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Abstract 

Background: Bladder cancer (BLCA) is a common malignant tumor whose pathogenesis has not yet 
been fully elucidated. This study analyzed prognostic genes in BLCA by integrating transcriptomics and 
proteomics data, and established prognostic models, aiming to offer novel insights for BLCA therapy. 
Methods: Transcriptomic, proteomic, and protein acetylation sequencing were conducted on six BLCA 
tumor tissues and six paraneoplastic tissue samples. Furthermore, data from TCGA-BLCA, GSE13507, 
and single-cell RNA sequencing (scRNA-seq) datasets were integrated. Initially, differential expression 
analysis identified candidate genes regulated by acetylation. These genes were further refined by 
intersecting with scRNA-DEG obtained from the scRNA-seq dataset, resulting in the identification of key 
genes. Subsequently, consistency clustering analysis was performed based on these key genes. Prognostic 
models were then developed utilizing Cox regression analysis and least absolute shrinkage and selection 
operator (LASSO) Cox regression. Independent prognostic factors were determined through 
independent prognostic analysis, followed by the establishment of a nomogram model. Additionally, gene 
set enrichment analysis (GSEA), immune cell infiltration analysis, mutation analysis, and drug sensitivity 
analysis were conducted between the two risk groups to elucidate underlying mechanisms. 
Results: A total of 15 key genes were obtained by crossing 284 candidate genes with 510 scRNA-DEGs. 
Patients in the TCGA-BLCA dataset were categorized into two subtypes based on the 15 key genes. 
Next, a risk model was developed using five prognostic genes (CTSE, XAGE2, MAP1A, CASQ2, and 
FXYD6), and a nomogram model was developed using age, pathologic T, pathologic N, and risk score. A 
total of 1089 GO entries and 49 KEGG pathways, including cytokine-cytokine receptor interactions, 
ECM receptor interactions, etc., were involved in all genes in both risk groups. The immunization score, 
matrix score, and ESTIMATE score were significantly higher in the low-risk group than in the high-risk 
group. 
Conclusion: CTSE, XAGE2, MAP1A, CASQ2 and FXYD6 were selected as prognostic genes in BLCA, 
risk model and nomogram model predicting the prognosis of BLCA patients were constructed. These 
were helpful for prognostic assessment of BLCA. 
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1. Introduction 
Bladder cancer (BLCA) is recognized for its 

pronounced heterogeneity in histological, molecular, 
and phenotypic dimensions[1]. It accounts for 
approximately 573,278 new cases and results in 
212,536 deaths globally each year[2], often presenting 
with advanced invasive and metastatic characteristics. 
Existing treatments for patients with muscle-invasive 
bladder cancer (MIBC) and metastatic BLCA 
primarily consist of integrative therapies, including 
chemotherapy, immunotherapy, and radical 
resection, but the development of recurrence and 
drug resistance often becomes obstacles for patients to 
achieve a favorable response and long-term 
survival[3]. Hence there is an imperative requirement 
to explore critical genes associated with BLCA and to 
generate efficacious prognostic models that can lead 
to personalized treatment of patients with BLCA. 

With the evolution of sequencing technologies, a 
plethora of biomarkers related to the diagnosis and 
prognosis of BLCA have been identified at the 
transcriptomic and proteomic levels. Notably, 
biomarkers such as Apolipoprotein A1, MMP-1, 
Properdin, and Calgranulin B have been identified in 
the urine for diagnosis and staging of non-invasive 
BLCA[4]. Recent studies, including that by Bohyun 
Kim et al., have demonstrated that tubulin beta 6 class 
V (TUBB6) harbors properties that promote the 
invasion and migration of BLCA cells, suggesting its 
potential role as a prognostic marker for BLCA 
patients[5]. Beyond traditional genomics and 
proteomics, novel assays are being developed to 
enhance the detection and monitoring of BLCA. For 
instance, the use of extracellular vesicle (EV)-based 
detection has shown promise, as EVs can carry 
tumor-specific proteins, lipids, and RNAs, enabling a 
non-invasive yet highly specific diagnostic approach. 
This method, which leverages advancements in EV 
isolation and molecular characterization, represents a 
step forward in improving early detection and disease 
monitoring[6]. In addition to traditional genomic and 
proteomic analyses, post-translational modification 
(PTM) has been gradually emphasized for its role in 
tumorigenesis and progression[7]. Acetylation, a vital 
PTM modification, is involved in the regulation of 
versatile biological processes such as glycolysis, lipid 
synthesis, DNA damage repair, and cell cycle[8] and is 
an integral part of the development and progression 
of multiple tumors. Specifically, in BLCA, 
N-acetyltransferase 10 (NAT10) has been shown to 
facilitate BLCA cell proliferation, invasion, and 
migration by regulating the N4-acetylcysteine 
modification process of mRNAs, including BCL9L, 
SOX4, and AKT1[9]. Moreover, research by Yan Sun et 

al., has revealed that silencing SIRT1 increased the 
Beclin1 acetylation, suppressing autophagy and 
decreasing cisplatin resistance[10]. Such findings 
underscore the paramount importance of 
understanding the regulatory mechanisms mediated 
by protein acetylation. Therefore, in-depth excavation 
of genes regulated by protein acetylation would 
contribute to unraveling the complex intracellular 
regulatory mechanisms and open up exhilarating 
avenues for therapeutic interventions in BLCA. 

