No 1557 78.1 2.2 1.97 2.45 <0.001  
 Yes 436 21.9 2.11 1.63 2.72 <0.001  
pT stage       0.119 
 T1 1100 55.2 2.45 1.99 3.03 <0.001  
 T2-T4 893 44.8 2.02 1.78 2.29 <0.001  
pN stage       NA 
 Negative 571 28.7 NA NA NA NA  
 Positive 1422 71.3 1.87 1.69 2.07 <0.001  
pM stage       0.131 
 No 1948 97.7 2.23 2.02 2.47 <0.001  
 Yes 45 2.3 1.36 0.72 2.57 0.344  
pTNM stage       0.023 
 I 1788 89.7 2.29 2.05 2.55 <0.001  
 II-IV 205 10.3 1.67 1.31 2.14 <0.001  
Tumor size, cm       0.22 
 ≤ 1.2 1091 54.7 2.43 1.99 2.96 <0.001  
 > 1.2 902 45.3 2.09 1.84 2.38 <0.001  
Multifocal       0.575 
 No 1248 62.6 2.11 1.85 2.42 <0.001  
 Yes 745 37.4 2.24 1.93 2.61 <0.001  
Vascular invasion       0.01 
 No 1686 84.6 2.29 2.02 2.6 <0.001  
 Yes 307 15.4 1.73 1.46 2.06 <0.001  
Intra-glandular dissemination       0.128 
 No 1937 97.2 2.17 1.96 2.41 <0.001  
 Yes 56 2.8 1.62 1.13 2.33 0.008  
Capsular invasion       0.818 
 No 469 23.5 2.22 1.69 2.92 <0.001  
 Yes 1524 76.5 2.15 1.93 2.39 <0.001  
Extracapsular spread       0.771 
 No 796 39.9 2.24 1.86 2.7 <0.001  
 Yes 1197 60.1 2.17 1.93 2.44 <0.001  
Trachea invasion       0.44 
 No 1892 94.9 2.21 1.99 2.45 <0.001  
 Yes 101 5.1 1.92 1.36 2.7 <0.001  
Nerve invasion       0.129 
 No 1840 92.3 2.25 2.02 2.51 <0.001  
 Yes 153 7.7 1.79 1.36 2.36 <0.001  
Superior mediastinal metastasis       0.259 
 No 1976 99.1 2.2 1.99 2.43 <0.001  
 Yes 17 0.9 1.47 0.73 2.94 0.278  

Abbreviations: DLNM, delphian lymph node metastasis; LN, lymph node; CLN, central lymph node; PTC, papillary thyroid cancer; NA, not available; IQR, interquartile 
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range; pT, pathological tumor size; pN, pathological node; pM, pathological metastasis; pTNM, pathological tumor node metastasis. *P < 0.05. 
 

Table 5. Nonlinear and linear associations between clinical variables and DLNM.  

Factors Subgroup Linear association Nonlinear association 
  OR (95%CI) P Chi-square P 
B ultrasound tumor size  1.56 (1.41-1.73) < 0.001* 78.60 < 0.001* 
B ultrasound  
left CLN 

No 1    
Yes 2.29(1.79-2.92) < 0.001* NA NA 

B ultrasound 
left 3 region LN 

No 1    
Yes 2.70(1.85-3.94) < 0.001* NA NA 

B ultrasound 
right CLN 

No 1    
Yes 2.46(1.93-3.14) < 0.001* NA NA 

B ultrasound 
right 2 region LN 

No 1    
Yes 2.91 (1.76-4.83) < 0.001* NA NA 

B ultrasound 
right 3 region LN 

No 1    
Yes 3.30 (2.31-4.72) < 0.001* NA NA 

B ultrasound 
right 4 region LN 

No 1    
Yes 2.72 (2.07-3.57) < 0.001* NA NA 

CT CLN No 1    
Yes 2.21 (1.77-2.76) < 0.001* NA NA 

TG  1.01 (1.00-1.02) 0.003* 27.96 < 0.001* 
TGAB  1.01 (0.99-1.00) 0.691 3.69 0.055 
T3  1.67 (1.11-2.51) 0.013* 0.54 0.46 
T4  0.99 (0.99-1.02) 0.172 0.002 0.96 
FT3  1.29 (1.09-1.53) 0.003* 10.50 0.001* 
FT4  1.05 (1.01-1.09) 0.008* 1.26 0.26 

