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Abstract 

Background: Breast cancer is the most prevalent malignancy among females worldwide. Extensive research 
has highlighted cancer stem cells (CSCs) as critical drivers of tumor initiation, progression, recurrence, and 
therapy resistance. However, the heterogeneity of breast cancer stem cells (BCSCs) and their dynamic roles 
within the tumor microenvironment remain inadequately understood. 
Methods: This study utilized the single-cell RNA sequencing dataset to categorize BCSCs into two subgroups 
within the breast cancer microenvironment and investigate their pseudo-time developmental dynamics. Bulk 
transcriptomic data from TCGA-BRCA were integrated to assess the prognostic significance and infiltration 
abundance of the BCSCs-2 subgroup. Functional enrichment, co-expression network analysis, and somatic 
mutation profiling were performed to elucidate key biological pathways and genetic features. Additionally, drug 
sensitivity analyses were conducted using the Connectivity Map database to identify potential therapeutic 
strategies. 
Results: A total of 459 BCSCs were identified and further classified into two distinct subpopulations: BCSCs-1 
and BCSCs-2. High infiltration of BCSCs-2 was associated with poor prognosis and an immunosuppressive 
tumor microenvironment. Co-expression network analysis identified 16 key genes linked to BCSCs-2, while 
somatic mutation analysis revealed distinct mutation patterns associated with its infiltration. Drug sensitivity 
analysis suggested that patients with high BCSCs-2 infiltration could benefit from classical chemotherapy agents, 
such as Cisplatin, and other novel therapeutic compounds. 
Conclusions: This study offers novel insights into the heterogeneity and functional roles of BCSCs in breast 
cancer. The findings highlight the prognostic and therapeutic importance of the BCSCs-2 subgroup, providing 
potential biomarkers and therapeutic targets for precision medicine in breast cancer management. 
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Introduction 
With the advancement of medical technology 

and the increase in human life expectancy, cancer has 
emerged as a significant global public health 
concern[1, 2]. Notably, breast cancer poses a 
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particularly severe threat to female health worldwide, 
accounting for one-quarter of all newly diagnosed 
cancer cases and one-sixth of cancer-related deaths 
among females globally[3]. Although breast cancer 
mortality rates have declined in some countries, its 
incidence continues to rise, increasing by 1% annually 
from 2012 to 2021[4]. Molecular subtyping of breast 
cancer has become a widely accepted approach for 
guiding therapy in breast cancer patients[5]. 
However, accumulating evidence indicates that 
molecular subtyping cannot completely capture the 
heterogeneity of breast cancer. Therefore, it is urgent 
to deeply explore the tumor microenvironment to 
address this challenge. 

Cancer stem cells (CSCs) are a subset of tumor 
cells that exhibit stem cell-like characteristics and 
have been recognized as key players in the initiation 
and progression of tumors[6]. These cells form a rare 
and highly organized hierarchical structure within the 
tumor and are considered the root cause of cancer 
recurrence and resistance to treatment. As such, CSCs 
have been a central focus of cancer research[7]. Cancer 
stem cells possess traits such as tumor initiation, 
self-renewal, multipotency, plasticity, and cancer 
stemness as a cellular state. These characteristics not 
only contribute to tumor progression and 
dissemination but also indicate that CSCs are in a 
dynamic and variable state within the tumor 
microenvironment[7]. Clinically, treatments targeting 
cancer stem cells have been tested in some blood 
cancers and solid tumors[6]. In lung cancer, Notch 
activity has been shown to identify cancer stem-like 
populations, and its inhibition may serve as a 
potential target for treating lung adenocarcinoma[8]. 
In summary, increasing evidence suggests that many 
cancers are driven by CSCs, which possess 
self-renewal and unlimited differentiation potential. 
Therefore, research on CSCs is crucial for the 
development of more effective cancer therapies. 