Conventional molecular biology techniques, 
including genomics, transcriptomics, and proteomics, 
are limited in their ability to fully capture the complex 
characteristics of BLCA. These methods often 
overlook the tumor microenvironment, cellular 
heterogeneity, and tumor-host immune interactions. 
In the present study, we collected 6 BLCA tumor 
tissues and 6 paracancerous tissue samples, 
performed transcriptomics, proteomics, and protein 
acetylation sequencing, and combined with single-cell 
RNA-seq to conduct a multidimensional 
comprehensive analysis. This approach enables us to 
identify acetylation genes and crucial cell subtypes 
related to the prognosis of BLCA patients and to 
establish a prognostic model. Accordingly, BLCA 
patients were divided into high and low-risk groups, 
and we observed differences in clinicopathological 
features, signaling pathways, mutational landscape, 
and immune cell infiltration among the two groups. 
Furthermore, our results strongly conjectured that 
there were also discrepancies in therapeutic response 
across the two groups, which was confirmed by drug 
prediction at the end of our study. To summarize, by 
cross-validating and complementing data from 
multiple sequencing technologies, we enhance 
interpretation accuracy and reliability, laying the 
groundwork for precision medicine research and 
clinical applications in BLCA, ultimately promoting 
individualized medical practices and improving 
patient outcomes. 

2. Results 
2.1 Identification of DEGs, DEPs and DEPAs 

The analysis of transcriptome, proteome, and 
protein acetylation sequencing data revealed marked 
disparities between BLCA tumor samples and their 
normal counterparts, without any detectable outliers 
(Figure S1a-c). The transcriptomic landscape 
uncovered a total of 4,821 DEGs with 3,001 being 
upregulated and 1,820 downregulated in the BLCA 
samples (Figure 1a, Figure S2a). Proteomic profiling 
identified 2,395 DEPs, among which 1,860 exhibited 
increased expression and 535 showed decreased 
expression in BLCA samples (Figure 1b, Figure S2b). 
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Additionally, comprehensive protein acetylation 
sequencing revealed 30 DEPAs, with an upward trend 
seen in 22 and a downward trend in 8 (Figure 1c). 
Enrichment analysis revealed that DEGs and DEPs 
were involved in the calcium ion signaling pathway, 
Apelin signaling pathway, and Wnt signaling 
pathway, while the functions of DEPAs were mainly 
related to neutrophil extracellular trap formation, 
glycolysis necrotic apoptosis, and so on (Figure 
S3a-f). In addition, subcellular localization analysis 
revealed that 71.4% of DEPAs might hold significant 
roles in the nucleus (Figure 1d). 

2.2 A sum of 284 candidate genes were 
regulated by acetylation 

An overlapping analysis of DEGs and DEPs 

pinpointed 291 intersection genes/intersection 
proteins sharing the same expression trend, 
comprising 119 down-regulated and 172 up-regulated 
candidate genes (Figure S4a-b). Spearman correlation 
analysis revealed 284 PA-DEGs likely modulated by 
acetylation, which predominantly contribute to the 
regulation of the central PPAR signaling pathway, 
actin cytoskeleton organization, and glycine 
metabolism, among others (Figure 2a-c). Subsequent 
PPI analysis demonstrated significant interactions 
among these genes, exemplified by pairs such as 
PRKACB-MYLK, VCL-TLN1, and TOMM40-TUF 
(Figure 2d). 

 
 
 

 
Figure 1. Acquisition of DEGs, DEPs and DEPAs. Heat maps of DEGs (a), DEPs (b) and DEPAs (c) between BLCA and controls in transcriptomic sequencing dataset, 
proteomics dataset and acetylomics dataset, respectively. (d) The circle diagram showing the subcellular localization of DEPAs.  
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Table 1. Cellular filtration for each sample 

Sample Rawdata ByLibSize ByFeature ByMT ByDoubletScore Remaining percent 
GSM4006644 3272 52 52 0 165 3003 0.918  
GSM4006645 5177 156 156 0 246 4619 0.892 
GSM4006646 3157 50 50 0 103 2954 0.936 
GSM4006647 5313 160 160 0 226 4767 0.897 
GSM4006648 9350 528 526 0 721 7575 0.810 
GSM4751267 6519 283 283 0 301 5652 0.867 
GSM4751268 5696 172 172 0 288 5064 0.889 
GSM5329919 6360 278 278 0 363 5441 0.856 

 
 

 
Figure 2. Functional enrichment analysis of candidate genes. (a) Spearman's correlation analysis between DEGs/DEPs and DEPAs, red indicates positive correlation, 
blue indicates negative correlation. (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001). (b) GO enrichment analysis of candidate genes. (c) KEGG enrichment analysis of 
candidate genes. (d) PPI network exhibiting the close interactions among candidate genes. 