Abbreviations: DLNM, delphian lymph node metastasis; LN, lymph node; CLN, central lymph node; OR, odds ratio; CI, confidence interval; CT, computed tomography; 
TSH, thyroid stimulating hormone; TG, thyroglobulin; TGAB, anti-thyroglobulin antibodies; T3, triiodothyronine; T4, thyroxine; FT3, free triiodothyronine; FT4, free 
thyroxine. NA, not available; *P < 0.05. 

 

Comparison of pathological characteristics 
between DLNM and non-DLNM cohorts 

We compared 25 postoperative pathological 
features between the DLNM cohort and the 
non-DLNM cohort in the entire cohort, training 
cohort, and validation cohort (Table 6). It was 
observed that the tumour size, classical PTC subtype, 
small foci of squamous lesions, multifocal, vascular 
invasion, intra-glandular dissemination, capsular 
invasion, pT stage, and pN stage were higher in the 
DLNM cohort (all P < 0.043) compared with 
non-DLNM cohort.  

Discussion 
Currently, PTC lacks an optimised, explainable 

ML model to predict DLNM and guide surgical 
intervention. This study recruited 1993 consecutive 
individuals with PTC who received curative surgery 
to develop and validate a robust and generalisable 
model using preoperative routine clinical indicators. 
Through feature selection of the Boruta algorithm and 
113 permutations of 12 ML methodologies, we 
established and confirmed a consensus ML-derived 
diagnostic model (DLNM index) per the higher 
average AUC (0.763), least variable and more stability 
from two cohorts. DLNM index exhibited excellent 
prediction performance, discriminative ability and 
clinical usefulness, serving as an independent risk 

factor (P < 0.001) regardless of other clinical 
characteristics. Bootstrapping and 10-fold cross 
validation and subgroup analysis showed that the 
DLNM index was generally robust and generalisable. 
Importantly, it performed better in predicting 
performance and yielded a larger net benefit than the 
published model (P < 0.05). SHAP interprets the 
feature importance ranking (tumour size, right 4 
regions LN, FT4, TG and T3) and visualises the effect 
of individual features on the model output as well as 
the prediction of DLNM by all features. From partial 
dependence plots, the linear or nonlinear associations 
between tumour size, FT4, T3, TG and SHAP value 
can be clearly observed. RCS regression further 
suggested a nonlinear link between the DLNM index, 
TG, tumour size, FT3 and DLNM risk. With the 
development of endoscopic thyroidectomy, the 
development of transoral vestibular approach, 
transchin approach, transaxillary approach, 
subclavian approach and transthoracic and breast 
approach has increased. However, DLN dissection is 
difficult in these endoscopic thyroidectomy, and 
surgeons often neglect DLN dissection. We 
constructed a model of DLNM based on the patient's 
preoperative routine clinical examinations (medical 
history, thyroid function, B-ultrasound, and CT), and 
preoperatively searched out patients at high risk of 
DLNM, so as to avoid as much as possible the 
omission of intraoperative DLN dissection. In short, 
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the DLNM index provides a low-cost, easily 
accessible, explainable and accurate diagnostic tool 

for DLNM in PTC with potential clinical applications. 