Breast cancer stem cells (BCSCs) were first 
identified in 2003 using a model in which human 
breast cancer cells grew in immunodeficient mice[9, 
10]. With deeper investigation into BCSCs, it has been 
found that they are divided into several distinct 
subpopulations, each with different functions[11, 12]. 
At the same time, potential therapeutic strategies 
targeting BCSCs have been reported. For example, 
treatment with bevacizumab, combined with the 
dual-topoisomerase inhibitor TOPO-1 and the HIF-1α 
inhibitor camptothecin, has shown potential for 
effectively targeting CSCs under hypoxic 
conditions[13]. Additionally, some reports indicate 
that CSC-targeting drugs can significantly enhance 
the effectiveness of anti-angiogenic therapies by 
targeting key pathways involved in tumor growth 

and vascularization[14]. Meanwhile, the plasticity of 
BCSCs has attracted significant research attention[15]. 
This suggests that BCSCs may play a key role in breast 
cancer treatment and hold substantial clinical 
translational value. However, our understanding of 
BCSCs is still in its early stages. Given the dynamic 
nature of BCSCs within the tumor microenvironment, 
it is essential to identify their subpopulations. 

Although previous studies have suggested that 
targeting CSCs may enhance the efficacy of traditional 
cancer treatments, the identification and eradication 
of CSCs remain challenging[16]. With the 
development and maturation of single-cell 
sequencing technology, we are now able to more 
reliably identify CSCs within the tumor 
microenvironment[17, 18]. Therefore, this study aims 
to utilize single-cell RNA sequencing to identify CSCs 
in breast cancer and classify them into different 
subpopulations. We explored the developmental 
trajectory of different BCSCs and their association 
with patient prognosis. Furthermore, we investigated 
the roles and functions of these subpopulations within 
the tumor microenvironment. We also identified key 
cellular markers and co-mutation patterns of the 
newly discovered BCSCs. Notably, drug sensitivity 
analysis further highlighted the clinical translational 
value of our research. Overall, this study provides a 
new perspective for understanding breast cancer from 
the viewpoint of CSCs and offers a novel potential 
therapeutic strategy for breast cancer treatment. 

Materials and Methods 
Data Acquisition and Pre-processing 

Bulk-RNA transcriptome data, single nucleotide 
variant (SNV) data, and survival time-to-event data of 
corresponding patients were obtained from the BRCA 
cohort in The Cancer Genome Atlas (TCGA). The 
‘TCGAbiolinks’ package (v2.26.0) was used to obtain 
the above data. Patients were included based on 
following criteria: 1. Complete expression profiles and 
follow-up information; 2. Diagnosed with primary 
breast cancer. In summary, a total of 1080 breast 
cancer patients with bulk RNA data were enrolled in 
study. The single-cell RNA sequencing dataset 
(GSE180286, 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?a
cc=GSE180286) was obtained from the Gene 
Expression Omnibus (GEO) Series. Of note, 5 
single-cell profiles of primary sites were included for 
subsequent analyses. 

The Seurat (v4.3.0) package was used for quality 
control and dimensionality reduction of scRNA-seq 
profiles. Routine quality control (QC) was performed 
using the following threshold criteria: genes detected 
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per cell ≥ 200; nCount of RNA ≥ 200; proportion of 
reads mapped to mitochondrial genes ≤ 20%; 
proportion of reads mapped to hemoglobin genes ≤ 
1%; and log10FeaturePerUMI ≥ 0.8. Potential doublets 
and batch effects were removed using the 
DoubletFinder package (v2.0.3)[19] and Harmony 
(v1.2.0)[20], respectively. The number of low-quality 
cells removed for each sample to 0.8% of the total cell 
count. SCTransform (v0.3.5)[21] was conducted for 
normalization, variance stabilization, and scaling of 
scRNA-seq data. Cell population annotation was 
performed based on biological markers obtained from 
online database[22]. 

Downstream Analysis of scRNA-seq Data 
The SCP (v0.4.7.9) package was used to conduct 

pseudo-time analysis to simulate the developmental 
trajectory of cells and identify key markers, functional 
annotations, and pathway analysis among different 
cell clusters. Specifically, the Slingshot tool was used 
to calculate the similarity and distance between cells, 
thereby inferring the dynamic trajectories of cells in a 
specific biological process within a low-dimensional 
space. The single-cell matrix and bulk transcriptome 
data were integrated using CIBERSORTx 
(https://cibersortx.stanford.edu/)[23] to estimate the 
infiltration abundance of BCSCs-2 in different 
samples. The single-cell gene matrix of BCSCs was 
used as the reference, while the bulk RNA matrix was 
utilized for inference. The parameters for the 
single-cell input options were set as follows: 1. 
min.Expression = 0.75; 2. Replicates = 5; 3. Sampling = 
0.5. Additionally, the absolute mode was selected to 
infer the abundance of cell clusters in the sample 
tissues. Subsequently, the survival outcomes of 
different groups based on the best cut-off value was 
evaluated using the survminer (v0.4.9) R package 
through Kaplan-Meier analysis. 