 
 

2.3 Totally 13 cell clusters were merged into 5 
cell types 

After data processing for the single-cell dataset 
GSE135337, Figure S5a-b displayed the number of 
nFeature RNA and nCount RNA (Table 1). A total of 
2,000 hypervariable genes were highlighted with blue 
marks in Figure S6. The top 30 principal components 
were selected through PCA, as shown in Figure 
S5c-d. UMAP dimensionality reduction revealed 13 
distinct cell clusters (Figure 3a-b), which were further 
categorized into 5 cell types based on the expression 
of marker genes. These cell types included urothelial 
cells, fibroblasts, myeloid macrophages, T cells, and 
endothelial cells (Figure 3c-d, Table 2). Notably, in 
GSM5329919, fibroblasts, and myeloid macrophages 
they exhibited a higher proportion, while urothelial 
cells were predominant in BLCA tumor tissues 

compared to controls (Figure S5e-f). Furthermore, the 
expression levels of 510 scRNA-DEGs in various cell 
types were presented in Figure 3e. For instance, 
IGHAI, S100A4 and TFF1 were down-regulated in 
urothelial cells. 

Table 2. Marker genes of different cell types 

Cell Type Cluster Genes 
Urothelial cells Cluster0, Cluster1, Cluster2, Cluster3, 

Cluster4, Cluster5, Cluster7, Cluster8 
EPCAM, KRT8, 
KRT18 

Fibroblasts Cluster6 PDPN, TAGLN, 
CD44 

Myeloid/macrophage Cluster9, Cluster11 CD14, CSF1R, 
AIF1 

T cells Cluster10 CD2, CD3D, 
CD3E 

Endothelial cells Cluster12 PECAM1, FLT1, 
A2M 
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Figure 3. Identification of cell types. (a) UMAP dimensionality reduction of marker genes in the samples. (b) Distribution of cell clusters in BLCA tumor tissue and controls. 
(c) Expression patterns of marker genes in 5 cell types. (d) Distribution of urothelial cells, fibroblasts, myeloid macrophages, T cells and endothelial cells. (e) Expression levels 
of scRNA-DEGs between discrepant cell types.  
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Figure 4. Correlation between key genes. (a) Venn diagram of 284 candidate genes and 510 scRNA-DEGs intersections. (b) Heatmap of correlations between key genes. 
(c) GGI network exhibiting interactions between pivotal genes and 20 other genes. 

 

2.4 Identification and functional network of key 
genes 

Then, through an intersection analysis of 284 
candidate genes and 510 scRNA-DEGs, 15 key genes 
were identified (ABHD11, BIN1, CALD1, CFD, 
FABP5, FILIP1L, GSN, ISYNA1, LPCAT4, MYH11, 
OLFML3, S100A14, TGFB1I1, TINAGL1, and TPM1) 
(Figure 4a). Notably, FABP5 exhibited a positive 
correlation with S10OA104, while TGFB1I1 displayed 
negative correlations with ABHD11, ISYNA1, and 
LPCAT4 (Figure S7, Figure 4b). Additionally, a GGI 
network was constructed to illustrate interactions 
among these key genes and 20 others sharing similar 
biological functions. These intricate interactions were 
observed to involve processes such as muscle 
contraction, actin cytoskeleton regulation, and 
myofibril organization (Figure 4c). 

2.5 Fibroblasts and myeloid macrophages were 
crucial cell types 

Analysis of the expression patterns of key genes 

across 5 cell types revealed fibroblasts and myeloid 
macrophages as pivotal due to their disparate gene 
expression profiles (Figure 5a, Table 3). Pathway 
enrichment analysis highlighted fibroblasts' positive 
correlation with pathways such as coagulation and 
myogenesis, while myeloid macrophages exhibited 
negative correlations with the Wnt/β-catenin 
pathway and oxidative phosphorylation (Figure 5b). 
To elucidate the heterogeneity within these crucial cell 
types, secondary dimensionality reduction and 
clustering techniques were employed, resulting in the 
subdivision of fibroblasts and myeloid macrophages 
into 7 distinct subclusters each (Figure 5c-d, Figure 
S8a-b). Notably, subcluster 3 and subcluster 5 of 
fibroblasts, as well as subcluster 0 and subcluster 2 of 
myeloid macrophages, were found to be prevalent in 
BLCA, while other subclusters exhibited lower 
proportions in this context (Figure S8c-d). 
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Figure 5. Screening of crucial cell types. (a) Violin plot of key genes’ expression in 5 cell types. (b) Gene set variation analysis of 5 cell types. Secondary degradation and 
clustering of fibroblasts (c) and myeloid macrophages (d).  