 

 
Figure 6. Global and local model explanation by the SHAP method. (A) Summary plot showed the 12 features ranking by mean absolute SHAP values. (B) Each variable name is 
shown on the left-hand side with the variable with the greatest contribution listed at the top. To the right of the variables, there are colored lines, which are individual points that 
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correspond to observations in the population. A higher value for the variable is represented in yellow, while a lower value for the variable will be shown in purple. A value farther 
to the right (ie, a higher SHAP value) indicates that the variable is contributed to a prediction of a positive target, such as DLNM. (C) An example of risk factor analysis for a 
patient with PTC which represented the individual PTC towards the “DLNM” class. (D-I) One-way SHAP dependence plot of the 6 important predictors (continuous variable). 
(D) B ultrasound tumor size. (E) FT4. (F) TG. (G) T3. (H) T4. (I) TGAB. Each dependence plot shows how a single feature affects the output of the prediction model, and each 
dot represents a single patient. Specifically, the values of the predictor are represented by the x-axis, and its SHAP values are represented by the y-axis. To interpret these plots, 
for example, in (D), patients with higher tumor size (as x-axis increased) were associated with a higher SHAP value, which indicated a higher likelihood of DLNM (y-axis also 
increased). 

 

 
Figure 7. Potential nonlinear for the levels of continuous predictors with DLNM risk measured by restricted cubic spline regression with 3 knots. (A) B ultrasound tumor size. 
(B) TSH. (C) TG. (D) TGAB. (E) FT3. (F) FT4. (G) T3. (H) T4. The brown line and shadow area represent the estimated OR and the 95% CI. TSH, thyroid stimulating hormone; 
TG, thyroglobulin; TGAB, anti-thyroglobulin antibodies; T3, triiodothyronine; T4, thyroxine; FT3, free triiodothyronine; FT4, free thyroxine. 
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Table 6. Comparison of pathological characteristics between DLNM and non-DLNM groups in the three cohorts. 

Pathological features Entire cohort (n=1993) Training cohort (n = 1395) Validation cohort (n = 598) 
Non-DLNM 
(n=1588) 

DINM 
(n=405) 

P-value Non-DLNM 
(n=1107) 

DINM 
(n=288) 

P-value Non-DLNM 
(n=481) 

DINM 
(n=117) 

P-value 

Tumor size, median (IQR), cm 1.1 (0.1-6.2) 1.5 (0.1-7) <0.001* 1.1 (0-6) 1.5 (0.1-7) <0.001* 1 (0.1-6.2) 1.7 (0.3-5.5) <0.001* 
PTC subtype, follicular, No. (%) 163 (10.26) 13 (3.21) <0.001* 120 (10.84) 11 (3.82) <0.001* 126 (26.20) 38 (32.48) <0.001* 
Fibrosis, No. (%) 429 (27.02) 88 (21.73) 0.035* 296 (26.74) 59 (20.49) 0.036* 133 (27.65) 29 (24.79) 0.611 
Small foci of squamous lesions, No. 
(%) 

68 (4.28) 32 (7.9) 0.0015* 51 (4.61) 20 (6.95) 0.025* 17 (3.53) 12 (10.26) 0.005* 

Hashimoto thyroiditis, No. (%) 363 (22.86) 73 (18.02) 0.042* 250 (22.58) 56 (19.44) 0.286 113 (23.49) 17 (14.53) 0.047* 
Multifocal, No. (%) 559 (35.20) 186 (45.93) <0.001* 396 (35.77) 134 (46.53) 0.001* 163 (33.89) 52 (44.44) 0.043* 
Vascular invasion, No. (%) 190 (11.96) 117 (28.89) <0.001* 136 (12.29) 84 (29.17) <0.001* 54 (11.23) 33 (28.21) <0.001* 
Intra-glandular dissemination, No. 
(%) 

22 (1.39) 34 (8.40) <0.001* 17 (1.54) 26 (9.03) <0.001* 5 (1.04) 8 (6.84) <0.001* 

Capsular invasion, No. (%) 1182 (74.43) 342 (84.44) <0.001* 813 (73.44) 241 (83.68) <0.001* 369 (76.72) 101 (86.32) 0.032* 
Extracapsular spread, No. (%) 931 (58.63) 266 (65.68) 0.011* 645 (58.27) 184 (63.89) 0.096 286 (59.46) 82 (70.09) 0.044* 
Trachea invasion, No. (%) 72 (4.53) 29 (7.16) 0.043 51 (4.61) 22 (7.64) 0.056 21 (4.37) 7 (5.98) 0.618 
Nerve invasion, No. (%) 116 (7.30) 37 (9.14) 0.258 80 (7.23) 17 (5.90) 0.511 36 (7.48) 20 (17.09) 0.003* 
Superior mediastinal metastasis, No. 
(%) 