Enrichment Analysis 
Differential gene expression analysis was 

performed using the limma (v3.54.2) package. 
Differentially expressed genes were identified based 
on the P-value, with P < 0.05 considered significant. 
All differential genes were reordered by the value of 
fold change. Subsequently, gene set enrichment 
analysis (GSEA) provided by the clusterProfiler 
(v4.12.2) R package[24] was used to further identify 
potential functional pathways associated with 
BCSCs-2, and the GseaVis (v0.0.5) package was used 
for visualization. 

Co-expression Network Analysis 
The "hdwgcna" (v0.2.18) R package was used to 

analyze co-expressed gene modules in breast 

cancer-associated stem cells. Weighted Gene 
Co-expression Network Analysis (WGCNA) is a 
commonly used method for gene expression data 
analysis that identifies gene modules and investigates 
the association between these modules and external 
sample characteristics. Specifically, based on the 
expression profile variation of BCSCs, we chose 12 as 
the soft threshold and divided them into 13 different 
modules. The FindMarkers function in the Seurat 
package was used to identify the top genes of the 
BCSC-2 cell population, and the ggvenn (v0.1.10) 
package was used to perform an intersection and 
obtain the list of genes of interest. 

Somatic Mutation Landscape Analysis 
The TCGAbiolinks package (v2.26.0) was used to 

access the required somatic mutation data from the 
TCGA database. The landscape of masked somatic 
mutation profiles between different BCSCs-2 
infiltration abundances was analyzed using the 
maftools (v2.20.0) package[25]. The significance of 
gene pairs between different groups was identified 
using Fisher's exact test. Additionally, a heatmap was 
generated to illustrate the co-occurrence and mutual 
exclusivity of mutations across genes. 

Drug Sensitivity Analysis 
Connectivity Map (CMap, https://clue.io/)[26] 

was used to further explore potential corresponding 
drugs by comparing gene expression profiles. CMap 
is a reliable bioinformatics database and tool that can 
identify candidate compounds capable of reversing 
specific disease-associated gene expression patterns, 
thereby providing insights for novel drug 
development. The ggplot2 (v3.5.1) package and 
ComplexHeatmap (v2.16.0) package were used for the 
visualization of CMap results. 

In addition, the oncoPredict (v1.2) package was 
used to analyze the drug sensitivity of several 
chemotherapeutics between distinct groups. 

Statistics 
All statistical methods were performed using R 

software (version 4.2.2). Specific statistical details can 
be found in the corresponding material and methods 
section. 

Results 
Identification of Breast Cancer Stem Cells 

As illustrated in Figure 1, this study aims to 
investigate the presence of breast cancer stem cells in 
the breast cancer microenvironment and explore their 
potential biological functions. After the standardized 
quality control process of the single-cell RNA 
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transcript profile, potential low-quality doublets were 
removed to ensure the reliability of the data used for 

subsequent analysis. 

 

 
Figure 1. Tracking and annotating breast cancer stem cells from single-cell transcriptome data. (A-B) Reduced dimension maps of t-Distributed Neighbor 
Embedding (t-SNE) and the Uniform Manifold Approximation and Projection (UMAP) based on clusters. (C-D) Reduced dimension maps of t-Distributed Neighbor Embedding 
(t-SNE) and the Uniform Manifold Approximation and Projection (UMAP) based on cell types. (E) The expression levels of cell marker genes in different cell population 
annotations were represented by dot plots. 
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Subsequently, we applied t-Distributed 
Neighbor Embedding (t-SNE) (Figure 1A) and 
Uniform Manifold Approximation and Projection 
(UMAP) (Figure 1B) methods for dimensionality 
reduction, resulting in the partitioning of the 25,665 
cells into 14 distinct clusters with the resolution set as 
0.5. Furthermore, based on previously reported 
biologically specific markers of different cell 
populations, we constructed the single-cell profile and 
identified 459 breast cancer stem cells (BCSCs), 949 B 
cells/plasma cells, 792 endothelial cells, 12173 
epithelial cells, 2385 myeloid cells, 3074 T cells, 5632 
myofibroblasts, and 201 vascular fibroblasts (Figure 
1C-D). 