 

Table 3. Expression of key genes in different cell types 

Gene avg_log2FC cluster Regulation 
ABHD11 -0.267794688 urothelial cells DOWN 
BIN1 0.337796024 myeloid/macrophage UP 
CALD1 0.646281636 fibroblasts UP 
CALD1 -1.101214915 myeloid/macrophage DOWN 
CFD -0.466170807 endothelial cells DOWN 
CFD 0.354230015 fibroblasts UP 
CFD -0.466170807 T cells DOWN 
FABP5 0.436666572 myeloid/macrophage UP 
FILIP1L 0.410392469 fibroblasts UP 
GSN 0.602132628 fibroblasts UP 
GSN -0.301609858 urothelial cells DOWN 
ISYNA1 0.341101688 fibroblasts UP 
LPCAT4 -0.366323428 urothelial cells DOWN 

Gene avg_log2FC cluster Regulation 
MYH11 0.863408357 fibroblasts UP 
OLFML3 0.551111708 myeloid/macrophage UP 
S100A14 -0.399176017 myeloid/macrophage DOWN 
TGFB1I1 0.642138789 fibroblasts UP 
TINAGL1 0.66843065 fibroblasts UP 
TINAGL1 -0.29114086 myeloid/macrophage DOWN 
TPM1 0.885118002 fibroblasts UP 
TPM1 -0.693462753 myeloid/macrophage DOWN 

 

2.6 Differential cellular dynamics and 
communication in BLCA 

Pseudo-temporal analysis revealed that 
fibroblasts and myeloid macrophages underwent a 
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differentiation process that could be categorized into 
three distinct stages (state 1, 2, and 3). It was observed 
that in BLCA, fibroblasts exhibited a more advanced 
differentiation state compared to non-cancerous 
controls. Furthermore, the composition of fibroblasts 
and myeloid macrophages diverged substantially at 
stage 3 when comparing BLCA tumor tissues with 
non-tumorous controls (Figure 6a). Corresponding to 
the progression of fibroblast differentiation, the 
expression levels of BIN1, GSN, OLFML3, and CFD 
were found to decline, whereas the expression of 
other pivotal genes generally increased, apart from 
S100A14 and LPCAT4, which remained constant 
(Figure S9a). For myeloid macrophages, an increase 
in differentiation was associated with reduced 
expression levels of CALD1, CFD, and TPM1 (Figure 
S9b). 

An in-depth exploration of cellular 
communication revealed intricate interaction patterns 
among five cell types, facilitated through 
ligand-receptor engagement. The interactions 
between fibroblasts and endothelial cells, as well as 
between fibroblasts and myeloid macrophages, 
featured the most extensive network of 
receptor-ligand pairs, with the highest counts as 
shown in Figure 6b and Figure S9c. A curated 
selection of ligand-receptor pairs was portrayed in 
Figures 6c-d, revealing a subset shared between 
BLCA and control environments—specifically, 
interaction pairs such as APP-TNFRSF21, APP-CD74, 
IGFBP3-TMEM219, CXCL14-CXCR4, TYROBP-CD44, 
and CD99-PILRA stood out, illustrating the 
conservation of certain cellular communication 
pathways despite the diseased state. 

 

 
Figure 6. Pseudo-temporal trajectory and cell communication analyses. (a) Pseudo-temporal trajectory of fibroblasts and myeloid macrophages. (b) Interaction 
numbers between 5 cell types. Bubble plots presenting specific ligand-receptor pairs for intracellular signaling in BLCA (c) and controls (d). 
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Figure 7. Identification of BLCA-related subtypes. (a) Consensus clustering of BLCA patients based on the expression of pivotal genes when k = 2. (b) CDF curve of K 
= 2-5. (c) The relative change in area under the CDF curve of K = 2-5. (d) K-M curve for overall survival of discrepant clusters via Log-rank test. (e) Venn diagram of intersection 
of Cluster-DEGs and BLCA-DEGs to select candidate prognostic genes.  

 

2.7 A sum of 318 candidate prognostic genes 
was searched in the TCGA-BLCA dataset 

Based on the 15 key genes from the above 
results, unsupervised cluster analysis was performed 
on TCGA-BLCA patients with 100 clusters, and BLCA 
patients were classified into 2 subtypes according to 
the CDF curve with K=2. This decision was grounded 
in an analysis of K-M survival estimates and the 
evaluation of relative changes in the area under the 
CDF curve across different k values (Figure 7a-c). 
Through cluster analysis, differences in survival rates 
between different subtypes could be identified, which 
could help to better predict the prognosis of BLCA 
patients. K-M survival analysis exposed a grim 
prognosis for patients categorized within Cluster 1 
(Figure 7d). A differential expression analysis was 
carried out on the cohort comprising 204 patients 
from Cluster 1 and 201 from Cluster 2-unearthed 562 

up-regulated and 36 down-regulated Cluster-DEGs 
(Figure S10a-b). The Cluster-DEGs were linked with 
latent functions related to protein digestion and 
absorption, PI3K-Akt signaling pathway, 
ECM-receptor interaction, and other functions (Figure 
S10c-d). There were 1,131 up-regulated BLCA-DEGs 
and 917 down-regulated BLCA-DEGs in the 
TCGA-BLCA dataset (Figure S10e-f). A sum of 318 
candidate prognostic genes was selected by 
intersecting 598 Cluster-DEGs with 2,048 BLCA-DEGs 
for screening of prognostic genes (Figure 7e). 