10 (0.63) 7 (1.73) 0.065 9 (0.81) 5 (1.74) 0.285 1 (0.21) 2 (1.71) 0.183 

pT stage, 1a, No. (%) 954 (60.08) 146 (36.05)  
 
<0.001* 

656 (59.26) 105 (36.46)  
 
<0.001* 
 

298 (61.95) 41 (35.04)  
 
<0.001* 
 
 

pT stage, 1b, No. (%) 467 (29.41) 143 (35.31) 332 (29.99) 113 (39.24) 135 (28.07) 30 (25.64) 
pT stage, 2, No. (%) 91 (5.73) 76 (18.77) 70 (6.32) 48 (16.67) 21 (4.37) 28 (23.93) 
pT stage, 3a, No. (%) 25 (1.57) 15 (3.70) 17 (1.54) 11 (3.82) 8 (1.66) 4 (3.42) 
pT stage, 3b, No. (%) 39 (2.46) 17 (4.20) 24 (2.17) 4 (1.39) 15 (3.12) 13 (11.11) 
pT stage, 4a, No. (%) 12 (0.76) 8 (1.98) 8 (0.72) 7 (2.43) 4 (0.83) 1 (0.85) 
pN stage, 0, No. (%) 570 (35.89) 0 (0.00)  

<0.001* 
394 (35.59) 0 (0.00)  

<0.001* 
176 (36.59) 0 (0.00)  

<0.001* 
 

pN stage, 1a, No. (%) 646 (40.68) 195 (48.15) 447 (40.38) 137 (47.57) 199 (41.37) 58 (49.57) 
pN stage, 1b, No. (%) 372 (23.43) 210 (51.85) 266 (24.03) 151 (52.43) 106 (22.04) 59 (50.43) 
pM stage, No. (%) 41 (2.58) 4 (0.99) 0.082 31 (2.80) 3 (1.04) 0.131 10 (2.08) 1 (0.85) 0.617 
pTNM stage, I, No. (%) 1433 (90.24) 355 (87.65)  

0.117 
989 (89.34) 251 (87.15)  

0.197 
444 (92.31) 104 (88.89)  

0.312 pTNM stage, II, No. (%) 152 (9.57) 48 (11.85) 115 (10.39) 35 (12.15) 37 (7.69) 13 (11.11) 
pTNM stage, III, No. (%) 0 (0.00) 1 (0.25) 0 (0.00) 1 (0.25) 0 (0.00) 0 (0.00) 
pTNM stage, IV, No. (%) 3 (0.19) 1 (0.25) 3 (0.19) 1 (0.25) 0 (0.00) 0 (0.00) 

Abbreviations: No., number; DLNM, delphian lymph node metastasis; PTC, papillary thyroid cancer; LN, lymph node; CLN, central lymph node; IQR, interquartile range; 
pT, pathological tumor size; pN, pathological node; pM, pathological metastasis; pTNM, pathological tumor node metastasis. *P < 0.05. 

 
 
In this retrospective study, we performed the 

largest current sample size cohort study to investigate 
risk factors, modelling, and medical implications of 
DLNM in individuals with PTC. We found that the 
metastasis rate of the DLN was 20.32% in PTC, which 
is consistent with previous reports of DLNM rates of 
8% to 28% [11,12,22,23]. Reports have indicated that 
DLNM is a marker of tumour aggressiveness and 
unfavourable outcomes in PTC [8,10]. In our study, 
the DLNM was correlated to larger tumour size, 
classical PTC subtype, small foci of squamous lesions, 
multifocal vascular invasion, intra-glandular 
dissemination, capsular invasion, higher pT stage, 
and higher pN stage. Hence, the surgeon needs to 
focus more on the DLNM risk and make 
individualised operative interventions in PTC. In the 
era of precision medicine, a low-cost, easily accessible, 
explainable and accurate DLNM evaluation model 
will be of clinical significance.  

