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Abstract 

Introduction: Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor 
(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. It is 
highly invasive and aggressive, making it the subtype of breast cancer with the poorest prognosis. Currently, 
systemic chemotherapy is the primary treatment option, but targeted therapies remain unavailable. Therefore, 
there is an urgent need to identify novel biomarkers for the early diagnosis and treatment of TNBC.  
Methods: We conducted an integrated analysis of transcriptome and methylation data to identify 
methylation-regulated differentially expressed genes (MDEGs). Gene Ontology (GO) analysis, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) network 
analysis were performed on MDEGs to investigate the impact of hub genes on the diagnosis and prognosis of 
TNBC. Subsequently, the expression levels and DNA methylation patterns of key genes were validated in the 
TNBC cell line MDA-MB-231 and the normal breast epithelial cell line MCF-10A using reverse transcription 
quantitative PCR (RT-qPCR) and quantitative methylation-specific PCR (qMSP).  
Results: A total of 98 upregulated and 87 downregulated genes were identified through transcriptomic 
profiling integration analysis. By incorporating methylation data, we further identified 22 genes with high 
expression of hypomethylation (hypo-MDEGs) and 32 genes with low expression of hypermethylation 
(hyper-MDEGs). The hypo-MDEGs were primarily involved in nuclear division, organelle fission, spindle 
formation, chromosome and kinetochore development, and protein binding. KEGG pathway analysis revealed 
that these genes were enriched in progesterone-mediated oocyte maturation, cell cycle regulation, and oocyte 
meiosis. Hyper-MDEGs were associated with cell proliferation, hormone response, pain, extracellular matrix 
composition, and binding to sulfur compounds, heparin, and glycosaminoglycans. PPI network analysis identified 
seven hub genes—EXO1, KIF11, FOXM1, CENPF, CCNB1, PLK1, and KIF23—which were all significantly 
overexpressed in TNBC tissues and positively correlated with each other (p < 0.05). Receiver operating 
characteristic curve analysis showed that the area under the curve (AUC) for all seven genes exceeded 0.9 (p 
< 0.05), suggesting strong diagnostic potential. Kaplan-Meier survival analysis indicated that KIF11, CCNB1, and 
PLK1 were associated with a higher hazard ratio (HR > 1, p < 0.05) in TNBC. In vitro validation experiments 
demonstrated that, compared to MCF-10A cells, MDA-MB-231 cells exhibited higher mRNA expression levels 
of KIF11, CCNB1, and PLK1, while their DNA methylation levels were lower. Conclusions: This study identified 
seven hypo-MDEGs, including EXO1, KIF11, FOXM1, CENPF, CCNB1, PLK1, and KIF23, which are involved in the 
regulation of the cell cycle and mitotic processes and have significant potential as diagnostic biomarkers for 
TNBC. Notably, elevated expression of KIF11, CCNB1, and PLK1 is associated with poor prognosis in patients 
with TNBC. These findings contribute to an improved understanding of the epigenetic molecular mechanisms 
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underlying TNBC progression and highlight novel biomarkers that may enhance the accuracy of TNBC 
diagnosis and provide potential targets for therapeutic intervention. 

Keywords: triple negative breast cancer, transcriptome, DNA methylation, diagnosis, prognosis 

1. Introduction 
Breast cancer is the most prevalent malignancy 

and the second leading cause of cancer-related 
mortality among women worldwide, accounting for 
approximately 13% of all cancer-related deaths 
annually, according to the World Health Organization 
[1]. It is a highly heterogeneous tumor that is clinically 
classified into four distinct subtypes [2], based on the 
expression patterns of immunohistochemical 
markers, including estrogen receptor (ER), 
progesterone receptor (PR), human epidermal growth 
factor receptor 2 (HER2), and KI-67. Triple-negative 
breast cancer (TNBC) is characterized by the absence 
of ER, PR, and HER2 expression and is considered the 
most aggressive and malignant subtype of breast 
cancer [3], accounting for approximately 15%–25% of 
all invasive breast cancers [4]. Due to the lack of 
targeted therapies [5], systemic chemotherapy 
remains the primary treatment option; however, its 
effectiveness is limited by high systemic toxicity and 
multidrug resistance [6]. Consequently, there is an 
urgent need to identify novel biomarkers for the early 
diagnosis and targeted treatment of TNBC. 

Epigenetics refers to heritable changes in gene 
expression that do not involve alterations in the DNA 
sequence but rather a regulatory code that governs 
gene function [7]. Among various epigenetic 
modifications, DNA methylation is the most 
extensively studied and plays a crucial role in 
genomic regulation, occurring primarily at the 5' site 
of CpG dinucleotides [8]. An increasing number of 
studies have demonstrated that aberrant DNA 
methylation is a key contributor to breast cancer 
onset, metastasis, and prognosis [9]. For instance, a 
study found that elevated levels of gene promoter 
methylation were strongly associated with hormone 
receptor-positive breast tumors, and hypermethyla-
tion of FZD9, MME, BCAP31, HDAC9, PAX6, 
SCGB3A1, and PDGFRA genes effectively predicted 
hormone receptor-positive breast cancer [10]. 
Furthermore, SO JY et al. reported that DNA 
methyltransferase 3B mediates the epigenetic 
programming of metastatic breast cancer cells by 
altering multiple signaling pathways, including 
STAT3, NF-κB, PI3K/Akt, β-catenin, and Notch 
signaling [11]. Given that DNA methylation is a 
reversible process, it presents a promising therapeutic 
target for the intervention and treatment of breast 
cancer. 