2.8 Establishment and validation of the risk 
model 

The univariate Cox regression analysis produced 
36 genes related to the survival of BLCA patients in 
the TCGA-BLCA dataset (Figure 8a). The PH 
hypothesis test evaluated the univariate Cox 
regression model. The outcomes indicated that the 
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overall test p-value of the model was 0.67, and the 
linear relationship between the residual and time was 
not significant, suggesting that the model passed the 
PH test (Figure S11). Multivariate Cox regression 
analysis ascertained CTSE, XAGE2, MAP1A, CASQ2, 
and FXYD6 (Figure 8b). To decrease the false-positive 
rate and enhance the accuracy of the regression 
model, we developed a LASSO model to validate the 
prognostic significance of these five genes. Further 

LASSO model confirmed them as prognostic genes 
when the model error was minimal (Figure 8c). The 
equation for risk-score was: risk score=(-0.073) × 
CTSE + 0.104 × XAGE2 + 0.217 × MAP1A + 0.086 × 
CASQ2 + (-0.158) × FXYD6. The function annotations 
of the proteins encoded by five prognostic genes are 
listed in Table 4, with the majority of them 
participating in protein binding. 

 

 
Figure 8. Establishment and validation of prognostic models. Forest plots of univariate (a) and multivariate (b) Cox regression analyses. The HR represents the risk 
ratio, lower 95% CI and upper 95% CI are 95% confidence intervals for risk values. (c) Screening of prognostic genes by LASSO regression analysis. Risk score (d) and K-M curve 
(e) predicting the overall survival and survival probability of high- and low-risk patients in TCGA-BLCA dataset. (f) Time-dependent ROC curves displaying the true positive rate 
of 1-5 years survival in TCGA-BLCA dataset.  
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Figure 9. Construction and validation of nomogram. Forest plot summary of the univariate (a) and multivariable (b) Cox regression analyses of independent prognostic 
factors. (c) Nomogram model integrating the age, pathologic T, pathologic N, and risk score for predicting the survival probability of patients at 1-, 3- or 5-year. (d) ROC curves 
evaluating the predictive performance of the nomogram model. (e) ROC curves of the nomogram for predicting the survival outcomes at 1-, 3- or 5-year. (f) Calibration curves 
of the nomogram model for the overall survival of 1-year, 3-year and 5-year. The approximate 45-degree line represents the ideal prediction. (ns not significant, * P < 0.05, ** P 
< 0.01, *** P < 0.001). 

 

Table 4. The information and functions of five prognostic genes encoded proteins 

Gene Ensembl Protein name Gene Ontology Location Diseases 
XAGE2 ENSG00000155622 X Antigen Family Member 2 Enables protein binding Nucleus, Cytoskeleton, 

Extracellular 
Germ Cell Tumor, Sarcoma 

MAP1A ENSG00000166963 Microtubule Associated 
Protein 1A 

Enables actin binding, 
Enables protein binding 

Cytosol, Nucleus, 
Cytoskeleton 

Macular Degeneration, Age-Related, and 
Amyotrophic Lateral Sclerosis 

CASQ2 ENSG00000118729 Calsequestrin 2 Enables calcium ion binding, 
Enables protein binding 

Endoplasmic reticulum, 
Cytosol, Mitochondrion 

Ventricular Tachycardia, 
Catecholaminergic Polymorphic, and 
Catecholaminergic Polymorphic 
Ventricular Tachycardia 

FXYD6 ENSG00000137726 FXYD Domain Containing 
Ion Transport Regulator 6 

Enables molecular_function, 
Enables protein binding 

Plasma membrane Hypomagnesemia, Renal 

CTSE ENSG00000196188 Cathepsin E Enables aspartic-type 
endopeptidase activity, 
Enables peptidase activity 

Endosome, Lysosome Langerhans Cell Histiocytosis and 
Gastric Papillary Adenocarcinoma 

 
The proposed risk model, contrasting outcomes 

for BLCA patients, identified a reduced OS for those 
at higher risk (Figure 8d). K-M survival curves 
certified that low-risk BLCA patients had a longer 
lifespan (Figure 8e). Additionally, the AUC at 1-5 
years exceeded 0.60, demonstrating the precise 
predictive performance of the risk model (Figure 8f). 
Furthermore, validation using the GSE13507 dataset 
was consistent with the TCGA-BLCA data in that 
there was a significant difference in survival between 
patients in the high- and low-risk groups; the 1-, 2-, 3-, 
and 5-year ROCs were greater than 0.6, which 
bolstering the model's evaluation potency (Figure 

S12a-c). 