To optimise the functionality and 
implementation of the DLNM model, the Boruta 
algorithm examined 28 distinct preoperative 
parameters to remove unnecessary variables and 

establish a streamlined, precise variable set. The main 
advantage of Boruta's algorithm is that it 
automatically performs feature selection on the 
dataset without the need to select the set of features 
that minimise the model cost function for a particular 
model. In addition, Boruta's algorithm helps us to 
understand the influences of the dependent variable 
in a more comprehensive way so that we can perform 
feature selection better and more efficiently [24, 25]. 
Through the application of Boruta algorithm 
screening, fourteen independent parameters were 
ultimately identified for DLNM model construction. 

 A crucial element enhancing the generalizability 
and robustness of our prediction model is our 
proposed novel LOOCV framework that incorporated 
12 ML algorithms, resulting in 113 combinations to 
construct a consensus prediction model. This 
investigation enrolled a large number of PTC 
population to improve the statistical power to ensure 
the reliability and accuracy of the model, which was 
split into a training cohort (n = 1395) and a validation 
cohort (n = 598) according to the time to surgery. 
Additionally, prior studies showed researchers 
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typically selected modelling algorithms based on 
personal preference and expertise [11, 12]. To address 
this limitation, we utilised 12 ML algorithms suitable 
for developing an enhanced diagnostic model. We 
combined these into 113 algorithmic configurations, 
implementing variable screening and dimensional 
reduction through Lasso, RF, Stepglm, and glmBoost. 
Significantly, overfitting remains a challenging issue 
in AI and ML biomedical modelling, where models 
often demonstrate strong performance in training sets 
but underperform in external validation [26]. We note 
that the “Lasso+RF”, “RF”, “glmBoost + RF”, 
“Stepglm[both]+RF”, and “Stepglm[backward] + RF” 
models fit well in the training dataset, but failed 
during validation testing. Hence, the optimal model 
was Lasso + GBM with a higher average AUC (0.763), 
minimal variables and better stability from the two 
cohorts. A final 12-variables prediction model, the 
DLNM index, was formed using GBM after Lasso 
minimised redundant data, with the absence of 
significant multi-collinearity concerns. 
Encouragingly, through ROC, calibration curve, and 
DCA analysis, the DLNM index exhibited excellent 
predictive performance, fitting ability and clinical 
application value. After adjusting for all covariates, 
DLNM index remains an independent predictor of 
DLNM risk in three PTC cohorts. We executed two 
methods of cross-validation, namely bootstrap and 
10-fold cross-validation, in the entire cohort and 
found that the predictive power of the DLNM index 
was consistently superior across 10 different cohorts, 
indicating the stability of the model. Furthermore, our 
analysis examined the DLNM model’s effectiveness 
across various subgroups through interaction testing 
to identify potential dataset biases. Consistent 
subgroup outcomes validated the DLNM model's 
extensibility and stability. Notably, we revealed a 
significant interaction between the DLNM index and 
the PTC subtype. DLNM index can effectively predict 
DLNM index in classical PTC (OR: 2.25; 95 % CI: 
2.03-2.5; P < 0.001) but not in follicular PTC (OR: 1.31; 
95 % CI: 0.8-2.15; P = 0.288). This is consistent with the 
results of descriptive statistical analysis that the 
follicular subtype of PTC is less susceptible to DLNM 
(10.26% vs 3,21%; P < 0.001) as well as published 
studies [27, 28].  