It is worth noting that CD14 and CD68 were 
used to label myeloid cells, while CD3D and CD3E 
served as markers for T cells. CD79A, IGHG1, and 
SLAMF7 were utilized to identify B cells and plasma 
cells. EPCAM and KRT18 were employed to label 
epithelial cells, whereas ALDH2, CD55, and 
ALDH6A1 were used to identify breast cancer stem 
cells. CDH5, VWF, and PECAM1 were markers for 
endothelial cells, and RGS5, MYH11, LUM, and DCN 
were used to label fibroblasts (Figure 1E). 

Cell Trajectory of Breast Cancer Stem Cells 
Cells in the tumor microenvironment are 

constantly undergoing dynamic changes. Therefore, 
to further explore the heterogeneity of breast cancer 
stem cells in the tumor microenvironment, we 
conducted pseudo-time analysis. Two distinct 
subgroups and a potential lineage evolution of breast 
cancer stem cells were identified. BCSCs showed a 
tendency to develop from BCSCs-1 to BCSCs-2 
(Figure 2A). The top 5 markers of each cell subgroup 
were illustrated in supplementary Figure S1A. In 
order to further study the potential biological 
functions of BCSCs, the changes in gene expression 
between different cell populations and pseudo-time 
stages were examined. The functional context of the 
biological processes associated with these genes was 
also investigated through Gene Ontology Biological 
Process (GO_BP) terms (Figure 2B). 

Notably, during the developmental trajectory of 
cells, breast cancer stem cells (BCSCs) tend to express 
genes such as IER3 and GADD45B at the early stage, 
while genes like NNMT and LDHB are preferentially 
expressed in the BCSCs-2 developmental state. In 
terms of their biological functions, early-stage 
BCSCs-1 cells could regulate stress responses and 
signal transduction by inhibiting protein kinase 
activity through pathways like 'Negative regulation of 
protein kinase activity' and 'Negative regulation of 
protein phosphorylation'. The enrichment of BCSCs-2 
cells in the 'Pyridine nucleotide metabolic process' 

and 'NAD biosynthetic process' suggested a 
metabolically active phenotype. These results suggest 
that the intrinsic lineage evolution of BCSCs may be 
accompanied by the evolution of distinct biological 
functions. 

Tumor Prognostic Value and Potential 
Biological Role of BCSCs-2 Cells 

In order to reveal the clinical significance of 
breast cancer stem cells, we used the sc-RNA matrix 
to estimate the abundance of stem cell infiltration 
levels of patients in the TCGA-BRCA cohort. The 
high- and low- infiltration groups were determined 
by the best cut-off value based on the absolute score of 
each cluster. Interestingly, a high abundance level of 
BCSCs-1was found to have no significant prognostic 
value (Figure 2C), while a high abundance level of 
BCSCs-2 was associated with poor prognosis (p < 
0.05, Figure 2D). Based on these findings, we 
investigated whether BCSCs-2 might influence 
prognosis through specific biological functions. 

The transcriptome data were used to obtain the 
list of differentially expressed genes, which were 
sorted by fold change and analyzed by GSEA 
functional enrichment. We observed a 
downregulation of the following pathways in the high 
BCSCs-2 group: 'Epithelial Mesenchymal Transition' 
(NES: 2.09, Adjusted p-value: < 0.001, Figure 3A), 
'PD-1 Signaling' (NES: 2.67, Adjusted p-value: < 0.001, 
Figure 3B), 'Signaling By Interleukins' (NES: 2.03, 
Adjusted p-value: < 0.001, Figure 3C), 'Interleukin 2 
Signaling' (NES: 2.00, Adjusted p-value: < 0.001, 
Figure 3D, Supplementary Table S1), 'IL-6 
JAK/STAT3 Signaling' (NES: 2.26, Adjusted p-value: 
< 0.001, Figure 3E), and 'Interleukin 10 Signaling' 
(NES: 2.44, Adjusted p-value: < 0.001, Figure 3F). 
These findings indicate that the high infiltration level 
of BCSCs-2 may be associated with heightened tumor 
malignancy, enhanced tumor stemness, and the 
formation of an immunosuppressive microenviron-
ment. 