Evidence suggests that abnormal DNA 
methylation plays a critical role in the development of 
TNBC. For example, a study conducted at Lund 
University in Sweden [12] reported an elevated 
incidence of BRCA1 hypermethylation in early-stage 
TNBC, indicating an association between BRCA1 
hypermethylation and the onset of early-stage TNBC 
[13]. Another study demonstrated that promoter 
hypomethylation of three breast cancer stem 
cell-related genes—CD44, CD133, and MSH1—was 
strongly correlated with TNBC aggressiveness [14]. In 
addition, aberrant DNA methylation of specific genes 
has been linked to both the initiation and progression 
of TNBC [15]. DNA methylation has also been 
identified as a potential prognostic biomarker for 
TNBC. Mendaza et al. [16] suggested that ADAM12 
hypomethylation was associated with poor prognosis 
in patients with TNBC. A bioinformatics analysis [17] 
integrating mRNA expression and promoter 
methylation demonstrated that PLA2R1 
downregulation, accompanied by promoter 
hypermethylation, was observed in TNBC. This 
finding suggests that PLA2R1 may serve as a valuable 
diagnostic and prognostic biomarker. Additionally, 
another study reported a significant link between 
hypomethylation and abnormal activation of the CT83 
gene in TNBC [18], which was associated with a 
reduced overall survival rate in patients with breast 
cancer. Previous research on gene methylation in 
TNBC has been limited, with most studies focusing on 
the effects of methylation on individual genes or small 
gene subsets. As a result, there remains a substantial 
knowledge gap regarding the genome-wide impact of 
DNA methylation on TNBC development and 
progression. Therefore, it is essential to investigate the 
role of aberrant DNA methylation in TNBC using a 
comprehensive genomic approach. 

In the present study, we conducted an integrated 
analysis of transcriptomic and methylation data to 
identify methylation-regulated differentially 
expressed genes (MDEGs). Gene Ontology (GO) 
analysis, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis, and protein-protein 
interaction (PPI) network analysis were subsequently 
performed on MDEGs to identify key genes. The 
expression levels of these key genes were further 
analyzed using data from The Cancer Genome Atlas 
(TCGA, https://tcga-data.nci.nih.gov/tcga/). 
Additionally, we evaluated the relationship between 
key genes and TNBC diagnosis and prognosis. 
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Finally, the expression of key genes was validated in 
the TNBC cell line MDA-MB-231 and the normal 
breast epithelial cell line MCF-10A. This study may 
provide valuable insights into the diagnosis and 
precision treatment of TNBC. The workflow of the 
analysis is illustrated in Figure 1. 

 

 
Figure 1. Flowchart of bioinformatics analysis. TNBC: triple-negative breast cancer, 
DEGs: differentially expressed genes, DMGs: differentially methylated genes, MDEGs: 
methylation-regulated differentially expressed genes. GSE76250: the transcriptome 
profiling data in TNBC. 

 

2. Materials and Methods 
2.1 Patients and tissue specimens 

The cases in this study were obtained from 
primary patients with TNBC who underwent radical 
mastectomy at Shaanxi Provincial People's Hospital, 
with a total of six patients with TNBC included. 
Cancer tissues and paired adjacent noncancerous 
tissues were collected from these patients, and tissue 
DNA and RNA were extracted. Reduced 
representation bisulfite sequencing (RRBS) and whole 
genome RNA sequencing (RNA-seq) were performed 
on six cancer tissues and six adjacent noncancerous 

tissue samples. This study was approved by the 
Medical Ethics Committee of Shaanxi Provincial 
People's Hospital (2023-R168), and all participants 
provided written informed consent. Additionally, the 
external dataset GSE76250, a transcriptomic 
sequencing dataset, was used for validation and 
contains 165 TNBC samples and 33 adjacent 
noncancerous tissues. 

2.2 Acquisition and processing of expression 
data 

Total RNA was isolated and purified from tissue 
samples using TRIzol™ reagent (Invitrogen, CA, 
USA). PolyA mRNA was selectively captured using 
Dynabeads™ Oligo (dT) (Thermo Fisher, CA, USA). 
The captured mRNA was subsequently fragmented 
using the Magnesium RNA Fragmentation Module 
(New England Biolabs, CA, USA) and then 
reverse-transcribed to synthesize complementary 
DNA (cDNA) using SuperScript™ II Reverse 
Transcriptase (Invitrogen, CA, USA). Following PCR 
amplification, the average insert length of the cDNA 
library was 300 ± 50 bp. Paired-end (2 × 150 bp) 
sequencing was performed on an Illumina NovaSeq™ 
6000 (LC-Bio Technology Co, Hangzhou, China) 
following the manufacturer’s recommended protocol. 
Fastp software was used to filter the raw sequencing 
reads by removing those containing adapter 
contamination, low-quality bases, or undetermined 
bases using default parameters. Differentially 
expressed genes (DEGs) were identified using 
parametric F-tests comparing nested linear models in 
the R package edgeR. DEGs were selected based on 
the criteria of |log₂ fold change (log₂FC)| ≥ 1 and 
adjusted p-value < 0.05. 