Two studies also established predictive and 
diagnostic models to predict DLNM in patients with 
PTC based on clinicopathological characteristics [11, 
12]. Therefore, we directly compare the DLNM index 
to the Li model and Zhou model. The DLNM index 
(AUC = 0.763) demonstrated outstanding predictive 
and diagnostic performance than the Li model (AUC 
= 0.649) and the Zhou model (AUC = 0. 656). A range 
of other model performance evaluation metrics, 

including accuracy, prevalence, recall, F1-score, MCC, 
precision, specificity, FNR, and FPR, also observed 
similar results. According to the DCA analysis, 
clinical interventions directed by the DLNM index 
demonstrated superior net advantages compared to 
those utilising the Li model or Zhou model 
approaches. This outcome can potentially be 
attributed to the following factors: 1) Large sample 
size (our study n=1993 vs Li model n = 581 and Zhou 
model n = 596) improves precision, greater statistical 
efficacy, better generalizability, reduces the effect of 
outliers. 2) The introduction of Boruta's algorithm for 
feature selection and 12 ML algorithms that yielded 
113 combinations to construct a predictive model can 
identify important feature variables, produce optimal 
models, and avoid overfitting problems. 3) Inclusion 
of biochemical indicators for the first time in DLNM 
model could potentially explain the mechanism of 
DLNM. Thus, the DLNM index exhibits the capability 
to detect DLNM and support medical assessments.  

The ML approach has been characterised as an 
obscure system offering minimal insight into its 
predictive mechanisms [29]. Healthcare practitioners 
might resist its implementation due to reluctance to 
base clinical judgments on non-transparent data. 
Therefore, the comprehensibility of diagnostic 
algorithms remains essential for physician confidence 
and reliability. Initially, we implemented the SHAP 
methodology [19, 20, 30] to illuminate the internal 
workings of DLNM frameworks in forecasting the 
DLNM of PTC. The SHAP technique enables model 
interpretation through comprehensive analysis 
depicting overall system behaviour and specific case 
examination detailing individual PTC predictions 
using personalised information. Our investigation’s 
SHAP evaluation identifies variable significance, with 
neoplasm dimensions emerging as the primary 
determinant in the DLNM framework, succeeded by 
FT4, right 4 region LN, TG, T3, and T4. This is 
consistent with the discovery that tumour size and TG 
are the two most important variables in the initial 
feature variable selection through Boruta's arithmetic. 
Additionally, 1-way SHAP dependence plots visually 
displayed the global link between feature and risk 
distribution. From these plots, we clearly noted the 
linear or nonlinear links between tumour size, FT4, 
T3, TG and SHAP value. Specifically, when tumour 
size, FT4, T3, and TG are above a certain threshold, 
the likelihood of developing DLNM increases 
dramatically. This patient-specific interpretable 
framework enables healthcare providers to synthesise 
predictions and explanations with clinical expertise 
for enhanced decision-making.  

To elucidate how variables function within the 
DLNM model and provide enhanced clinical 
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guidance, we systematically analysed both linear and 
nonlinear associations between the DLNM index as 
well as predictive variables and DLNM risk through 
logistic and RCS regression analysis. As a result, 
tumour size, TG, FT3, FT4, and T3 showed strong 
linear or nonlinear relationships with DLNM risk. A 
recently published meta-analysis summarising four 
articles found that the DLN-positive rate in 
individuals with tumour size >1 cm was 3.55 times 
higher than DLN-negative (OR = 3.55, 95% CI: 
2.34-5.40, P < 0.01) [31]. Our study further found that 
tumour size was positively related to the risk of 
DLNM with the nonlinear association; Boruta’s 
arithmetic and SHAP analysis uncovered that it was 
found to be one of the most important variables in 
DLNM models. This suggests DLNM’s connection to 
cancer lesion dimensions. Contemporary research 
indicates that TG in fine-needle aspiration biopsy 
extract demonstrates significant diagnostic utility for 
lateral cervical LNM in PTC cases, showing strong 
concordance with post-surgical pathological findings 
[32]. Wang et al. identified a positive association 
between FT3 measurements and central LNM in PTC 
(P < 0.001) [33]; Diessl et al. determined that elevated 
FT3 correlates with poorer outcomes in advanced 
differentiated thyroid cancer [34]. Duan et al. 
established a meaningful connection between 
elevated FT4 and CLNM occurrence [35]. Recent 
investigations increasingly examine thyroid 
hormone-tumor development relationships [36, 37]. 
Evidence suggests elevated free thyroid hormones 
might facilitate tumour cell malignant transformation 
by stimulating crucial signalling pathways, including 
ERK1/ERK2 and PI3K, enhancing invasiveness, 
metastasis, and proliferation. Our study first 
demonstrated a significant linear or nonlinear 
relationship between TG, FT3, FT4, and T3 with 
DLNM risk, though additional validation through 
larger cohorts and molecular mechanism studies 
remains necessary. Thus, clinicians could initially 
assess the likelihood of DLNM by these routine 
preoperative findings (B ultrasound tumour size, TG, 
FT3, FT4, T3), which have important clinical practice 
value. 