Identification of Gene Co-expression Modules 
Among BCSCs 

Due to the correlation between breast cancer 
stem cell subpopulations and prognosis as well as 
biological functions, it is essential to explore the 
co-expression gene networks that play significant 
roles in these two subgroups. To achieve optimal 
connectivity, we constructed a scale-free network for 
BCSCs and set the soft threshold to 12 (Figure 4A-B). 
Finally, we identified a total of 13 modules and found 
that the genes in module 1 were most enriched and 
played a critical role in BCSCs-2, while they were 
scarcely enriched in BCSCs-1(Figure 4C-D), 
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suggesting these genes could be important 
co-expressed genes. In addition, we performed 
differential gene analysis between BCSCs-2 and other 
types of cells to obtain the top marker genes of 
BCSCs-2. By integrating the above gene lists, we 
identified 16 intersecting genes (Figure 4E), including 
KMT2E, IFITM3, MAGED2, TM4FSF1, GSTP1, SRI, 
CD59, SLC39A6, LIMCH1, ATP1B1, DSP, SYNE2, 
RARRES3, TMC5, SLC40A1, and TM4SF18. In 
summary, the above genes may serve as potential 
diagnostic markers and core genes of BCSCs-2. 

BCSCs-2 Cells Possessed More Somatic 
Co-mutations 

The above results confirmed the prognostic 
value of BCSCs-2, and we next explored the factors 
that may relate to the infiltration level of BCSCs. After 
integrating SNV data and removing invalid entries, 

we further analyzed the significant differences in 
somatic mutations between the two groups using 
Fisher's exact test. Genes such as VPS13D (p < 0.01), 
KMT2C (p < 0.01), CHD4 (p < 0.01), FER1L6 (p < 0.01), 
FLNB (p < 0.01), and ZMYM4 (p < 0.01) possessed 
more mutation frequencies in the high BCSCs-2 
infiltration group. Meanwhile, GATA3 (p < 0.01) was 
found to possess more mutations in the low 
infiltration group (Figure 5A). 

Co-mutation patterns were more abundant in 
the high BCSCs-2 infiltration abundance group than 
in the other group (Figure 5B-5C). These findings 
indicated significant differences in the somatic 
mutation spectrum between the two groups and 
revealed a subtle link between somatic variation and 
BCSCs-2. 

 

 
Figure 2. Developmental trajectory and prognostic analysis of BCSCs. (A) Pseudo-time developmental trajectories of BCSCs. BCSCs tended to develop from 
BCSCs-1 to BCSCs-2. (B) Changes in gene expression of BCSCs in Lineage 1, with functional enrichment results of GO_BP for different gene lists shown on the right. (C) 
Kaplan-Meier curves describing overall survival (OS) in breast cancer patients with different infiltration levels of BCSC-1. (D) Kaplan-Meier curves describing overall survival (OS) 
in breast cancer patients with different infiltration levels of BCSC-2. 
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Figure 3. The enrichment of BCSCs-2 may reflect an increase in tumor malignancy. A-F The GSEA plot based on the signature gene sets reveals significant 
enrichment of different biological pathways in patients with high BCSCs-2 cell infiltration abundance. "Epithelial Mesenchymal Transition" (A), "PD-1 Signaling" (B), "Signaling By 
Interleukins" (NES: 2.03, Adjusted p-value: < 0.001, C), "Interleukin 2 Signaling" (D), "IL-6 JAK/STAT3 Signaling" (E), and "Interleukin 10 Signaling" (F). 

 

Drug Sensitivity Prediction Value of BCSCs-2 
Cells 

We first employed the 'oncopredict' package to 
evaluate the IC50 value of several chemotherapy 
drugs among BCSCs-2 groups. Specifically, patients 
with high infiltration abundance of BCSCs-2 may 
exhibit greater sensitivity to drugs such as 
5-Fluorouracil (p < 0.001), Cisplatin (p < 0.001), 
Cyclophosphamide (p < 0.001), Paclitaxel (p < 0.01), 

and Oxaliplatin (p < 0.001) (Figure 6A-E). Most of 
these drugs are classic and reliable chemotherapy 
drugs for breast cancer[27, 28]. These findings provide 
new insights into the use of chemotherapy in breast 
cancer patients. 