2.9 Nomogram model kept a high predictive 
precision 

Univariate and multivariate Cox regression 
analyses in the TCGA-BLCA dataset confirmed that 
age, pathologic T, pathologic N, and risk score were 
independent prognostic factors (Figure 9a-b). Based 
on these factors, a nomogram model was developed 
to demonstrate the survival probability of BLCA 
patients at 1-, 3-, and 5-year. Higher total points on the 
nomogram corresponded to lower survival 
probabilities for BLCA patients at these time points 
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(Figure 9c). Ulteriorly, the accurately predictive 
performance of the nomogram model was illustrated 
by ROC curves and calibration curves. The true 
positive rate of the nomogram model exceeded that of 
any single factor (Figure 9d-e). Once again, the slope 
of the calibration curve was closed to 1, illustrating 
the high prediction accuracy of the nomogram model 
(Figure 9f). Summarily, the development of a 
nomogram model might be helpful for the prognosis 
assessment of BLCA patients. 

2.10 Stratified survival analysis 
The relationships between risk score and 

clinicopathological factors unveiled that risk scores 
elevated distinctly as the BLCA progressed from 
pathologic N0 to N2 stages, as were the risk scores 
from pathologic T2 to T3 stages (Figure 10a-c). 
Among the prognostic genes showing marked 
expression discrepancies between age, pathological T, 
and N subgroups, MAP1A, CASQ2, and FXYD6 
exhibited high expression levels in patients over 60, 
whereas CTSE retained the opposite trend. Notably, 
the expression of CASQ2 and FXYD6 showed a 
gradual increase across pathological N0-N2 and T0-T3 
stages (Figure 10d-f, Figure S13). Stratified survival 
analysis revealed no significant difference in survival 
between the T1+T2 subgroups in the two risk teams. 
However, the survival probabilities of high-risk 
patients in the other subgroups were memorably 
reduced (Figure S14a-f). Regarding the expression 
levels of prognostic genes between BLAC and controls 
in the TCGA-BLCA dataset, distinctly, MAP1A, 
CASQ2, and FXYD6 were lower expressed in BLCA 
tissues (Figure 11a-b). In addition, the prognostic 
genes XAGE2, MAP1A, CASQ2, and FXYD6 were 
significantly different in the basal and luminal 
subtypes. Among them, the expression of MAP1A, 
CASQ2, and FXYD6 was higher in the basal subtype, 
while XAGE2 was more highly expressed in the 
luminal subtype (Figure 11c).  

2.11 Function and mutation analyses in two 
risk teams 

To investigate the enrichment pathways in the 
high- and low-risk teams, we observed 1,089 GO 
entries and 49 KEGG pathways involved by all genes 
in two risk teams, containing cytokine-cytokine 
receptor interactions, ECM receptor interactions, 
chemokine signaling pathways, ribosomes, 
autoimmune thyroid diseases, etc (Figure 12a-b). 
Further analysis of mutations in two risk teams 
revealed distinct patterns. In the low-risk team, the 
top 5 mutated genes were KMT2D, MUC16, KDM6A, 
TTN, and TP53, while the top 5 mutated genes in the 
high-risk team comprised KDM6A, KMT2D, ARID1A, 

TTN and TP53 (Figure 12c-f). Besides, there was no 
obvious discrepancy in TMB between the two risk 
teams (Figure S15a). Among the frequently mutated 
genes, TP53 and KDM6A exhibited mutations in both 
risk teams. The mutation rate of TP53 was higher in 
the high-risk team (86.29%) compared to the low-risk 
team (74.36%). Similarly, the mutation rate of KDM6A 
was higher in the low-risk team (47.00%) (Figure 
S15b-c). 

2.12 Immune cell infiltration in BLCA 
Understanding the immune cell infiltration in 

BLCA was crucial for evaluating the prognosis of 
BLCA patients. Therefore, we analyzed to detect the 
infiltration of immune cells in high and low risk 
groups. Among the 22 types of immune cells, the 
proportion of macrophages was relatively high 
(Figure 13a). There were 12 discrepant immune cells 
(plasma cells, naive CD4+ T cells, activated/resting 
memory CD4+ T cells, T follicular helper (Tfh) cells, 
activated natural killer (NK) cells, monocytes, M0 
Macrophages, M1 Macrophages, M2 Macrophages, 
activated mast cells and activated dendritic cells 
(DCs)). We found the high-risk team had a lower 
proportion of plasma cells, activated DCs, Monocytes, 
activated NK cells, activated mast cells, and Tfh cells 
(Figure 13b). Moreover, there was an obvious 
correlation between discrepant immune cells and 
prognostic genes, for instance, M0 Macrophages were 
positively correlated with other prognostic genes 
except CTSE (Figure S16a-e). The expression levels of 
immune checkpoints were observably updiscrepant 
between two risk teams, most of them were elevated 
in the high-risk team, such as CTLA4, LAG3, and so 
forth (Figure 13c). Spearman's correlation analysis 
between prognostic genes and discrepant immune 
checkpoints underscored that CTSE displayed 
negative correlations with the most discrepant 
immune checkpoints in addition to CD200 and 
TNFRSF14 (Figure 13d). The immune score, stromal 
score, and ESTIMATE score of the high-risk team 
were observably higher than those of the low-risk 
team (Figure 13e). 