The expression matrix of GSE76250 and its 
corresponding platform information were 
downloaded and processed from the Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih 
.gov/geo/) database using the GEOquery package in 
R 4.2.0. We extracted gene expression profiles and 
clinicopathological data from 33 patients with TNBC, 
including paired carcinoma and adjacent normal 
tissues. Data normalization and differential 
expression analysis were performed using the limma 
package in R, and DEGs were identified based on the 
criteria of adjusted p-value < 0.05 and |log2FC| ≥ 1. 
The intersection of differentially expressed gene lists 
from multiple datasets was used for subsequent 
analyses. 

2.3 Methylation detection and processing of 
the results 

Total DNA was extracted from tissue samples 
using the QIAamp Rapid DNA Tissue Kit (Qiagen, 
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Düsseldorf, Germany) following the manufacturer’s 
protocol. DNA fragmentation was performed using 
the MspI restriction enzyme (New England Biolabs, 
CA, USA), followed by bisulfite conversion. 
Fragmented DNA (200–500 bp) was selected and 
subjected to PCR amplification to construct 
sequencing libraries. Paired-end (2 × 150 bp) 
sequencing was conducted on an Illumina NovaSeq™ 
6000 platform. For raw sequencing reads, Cutadapt 
was used to remove reads containing adapter 
contamination, low-quality bases, and undetermined 
bases. Sequence quality was verified using FastQC, 
and reads passing quality control were aligned to the 
reference genome using Bismark. After alignment, 
duplicate reads were removed using Samtools to 
eliminate redundancy. DNA methylation levels were 
calculated as the ratio of methylated cytosine (C) 
reads to total cytosine reads (methylated and 
unmethylated) using in-house Perl scripts and 
MethPipe. Differentially methylated regions were 
identified using the MethylKit package in R with 
default parameters (1,000 bp sliding windows, 500 bp 
overlap, p < 0.05). Differentially methylated genes 
(DMGs) were then identified using R 4.2.0, based on 
the criteria of adjusted p-value < 0.05 and |log₂FC| ≥ 
1. 

2.4 The conjoint analysis of methylome and 
transcriptome 

The intersection of DEGs and DMGs was 
analyzed and visualized using the ggplot2 and 
VennDiagram packages in the R programming 
environment. Overlapping genes were identified as 
MDEGs. GraphPad Prism software was used to 
analyze the correlation between mRNA expression 
and methylation levels of the overlapping gene sets. 
Genes with high expression of hypomethylation 
(hypo-MDEGs) and genes with low expression of 
hypermethylation (hyper-MDEGs) were selected for 
subsequent studies. 

2.5 Assessment of biological variables among 
MDEGs 

To investigate the biological significance of 
MDEGs, GO and KEGG pathway enrichment 
analyses were performed separately for hypo-MDEGs 
and hyper-MDEGs using the clusterProfiler package 
in R. Enrichment results were visualized based on 
statistical significance (p-value) using the ggplot2 
package in R. 

2.6 Construction of PPI network and analysis 
of hub genes 

To assess the functional interactions among gene 
sets in patients with TNBC, a PPI network was 

constructed using STRING 12.0 
(https://cn.string-db.org/). The network data were 
imported into Cytoscape (version 3.7.1) for 
visualization and enhancement. Hub genes were 
identified using the CytoHubba application within 
Cytoscape, employing the MCC, MNC, Degree, 
Closeness, and Radiality algorithms. In addition, 
GraphPad Prism was used to evaluate the correlation 
between the expression levels of these genes, and the 
results were visualized using the igraph package in R. 

2.7 Analysis of hub genes expression, diagnosis 
and prognosis 

Raw gene expression data and clinical 
information for 126 patients with TNBC from The 
Cancer Genome Atlas (TCGA) were obtained using 
the TCGAbiolinks and SummarizedExperiment 
packages in RStudio. After quality control, differential 
expression analysis of hub genes was performed on 
115 TNBC tumor samples and 11 adjacent 
noncancerous tissues using the DESeq2 package in R. 
The expression values of hub genes were extracted 
from TCGA data and subjected to statistical analysis 
and visualization using GraphPad Prism (version 
9.0.0). 

To assess the diagnostic potential of hub genes, 
receiver operating characteristic (ROC) curves were 
generated, and the area under the curve (AUC) was 
calculated using MedCalc (version 15.2.2). For 
prognostic analysis, the Kaplan-Meier (KM) plotter 
online tool was used to evaluate overall survival (in 
months) based on hub gene expression in patients 
with TNBC from the TCGA database. 

2.8 Detection of expression and methylation 
levels of hub genes for MDA-MB-231 

The TNBC cell line MDA-MB-231 and the 
normal breast epithelial cell line MCF-10A were used 
to validate the expression of hub genes. Both cell lines 
were gifted by Professor Liu Peijun from The First 
Affiliated Hospital of Xi’an Jiaotong University and 
certified by professional institutions. MDA-MB-231 
cells were cultured in Leibovitz’s L-15 medium 
supplemented with 10% fetal bovine serum and 1% 
penicillin-streptomycin. MCF-10A cells were cultured 
in DMEM/F12 medium containing 5% horse serum, 
20 ng/mL epidermal growth factor, 0.5 μg/mL 
cortisol, 10 μg/mL insulin, and 1% 
penicillin-streptomycin. 