In addition, we used the CMAP database to 
screen potential therapeutic drugs targeting high 
BCSCs-2 group of patients (Supplementary Table S2). 
According to the mechanisms of various drugs, 
medications including norcyclobenzaprine, NU-7411, 
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and TG-101348 had the potential to become specific 
therapeutic options for patients with high BCSCs-2 
infiltration via the 'Adrenergic receptor agonist' 
pathway, the 'DNA-dependent protein kinase 
inhibitor' pathway, and the 'FLT3 inhibitor' pathway, 

respectively (Figure 6F). In conclusion, our study 
provides new insights and strategies for 
individualized precision treatment in some breast 
cancer patients. 

 

 
Figure 4. Biological markers of BCSCs-2 were identified with gene co-expression modules. (A) Weighed gene co-expression network analysis was constructed 
among BCSCs. (B) The hdWGCNA dendrogram of 13 modules. (C) The distribution of characteristic genes of each module. (D) Dotplot was used to show the expression of 
characteristic genes in different modules. (E) Intersection of module genes and BCSCs differentially expressed genes. 
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Figure 5. Associates between the infiltration abundance of BSCSs_2 and somatic mutations. (A) The forest plot illustrates the differences in somatic 
single-nucleotide variants (SNVs) between patients with high and low BCSCs-2 cell infiltration. The OR > 1 indicates a higher SNV frequency in the high BCSCs-2 infiltration 
group, the OR < 1 indicates a higher SNV frequency in the low infiltration group, and the OR = 1 suggests similar SNV frequencies between the two groups. (B) Landscape of 
gene co-mutations with high infiltration of BCSCs-2. (C) Landscape of gene co-mutations with low infiltration of BCSCs-2. 

 

Discussion 
As far as we know, this study represents an 

innovative investigation of the unfavorable role of 
human BCSCs in tumor microenvironment of breast 
cancer by integration of multiple-scale data, including 
genomic data, expression profiles, and single-cell 
RNA profiles. Notably, we identified novel potential 
diagnostic biomarkers and therapy targets for BCSCs. 

In general, BCSCs have been confirmed to play a 
critical role in tumor origin, development, recurrence, 
metastasis and therapy resistance in breast cancer[29, 
30]. However, the constraints of previous sequencing 
technologies impede a comprehensive and nuanced 
characterization of BCSCs heterogeneity at the 

single-cell level within the intricate context of the 
tumor microenvironment. Fortunately, the advent of 
single-cell RNA sequencing and spatial 
transcriptomics has significantly advanced the ability 
to address these limitations. A large number of 
studies confirmed the malignant behavior and the 
heterogeneity of BCSCs. For instance, Nakayama et 
al.[31] found the two subtypes of BCSCs 
(HMGA1-high, CD44/MYC-high) existed in TNBC 
patients as well as TNBC xenograft models, indicating 
the heterogeneity and diversity of BCSCs by 
scRNA-seq and in vivo experiments. Ji et al.[32] 
revealed that BCSCs could promote immune escape in 
TNBC microenvironment through the upregulation of 
CTLA4-related signaling of CD8+ T cells.  
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Figure 6. Differential drug sensitivity analysis for patients with high and low BCSCs_2 cell infiltration. Boxplots (A-E) display the IC50 for standard 
chemotherapeutic agents, including 5-Fluorouracil (A), Cisplatin (B), Cyclophosphamide (C), Paclitaxel (D), and Oxaliplatin (E). Statistical significance is denoted by ** (p < 0.01) 
and *** (p < 0.001). (F) Dot plot of inhibitor functional enrichment illustrates the enrichment of inhibitors targeting diverse pathways based on CMAP analysis, with the x-axis 
representing specific inhibitors and the y-axis indicating their functional categories.  
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In addition, Li et al.[33] unveiled a subset of 
BCSCs with high expression of RAC2 and PTTG1 
were significantly enriched in lymph mode 
metastasis, which might promote the tumor 
metastasis through modulation of immune system 
and activation of specific pathways. These studies 
highlight the interaction of BCSCs in the spatial 
heterogeneity and tumor microenvironment of breast 
cancer. Consistently, our study identified a subgroup 
of BCSCs (BCSCs-2) were associated with poor 
prognosis in breast cancer. Therefore, we focused on 
exploring the potential biological functions of 
BCSCs-2. The immune-related pathways including 
PD-1, IL-6/ JAK/STAT3, IL-10 signaling were 
significantly enriched in patients with high infiltration 
of BCSCs-2. These pathways have been confirmed to 
immune suppression[34-36]. The epithelial- 
mesenchymal translation was also highly upregulated 
in high infiltration group. Taken together, our 
findings revealed the BCSCs-2 may promote immune 
suppression and tumor metastasis in breast cancer 
microenvironment, which provides a theory basis on 
prognostic stratification and therapy targets for breast 
cancer. 