2.13 Drug sensitivity analysis 
Out of the 198 drugs, the high-risk patients 

exhibited greater sensitivity to 43 drugs such as 
Uprosertib 1553, AMG-319 2045, Pyridostatin 2044, 
and other drugs, while the low-risk patients showed 
higher sensitivity to 81 drugs embracing 
Temozolomide 1375, AZD5991 1720 and so on (Figure 
14a). The relationships of the top 5 sensitive drugs in 
the high/low-risk teams and risk score elucidated that 
KRAS (G12C) Inhibitor−12 1855 and BMS−754807 
2171 showed the strongest positive and negative 
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associations with risk scores, respectively (Figure 
14b). Additionally, obvious discrepancies were 
observed between the two risk patients for these 10 
drugs. Detailedly, the high-risk patients were less 
sensitive to Elephantin 1835, Nelarabine 1814, 
Temozolomide 1375, AZD5991 1720, and KRAS 12 
1855, while were highly sensitive to Bl 2536 1086, BMS 
754807 2171, Foretinib 2040, Mitoxantrone 1810 and 
Dasatinib 1079 (Figure 14c). A lower IC50 value 
indicated that the targets were more sensitive to the 
inhibitory effects of the drugs, suggesting that the 
patient might be more responsive to treatment. This 
meaned that the drug was more effective in treating 
the disease, so it could be hypothesised that BLCA 
patients were more likely to have a positive 
therapeutic response to drugs such as Bl 2536 1086, 

BMS 754807 2171, Foretinib 2040, Mitoxantrone 1810 
and Dasatinib 1079. In the CTRP dataset, high-risk 
patients were more sensitive to both drugs 
significantly (Figure 14d), and these drugs showed a 
negative correlation with the risk score (Figure 14e). 
MK-1775, a WEE1 inhibitor, showed potential value in 
the treatment of BLCA. Similarly, UNC0638 as a 
specific inhibitor against G9a, showed potential value 
in the treatment of BLCA. In the GDSC dataset, 
low-risk patients demonstrated higher sensitivity to 
MK-1775, whereas high- and low-risk patients did not 
exhibit a significant difference in sensitivity to 
UNC0638 (Figure 14f). Furthermore, both compounds 
showed a positive correlation with the risk scores 
(Figure 14g). 

 

 
Figure 10. Correlation analysis of clinicopathological factors with independent prognostic significance. Discrepancies of risk score between age (a), pathological 
N (b) and pathological T (c) subgroups through Wilcoxon rank-sum test. Expression levels of prognostic genes in age (d), pathological T (e) and pathological N (f) subgroups. 
(ns not significant, * P < 0.05, ** P < 0.01, *** P < 0.001). 
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Figure 11. Prognostic genes’ expression detection. (a) The expression levels of prognostic genes in BLCA and controls. (b) Staining landscape of prognostic genes in 
urinary bladder and urothelial cancer. (ns not significant, * P < 0.05, ** P < 0.01, *** P < 0.001). (c) Prognostic gene expression in molecular subtypes of bladder cancer. 
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2.14 The workflow of this study 
The tumor tissue samples (n=6) were collected 

from patients diagnosed with BLCA, along with 
paraneoplastic tissue samples (n=6) as controls. These 
were subjected to comprehensive profiling, including 
transcriptome sequencing, proteomic sequencing, and 
protein acetylation profiling. Additionally, we 

conducted a comprehensive reanalysis of multiple 
previously published cohorts to train and validate our 
predictive model. These analyses included two bulk 
RNA cohorts (TCGA-BLCA, and GSE13507) as well as 
one scRNA dataset (GSE135337). A flowchart 
illustrating the study design is presented in Figure 15. 

 

 
Figure 12. Functional analysis and mutational landscape characterization between high- and low-risk teams. GO (a) and KEGG (b) analyses between high- and 
low-risk teams utilizing GSEA method. Details of the 10 most frequently mutated genes in low-risk team (c) and high-risk team (e). Waterfall plot illustrating the 10 mutated 
genes in low-risk team (d) and high-risk team (f). The gene list is sorted by mutation frequency, with the corresponding mutation types color-coded on the right. The top section 
displays the TMB. 
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Figure 13. Immune cell infiltration (ICI) analyses. (a) Heat map demonstrating the proportion of 22 immune cells in high- and low-risk teams. (b) Box plot showing the 
different proportions of 22 immune cells. (c) The expression levels of immune checkpoint-related genes in the two risk teams. (d) Correlation matrix of prognostic genes and 
discrepant immune checkpoint-related genes. (e) The discrepancies of immune score, ESTIMATE score and stromal score between two risk teams. (ns not significant, * P < 0.05, 
** P < 0.01, *** P < 0.001). 