Total RNA was extracted using the M5 HiPer 
Universal RNA Mini Kit (Mei5bio, Beijing, China) and 
reverse transcribed into cDNA using the M5 Super 
qPCR TR Kit with gDNA remover (Mei5bio, Beijing, 
China). Primers for the hub genes were designed 
online using Integrated DNA Technologies, and the 
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primer sequences are provided in Table S1. 
Quantification of hub gene transcript levels was 
performed using a reverse transcription quantitative 
PCR (RT-qPCR) kit (Mei5bio, Beijing, China). The 
reaction mixture contained 10 µL Realtime PCR Super 
Mix, 7.4 µL ddH₂O, 1 µL cDNA template, and 0.8 µL 
of each primer. RT-qPCR amplification was carried 
out using a Gentier 96 thermal cycler (Tianlong, Xi’an, 
China) under the following conditions: 95°C for 30 s, 
followed by 40 cycles of 95°C for 5 s and 57°C for 30 s, 
with a final storage temperature of 4°C. All reactions 
were performed in duplicate, and the relative mRNA 
levels of hub genes were quantified using the 2-∆∆Ct 
method, with ACTB as the reference gene. 

Total DNA was extracted using a DNA 
Extraction Kit (TIANGEN, Beijing, China) and 
modified using the DNA Methylation-Gold Kit 
(ZYMO, CA, USA). Primers for the hub genes were 
designed online via the MethPrimer website, and the 
primer sequences are provided in Table S1. 
Quantitative methylation-specific PCR (qMSP) was 
employed to assess the methylation levels of key 
genes. The reaction mixture contained 10 µL Realtime 
PCR Super Mix, 7.4 µL ddH₂O, 1 µL modified DNA 
template, and 0.8 µL of each primer. Amplification 
was performed under the following conditions: 95°C 
for 30 s, followed by 45 cycles of 95°C for 5 s and 57°C 
for 30 s, with a final storage temperature of 4°C. The 
reference gene and calculation method were the same 
as described above. 

2.9 Statistical analysis 
R software (version 4.2.0) and GraphPad Prism 

(version 9.0.0) were used for data processing and 
statistical analysis. Spearman’s rank correlation was 
applied to assess the correlation between DNA 
methylation levels and gene expression, as well as the 
correlation among hub gene expression levels. The 
Mann-Whitney U test was used to evaluate the 
differences in hub gene expression between TNBC 
samples and adjacent noncancerous tissues. The 
Welch’s t-test was applied to compare hub gene 
expression levels between TNBC cells and normal 
breast epithelial cells. ROC curves were generated 
using MedCalc (version 15.2.2). The log-rank test was 
conducted to compare the prognostic impact of 
different hub gene expression levels in patients with 
TNBC. Statistical significance was defined as p < 0.05. 

3. Results 
3.1 Transcriptomic pattern of TNBC and 
adjacent noncancerous tissues 

Gene expression levels were analyzed in six 

pairs of TNBC and adjacent noncancerous tissues, 
revealing 4,080 DEGs between the two groups, as 
depicted in the volcano plot (Figure 2A). Among 
these, 2,230 genes were upregulated, and 1,850 genes 
were downregulated, as illustrated in the histogram 
(Figure 2B, Table S2). Additionally, analysis of the 
GSE76250 dataset identified a total of 387 DEGs 
between TNBC and adjacent noncancerous tissues 
(Figure 2C), comprising 157 upregulated genes and 
230 downregulated genes (Figure 2D, Table S3). 
Following an integrated analysis of RNA-seq data and 
GSE76250 dataset, the overlapping transcriptomic 
data of TNBC tissues was visualized in a Venn 
diagram (Figure 2E), leading to the identification of 98 
upregulated and 87 downregulated genes. 

3.2 DNA methylation Levels of TNBC and 
adjacent noncancerous tissues 

The DNA methylation status of various genomic 
regions was analyzed using RRBS. The bisulfite 
conversion rate exceeded 99% across all samples 
(Table S4). Cytosine (C) site coverage was consistent 
among samples (Figure 3A), confirming the 
completeness, accuracy, and reproducibility of the 
sequencing data. By comparing global methylation 
rates across all C sites, we found that DNA 
methylation predominantly occurred at CpG 
dinucleotides, with an average methylation level 
exceeding 75% (Figure 3B). Additionally, 
differentially methylated CpG sites were primarily 
located in promoter regions upstream of transcription 
start sites (Figure 3C). 