As a high heterogeneous cells, BCSCs present a 
high plasticity[37]. Exploring the potential cell 
evolution trajectory of BCSCs can provide insight into 
the changes in their biological functions. We noticed 
the translational tendency from BCSCs-1 to BCSCs-2 
with the dynamic enrichment of NF-kappaB 
signaling. Interestingly, NF-kappaB was proved to be 
involved in BCSC fate and expansion[38]. Also, some 
metabolic pathways (pyridine nucleotide, 
nicotinamide nucleotide, and polyamine) were 
gradually upregulated during the evolution, which 
highlighted the critical role of metabolic process for 
the evolution of BCSCs. Given the high risk of 
BCSCs-2, further identification of its biomarkers is 
warranted to guide therapy and risk stratification. We 
identified 16 candidate biomarkers (KMT2E, IFITM3, 
MAGED2, TM4FSF1, GSTP1, SRI, CD59, SLC39A6, 
LIMCH1, ATP1B1, DSP, SYNE2, RARRES3, TMC5, 
SLC40A1, and TM4SF18) for BCSCs-2. Although the 
efficiency of these biomarkers needs to be validated in 
clinic. Previous reports have demonstrated their 
potential. For instance, Singh et al.[39] developed a 
nanomedicine which could modulate GSTP1 to inhibit 
glycolysis in BCSCs, resulting in the overall tumor 
regression of TNBC. In a word, the above gene could 
be potential diagnostic biomarker and promising 
targets for breast cancer. 

We then analyzed the association between 
somatic mutations and BCSCs-2 infiltration to better 
understand the underlying mechanisms of BCSCs-2 
infiltration heterogeneity. It was noticed that high 

abundance of BCSC-2 were associated with somatic 
mutations of VPS13D, KMT2C, CHD4, FER1L6, 
FLNB, ZMTM3, while low abundance of BCSCs-2 was 
closely related to GATA3 mutations. Jiang et al.[40] 
reported GATA3 mutations were correlated with 
improved overall survival in breast cancer patients, 
and were mainly occur in patients with luminal-like 
breast cancer. Their conclusions support our findings 
that low-infiltrating BCSCs-2 was associated with a 
favorable prognosis. In addition, KMT2C/D are most 
frequently mutated histone methyltransferases and 
play a tumor-suppressive role in breast 
oncogenesis[41]. These findings have innovatively 
revealed the subtle relationship between somatic 
mutation and BCSCs infiltration heterogeneity, 
providing a new perspective and theoretical basis for 
further understanding the heterogeneity of BCSCs in 
the breast cancer microenvironment. Finally, we 
identified serval chemotherapy drugs and other 
potential drug for targeting BCSCs-2. 

All in all, our study revealed the prognostic 
value, intrinsic lineage, potential biological processes, 
infiltration heterogeneity, personalized therapy 
strategy of BCSCs. However, the study also has some 
limitations. For instance, although we employed 
multi-scale data to explore the role of BCSCs, all the 
results were based on in silico analyses. The in vivo 
and in vitro experiments need to be performed in 
further study to validate our results. Furthermore, the 
sample size included in our study is limited. 
Therefore, we will collect more and different data sets 
to prove the generality of our conclusions. The 
bioinformatics is the first step of our study, and we 
meet the challenges in explaining the molecular 
mechanisms of our findings now. With a large 
number of high-quality clinical samples, sequencing 
profiles, and subsequent experiments, this issue will 
be addressed. 
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