In contrast to prior investigations, our research 
exhibits several distinctive characteristics. (1) This 
study develops a prediction model for DLNM 
prediction in patients with PTC based on preoperative 
routine clinical features with the largest current 
sample size cohort. Our predictive model 
incorporates only preoperative routine testing 
metrics, unlike published studies that incorporate 
postoperative metrics, and the model is not effective 
in guiding the first surgical intervention. (2) By 
introducing Boruta's feature selection algorithm and 

12 ML algorithms, 113 combinations are generated to 
build consensus prediction models, which can 
identify important feature variables, produce optimal 
models, and avoid overfitting problems. (3) The 
SHAP method was applied to mitigate the concern of 
the “black-box” issue with an undirect interpretation 
of the ML technique. SHAP explains the importance 
of ranking features and visualises global and 
individual risk prediction. This patient-level 
interpretable model allows clinicians to combine 
predictions and explanations with their empirical 
knowledge to facilitate decision-making. (4) The 
study design incorporated thyroid hormone 
indicators, has a potential mechanism to explain 
LNM, and by logistic and RCS regression analysis, we 
found for the first time that TG, FT3, FT4, and T3 
demonstrated significant positive associations with 
DLNM in a linear or nonlinear way.  

While we endeavoured to conduct our 
investigation with maximum thoroughness and 
precision, certain constraints warrant acknowledge-
ment. Initially, this investigation exemplifies 
retrospective examinations conducted at an 
individual tertiary cancer facility. However, our 
DLNM model demonstrated impressive performance 
in DLNM prediction, such as ROC analysis, 
calibration curve, Bootstrapping and 10-fold cross 
validation, RCS regression, MLR, and subgroup 
analysis. The established framework requires external 
dataset verification before widespread 
implementation. Subsequent investigations should 
encompass multi-institutional, expanded cohort 
examinations to confirm and broaden these 
discoveries. Second, the inclusion of preoperative B 
ultrasound and CT reports in the DLNM model 
inevitably suffers from the subjectivity of the imaging 
physician, in addition to the fact that the accuracy of 
the model may be influenced by the level of the 
examiner. With the future application of artificial 
intelligence in image diagnosis, these problems may 
be avoided. Third, the Chinese guidelines advocate 
the preventive removal of CLNs for patients with 
PTC. Hence, these outcomes might not be relevant in 
areas where surgeons exclusively conduct therapeutic 
CLN removal for individuals with PTC. Fourth, we 
revealed for the first time that thyroid hormone 
indicators (TG, FT3, FT4, T3) had a significant positive 
correlation with DLNM risk in a linear or nonlinear 
manner. Additional research at both clinical and 
molecular levels is essential to elucidate these 
hormonal relationships and their influence on DLNM 
development.  

Conclusion 
This investigation represents a pioneering effort 
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to develop and validate a robust and generalisable 
model for DLNM prediction in PTC patients using 
preoperative routine clinical indicators. We evaluated 
113 distinct combinations incorporating 12 ML 
techniques to construct and authenticate a unified 
diagnostic approach (DLNM index). SHAP interprets 
the feature importance ranking and visualises global 
and individual explanations for the DLNM model. 
The DLNM index is a low-cost, accessible, 
interpretable and accurate tool for diagnosing PTC 
DLNM with potential clinical applications. 
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