3.3 Integration of methylome and 
transcriptomic data 

Differential methylation analysis identified 8,293 
DMGs in TNBC tissues compared with adjacent 
noncancerous tissues (Figure 4A). Among these, 5,059 
genes were hypermethylated, while 3,234 genes were 
hypomethylated, as shown in the histogram (Figure 
4B, Table S5). A Venn diagram illustrating the 
intersection of methylome and transcriptomic data 
from patients with TNBC identified 73 overlapping 
genes (Figure 4C). Correlation analysis between 
methylome and transcriptomic data revealed that 54 
of these genes exhibited a negative correlation within 
the first and ninth quadrants of the nine-quadrant 
correlation diagram (Figure 4D). To further illustrate 
these findings, radar charts were used to display these 
54 negatively correlated genes, including 22 
hypo-MDEGs (Figure 4E) and 32 hyper-MDEGs 
(Figure 4F). 
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Figure 2: Transcriptomic pattern of TNBC and adjacent noncancerous tissues. (A) Volcano map of the gene expression levels in six pairs of TNBC and adjacent noncancerous 
tissues in RNA-seq. (B) Histogram of differentially expressed genes in six pairs of TNBC and adjacent noncancerous tissues. (C) Volcano plot of gene expression levels in 33 pairs 
of TNBC and adjacent noncancerous tissues in GSE76250 dataset. (D) Histogram of differentially expressed genes in 33 pairs of TNBC and adjacent noncancerous tissues. (E) 
Venn diagram of differentially expressed genes between RNA-seq group and GSE76250 dataset in TNBC. DEGs: differentially expressed genes. GSE76250: the transcriptome 
profiling data in TNBC. 

 
Figure 3: DNA methylation profiling of TNBC patients. (A) Overview of genome coverage at cytosine sites across the analyzed samples. (B) DNA methylation rates at CpG 
contexts across various samples. (C) Assessment of methylation levels in different gene regions across the entire gene landscape. 
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Figure 4. Integrative analysis of methylome and transcriptomic data in TNBC. (A) Volcano plot of genes methylation levels in six pairs of TNBC and adjacent noncancerous 
tissues in RRBS. (B) Histogram of DMGs in six pairs of TNBC and adjacent noncancerous tissues in RRBS. (C) Venn diagram between DMGs and DEGs of TNBC. (D) The 
nine-quadrant diagram of Correlation analysis between DMGs and DEGs. (E) Radar chart of 22 hypo-MDEGs. (F) Radar chart of 32 hyper-MDEGs. RRBS: reduced representation 
bisulfite sequencing, MDEGs: methylated differentially expressed genes. 

 

3.4 GO and KEGG enrichment analysis 
In patients with TNBC, hypo-MDEGs were 

primarily involved in biological processes such as 
mitotic nuclear division, nuclear division, and 
organelle fission. These genes were predominantly 
associated with cellular components, including the 
spindle, centromeric chromosome regions, and 
kinetochore, while their molecular functions mainly 
involved microtubule binding, tubulin binding, and 
microtubule motor activity (Figure 5A). According to 
KEGG pathway analysis, hypo-MDEGs were enriched 
in progesterone-mediated oocyte maturation, cell 
cycle regulation, and oocyte meiosis (Figure 5A). The 
specific hypo-MDEGs associated with each GO term 
and KEGG pathway are listed in Table S6. 
Additionally, chord plots demonstrated 15 
significantly enriched hypo-MDEGs (Figure 5B). 

For hyper-MDEGs, GO enrichment analysis 
revealed that they were mainly involved in biological 
processes such as epithelial cell proliferation, 
response to peptide hormones, and sensory 
perception of pain. The cellular components 
associated with these genes included the 
collagen-containing extracellular matrix and 
basement membrane, while their molecular functions 
involved sulfur compound binding, heparin binding, 

and glycosaminoglycan binding (Figure 5C). 
However, KEGG pathway analysis did not identify 
significant enrichment for hyper-MDEGs. The 
hyper-MDEGs involved in each GO term are listed in 
Table S7. Additionally, 17 significantly enriched 
hyper-MDEGs were identified using a chord diagram 
(Figure 5D). 

3.5 PPI network for identifying hub genes 
The PPI network of hypo-MDEGs and 

hyper-MDEGs was predicted using the STRING 
database. The results showed that hypo-MDEGs 
exhibited complex protein interactions, forming 168 
interaction pairs (Figure 6A). However, 
hyper-MDEGs demonstrated weak protein 
interactions, with only 16 interaction pairs (Figure 6B). 
Among the hypo-MDEGs, 19 genes exhibited strong 
interactions, and a network map of these genes was 
constructed using Cytoscape. The top 7 hub genes 
within the core network were identified using MCC, 
MNC, Degree, Closeness, and Radiality algorithms in 
CytoHubba, including EXO1, KIF11, FOXM1, CENPF, 
CCNB1, PLK1, and KIF23 (Figure 6C). Furthermore, 
correlation network analysis of the expression levels 
of these 7 hub genes showed that the correlation 
coefficients were all greater than 0.7 (p < 0.05 for all 
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genes), indicating a strong positive correlation 
between their expression levels (Figure 6D). These 
findings suggest that EXO1, KIF11, FOXM1, CENPF, 
CCNB1, PLK1, and KIF23 may serve as key hub genes 
in TNBC pathogenesis. 

3.6 Effect of hub genes on diagnosis and 
prognostic of TNBC 

To evaluate the diagnostic value and prognostic 
role of hub genes in TNBC, we first analyzed their 
expression levels in TCGA database. The results 
showed that the expression levels of EXO1, KIF11, 

FOXM1, CENPF, CCNB1, PLK1, and KIF23 were 
significantly higher in TNBC tissues compared to 
adjacent noncancerous tissues (p < 0.05 for all genes) 
(Figure 7). These findings were consistent with the 
sequencing data from the present study. Next, ROC 
curve analysis was performed to assess the diagnostic 
potential of these hub genes. The results 
demonstrated that the AUC of the ROC curve for all 
seven hub genes exceeded 0.90 (p < 0.05 for all genes) 
(Figure 8A), suggesting that these genes hold strong 
diagnostic value for TNBC detection. 

 
 

 
Figure 5. GO and KEGG enrichment analysis of hypo-MDEGs and hyper-MDEGs in TNBC. (A) Bubble chart of GO and KEGG enrichment analysis in hypo-MDEGs. (B) Chord 
diagram of GO and KEGG analysis in Hypo-MDEGs. (C) Bubble chart of GO and KEGG enrichment analysis in Hyper-MDEGs. (D) Chord diagram of GO and KEGG analysis in 
Hyper-MDEGs. BP: biological process, CC: cell component, MF: molecular function. 
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Furthermore, the prognostic significance of the 
seven hub genes in patients with TNBC was 
examined. The results revealed that KIF11, CCNB1, 
and PLK1 had a hazard ratio (HR) greater than 1 when 
comparing high versus low expression groups (p < 
0.05 for all genes) (Figure 8C, F, G), indicating that 
increased expression of these genes was associated 
with a poor prognosis in patients with TNBC. 
Additionally, the HR values for high versus low 
expression of CENPF and KIF23 were greater than 1, 

but did not reach statistical significance (Figure 8E, 
H). Conversely, EXO1 and FOXM1 had HR values 
less than 1, yet these associations were also not 
statistically significant (p > 0.05) (Figure 8B, D). These 
findings suggest that while KIF11, CCNB1, and PLK1 
may serve as key prognostic biomarkers for TNBC 
progression, EXO1, FOXM1, CENPF, and KIF23 do 
not show a strong prognostic association in patients 
with TNBC. 

 
 

 
Figure 6. PPI network analysis for the identification of hub genes. (A) PPI network analysis of hypo-MDEGs from STRING database. (B) PPI network analysis of hyper-MDEGs 
from STRING database. (C) Circle map of significantly correlated genes of hypo-MDEGs highlighted by cytoscape software, the top 7 genes were located in the inner loop of the 
circle. (D) Network diagram of the correlation between 7 genes. The lines between the genes represent their relationships, with the thickness of the lines indicating the absolute 
value of the correlation coefficient, the thicker the line, the stronger the correlation. The color of the lines shows the direction of the correlation, with orange indicating a positive 
correlation and blue indicating a negative correlation. 
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Figure 7. The mRNA levels of EXO1, KIF11, FOXM1, CENPF, CCNB1, PLK1, and KIF23 in TNBC patients. ***: p< 0.001. 

 
Figure 8. Effect of hub genes on diagnosis and prognostic of TNBC. (A) ROC analysis of EXO1, KIF11, FOXM1, CENPF, CCNB1, PLK1 and KIF23 expression in TNBC. (B-H) The 
KM curves of EXO1, KIF11, FOXM1, CENPF, CCNB1, PLK1 and KIF23 in TNBC. 

 

3.7 Expression and methylation levels of hub 
genes in MDA-MB-231 

To further validate the expression and 
methylation levels of KIF11, CCNB1, and PLK1, we 
conducted experiments using TNBC cell line 
MDA-MB-231 and normal breast epithelial cell line 
MCF-10A. Morphological analysis showed moderate 
growth and good proliferation of MCF-10A (Figure 
9A) and MDA-MB-231 (Figure 9B) cells in culture, 
fulfilling the experimental requirements. Gene 
expression analysis revealed that KIF11, CCNB1, and 
PLK1 mRNA levels were significantly upregulated in 
MDA-MB-231 cells compared to MCF-10A cells (p < 
0.05 for all genes) (Figure 9C-E). These results confirm 
that these three genes are highly expressed in TNBC 
cells, which is consistent with their elevated 

expression in TNBC patient samples, further 
supporting their role as prognostic markers for TNBC. 
Furthermore, DNA methylation levels in the 
promoter regions of KIF11, CCNB1, and PLK1 were 
compared between MDA-MB-231 and MCF-10A cell 
lines. The results demonstrated significantly lower 
DNA methylation levels in the promoter regions of 
these three genes in MDA-MB-231 cells (p < 0.05 for all 
genes) (Figure 9F-H), suggesting that 
hypomethylation of KIF11, CCNB1, and PLK1 
contributes to their upregulated expression in TNBC. 

4. Discussion 
TNBC is a subtype of breast cancer characterized 

by the absence of ER, PR, and HER2 expression. 
TNBC exhibits high malignancy, early onset, rapid 
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metastasis, poor prognosis, and an increased 
likelihood of recurrence. Due to the lack of effective 
targeted therapies, there is an urgent need to identify 
novel biomarkers that can improve TNBC prognosis 
and treatment strategies. DNA methylation has 
emerged as a critical area of epigenetic research in 
various malignancies, including breast cancer [19]. 
However, therapeutic targets related to epigenetic 
regulation in TNBC remain limited in clinical practice. 
Advancements in this field have the potential to offer 
significant benefits for TNBC diagnosis and 
treatment. In this study, we analyzed RNA 
sequencing data and the GSE76250 dataset, 

identifying 98 upregulated genes and 87 
downregulated genes that were differentially 
expressed in TNBC. Additionally, RRBS data analysis 
identified 5,059 hypermethylated genes and 3,234 
hypomethylated genes. Further integration of DEGs 
and DMGs, followed by intersection and correlation 
analysis, identified 54 genes that exhibited a negative 
correlation between gene expression and DNA 
methylation status, including 22 hypo-MDEGs and 32 
hyper-MDEGs. 

To elucidate the biological functions of these 54 
MDEGs, we performed GO and KEGG pathway 
enrichment analyses. The results indicated that 

 
Figure 9. The mRNA and methylation levels of hub genes in MCF-10A and MDA-MB-231. (A) MCF-10A: normal breast epithelial cell line, (B) MDA-MB-231: TNBC cell line. The 
mRNA levels of KIF11 (C), CCNB1 (D) and PLK1 (E). The methylation levels of KIF11 (F), CCNB1 (G) and PLK1 (H). *: p < 0.05. 
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hypo-MDEGs were primarily involved in spindle 
assembly, chromosome centromere organization, and 
centromere function. These genes played crucial roles 
in biological processes such as mitotic nuclear 
division and were associated with protein-binding 
functions, including microtubule binding, tubulin 
binding, and microtubule motor activity. Moreover, 
KEGG pathway analysis revealed that hypo-MDEGs 
were significantly enriched in the cell cycle pathway, 
progestin-mediated oocyte maturation pathway, and 
oocyte meiosis pathway. Spindles, centromeres, and 
microtubules are essential for mitotic progression, 
and abnormal mitosis can lead to dysregulated 
nuclear division, ultimately triggering tumorigenesis 
[20]. Aberrant mitosis has been widely recognized as a 
hallmark of cancer progression [21]. According to a 
study on TNBC mitosis, continuous BET protein 
activation promotes the sustained expression of cell 
cycle-related genes[22], leading to mitotic catastrophe 
in cancer cells. The cell cycle pathway has been 
demonstrated to play a key role in TNBC progression 
[23], and its regulation is considered critical for 
effective cancer treatment [24] Additionally, 
hyper-MDEGs were predominantly involved in 
extracellular matrix and basement membrane 
composition, as well as binding to sulfur compounds 
and heparin. These genes played a significant role in 
epithelial cell proliferation and response to peptide 
hormones. Studies have shown that tumor epithelial 
cells can penetrate the basement membrane and 
interact with stromal fibroblasts, thereby enhancing 
breast cancer cell metastatic potential [25]. We 
hypothesize that inhibiting the expression of these 
genes in TNBC cells may result in a weakened 
basement membrane, making tumor cells more 
susceptible to malignant expansion and metastasis. 

To determine whether these genes interact, we 
used the STRING database and Cytoscape to identify 
19 genes with strong interactions. We then applied the 
CytoHubba plugin in Cytoscape to identify the top 7 
hub genes in TNBC, namely EXO1, KIF11, FOXM1, 
CENPF, CCNB1, PLK1, and KIF23, which exhibited 
strong positive expression correlations. The results 
indicate that the coordinated expression of these 
genes plays a vital role in mitosis and cell cycle 
regulation during tumor development. Previous 
studies have shown that FOXM1 activates the 
Wnt/β-catenin signaling pathway and enhances 
epithelial-mesenchymal transition (EMT) progression 
in TNBC by binding to the KIF23 transcriptional 
promoter [26]. Another study demonstrated that 
FOXM1 promotes tumor progression and glycolysis 
in TNBC by regulating CENPA gene expression [27]. 
However, limited research exists on interactions 
among these hub genes, underscoring the need for 

further investigations. Notably, these seven hub genes 
are classified as hypomethylated, highly expressed 
MDEGs (hypo-MDEGs), aligning with previous 
research [28] that reported an overall low level of 
DNA methylation in TNBC. We further assessed the 
diagnostic potential of these 7 hub genes and found 
that the AUC exceeded 0.9, indicating their significant 
diagnostic reference value for TNBC. Additionally, 
we evaluated the prognostic significance of these hub 
genes in patients with TNBC and observed that high 
expression of KIF11, CCNB1, and PLK1 was 
associated with poor prognosis. Our findings confirm 
that hypo-MDEG hub genes play a crucial role in both 
the diagnosis and prognosis of TNBC. 

Previous studies have reported similar findings. 
KIF11 is a mitogenic kinesin [29] and a key regulator 
of the cell cycle. Knockdown of KIF11 leads to G2/M 
phase arrest, indicating its crucial role in TNBC tumor 
cell proliferation and self-renewal, both in vitro and in 
vivo. KIF11 is highly expressed in TNBC and is 
associated with shorter disease-free survival, making 
it a potential therapeutic target for drug-resistant 
TNBC [30]. CCNB1 is significantly enriched in the cell 
cycle pathway and is highly expressed across multiple 
breast cancer subtypes, including luminal A, luminal 
B, HER2-positive, and TNBC. Its expression is 
strongly correlated with tumor pathological grade, 
disease stage, and metastasis [31]. A study by Li et al. 
showed that CCNB1 is highly expressed in TNBC 
tissues and serves as a poor prognostic factor for 
patients with TNBC [32]. PLK1 is a key regulator of 
cell division [33], and its inhibition has been shown to 
induce DNA damage, mitotic arrest, and ultimately 
cell death [34]. The prognostic significance of PLK1 in 
breast cancer is subtype-dependent. While strong 
PLK1 expression is associated with longer survival in 
luminal breast cancer [35], its inhibition correlates 
with poor prognosis in TNBC [34]. Consistent with 
these findings, our study demonstrated that patients 
with TNBC with high expression of KIF11, CCNB1, 
and PLK1 had poor overall survival. These results 
suggest that aberrant DNA methylation may regulate 
gene expression and impact TNBC prognosis. Given 
that the elevated expression of KIF11, CCNB1, and 
PLK1 is associated with an unfavorable TNBC 
prognosis, this study focused on analyzing their 
expression and methylation patterns. Our 
experimental results confirmed that KIF11, CCNB1, 
and PLK1 were highly expressed with low 
methylation levels in TNBC cell lines. However, 
further biomolecular validation is required to confirm 
the protein-level expression of these genes and to 
further elucidate the relationship between gene 
expression and DNA methylation. 
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In addition, EXO1 is an exonuclease involved in 
cell cycle checkpoint regulation, replication fork 
maintenance, and post-replication DNA repair 
pathways [36]. Previous studies have reported EXO1 
expression in breast cancer to be associated with low 
methylation levels, and it has been found to be 
significantly enriched in the cell cycle pathway [37]. 
CENPF, a member of the centromere protein family, 
plays a critical role in centromeric assembly and 
chromosome segregation. It is highly expressed in 
breast cancer and has been proposed as a diagnostic 
and prognostic marker [38]. However, while the 
expression and methylation patterns of EXO1 and 
CENPF in TNBC remain unclear, our findings suggest 
that both EXO1 and CENPF exhibit high expression 
and low methylation status in TNBC. FOXM1 is a 
proliferative transcription factor that is widely 
expressed in actively dividing cells, including stem 
cells and tumor cells [39]. Its expression is 
significantly upregulated in patients with TNBC 
compared with other breast cancer subtypes and 
normal breast tissues [40]. However, studies have also 
shown that elevated FOXM1 expression has no 
significant effect on TNBC prognosis, whereas it plays 
a crucial prognostic role in ER+/HER2− breast cancer 
subtypes [41]. This aligns with our findings in TNBC, 
where FOXM1 expression was not significantly 
associated with patient prognosis. KIF23, a key 
component of the central spindle complex, is essential 
for mitotic progression [42]. It plays a crucial role in 
regulating cell division, DNA replication, and DNA 
damage repair [43]. KIF23 is significantly upregulated 
in TNBC, where it activates the Wnt/β-catenin 
signaling pathway, thereby promoting EMT 
progression, migration, and metastasis, all of which 
are linked to poor TNBC prognosis [26]. However, 
our study did not find statistically significant 
associations between the hub genes EXO1, CENPF, 
FOXM1, and KIF23 and TNBC prognosis. 

In this study, we identified core genes 
significantly associated with TNBC diagnosis and 
prognosis through sequencing of clinical tissue 
samples, integration of multiple datasets, and 
comprehensive analysis of gene expression and 
methylation profiles. Our findings highlight the 
critical role of aberrant DNA methylation in 
regulating hub gene expression and prognosis, 
addressing limitations in previous genomic studies 
and providing potential targets for investigating the 
epigenetic molecular mechanisms underlying TNBC. 
However, this study has certain limitations that 
warrant further investigation. Future research will 
require analyses involving a larger cohort of clinical 
samples to strengthen these findings. Additionally, 
due to the heterogeneous nature of TNBC, further 

studies should explore the expression and 
methylation characteristics of core genes across 
specific TNBC subgroups to determine 
subtype-specific epigenetic alterations. 

5. Conclusions 
Collectively, our findings indicate that the 54 

MDEGs are primarily enriched in mitosis-related 
processes, epithelial cell proliferation, and peptide 
hormone response functions, playing a central role in 
TNBC cell cycle pathways. Among these, EXO1, 
KIF11, FOXM1, CENPF, CCNB1, PLK1, and KIF23 
were identified as hub genes in TNBC, exhibiting 
strong positive correlations in their expression levels 
and demonstrating diagnostic significance for TNBC. 
Furthermore, we found that elevated expression of 
KIF11, CCNB1, and PLK1 was associated with poor 
TNBC prognosis, suggesting their potential as 
prognostic biomarkers. All seven hub genes identified 
in this study were found to be hypomethylated, 
reinforcing the significance of DNA methylation in 
TNBC pathogenesis. These findings contribute to an 
enhanced understanding of TNBC biomarkers, 
particularly regarding the epigenetic regulation of 
gene expression, and provide novel candidate 
biomarkers for the accurate diagnosis and targeted 
treatment of TNBC. 
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