 

3. Discussion 
BLCA is a prevalent malignancy of the urological 

system, which is the tenth most common reason for 
cancer and the thirteenth most common cause of 
cancer deaths globally, with gender-specific 
differences in incidence and prognosis, mainly 
affecting the > 55-year-old and male populations[11]. 
Tumor recurrence after complete resection and 
advanced tumors continue to be a formidable 
challenge in the treatment of BLCA, and thus to 
address this issue, several studies have elucidated the 

heterogeneous molecular landscapes used for the 
typing and treatment of BLCA from a multi-omics 
perspective[12,13]. Understanding the relationships 
between DEGs, DEPs, and DEPAs is fundamental to 
unraveling the complex regulatory networks in 
BLCA. DEGs represent changes at the transcriptional 
level, while DEPs reflect these changes at the protein 
expression level. Further, DEPAs provide insights 
into how these proteins are modified 
post-translationally through acetylation, impacting 
their function and stability. By integrating data from 
these three molecular layers, we can uncover how 
alterations in gene expression lead to changes in 
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protein abundance and how these proteins' 
acetylation states further influence their roles in 
tumor progression. For example, modifications in 
post-translational histone acetylation in various 
tumor entities, including BLCA, have been identified, 
and the investigation of their tumor 
microenvironment and pathway alterations could 
facilitate our understanding of the critical molecules 

driving tumors[9,14]. The purpose of the present study 
was to investigate the roles of genes regulated by 
protein acetylation in patients with BLCA and to 
reveal their value as prognostic genes, ultimately 
aiming to inform individualized treatment strategies, 
including the selection of appropriate targeted agents 
and personalized treatment regimens, to improve 
treatment efficacy and reduce adverse effects. 

 

 
Figure 14. Drug sensitivity analysis. (a) Assessment of drug sensitivity of high- and low-risk patients to 198 kinds of drugs. (b) The relationships of top 5 sensitive drugs in 
the high/low-risk teams and risk score. (c) Discrepancies in sensitivity of high- and low-risk patients to top 5 sensitive drugs in the high/low-risk teams. Obvious correlations 
between UNC0638, MK-1775 and risk score in CTPR (e) and GDSC (g) databases. IC50 differences between UNC0638 and MK-1775 in CTPR (d) and GDSC (f) databases. 
(ns not significant, * P < 0.05, ** P < 0.01, *** P < 0.001). 
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Figure 15. Graphic abstract of this study.     

 
Five acetylation-related genes were identified in 

our study, among which CTSE is an intracellular 
aspartic, encoding an A1-family peptidase that plays 
an immune role in the tumor microenvironment by 
regulating antigen presentation and chemotaxis[15]. 
The role of CTSE in BLCA is paradoxical, as it was 
found in a study by Wild, et al.[16] that CTSE is 
predominantly overexpressed in NMIBC (pTa, pT1, 
and pT2), and its expression in pTa stage tumors 
correlates with tumor progression characteristics, but 
overall OS was significantly longer in BLCA patients 
with strong CTSE immunohistochemistry positivity 
than in the CTSE-negative group (178 vs. 140 months, 
p=0.003), which is similar to the results of the present 
study. CTSE expression was highest at the T2 stage, 
yet served as a protective factor for the prognosis of 
BLCA patients in the risk model. However opposite 
results were obtained in a recent study, which showed 
that CTSE was highly expressed in BLCA tissues 
relative to normal tissues, and silencing of CTSE 
suppressed proliferation, migration, and invasion of 
the 5637 cell line[17]. The expression of CTSE in the 
present study was not significantly different between 
BLCA and controls, which may be related to the fact 
that a greater proportion of patients in the TCGA 
dataset with T3- 4 stage, so more experiments are 

needed to verify the effect of CTSE in BLCA 
tumorigenesis and progression. MAP1A has been 
suggested to be strongly associated with patient 
prognosis, immune infiltration, and autophagy in 
several BLCA prediction models, and was validated 
to exhibit decreased expression levels in BLCA tissues 
and several BLCA cell lines[18,19], which is consistent 
with the results of the current study. XAGE2, which 
has not been reported in the literature in BLCA, is 
considered a cancer/testis-associated gene, and is 
frequently found to be aberrantly expressed in 
melanoma and Ewing sarcoma[20], therefore it was the 
first time revealed in this study to be associated with 
the prognosis of BLCA patients. FXYD6 and CASQ2, 
which are involved in ion channel activity, have only 
been mentioned in a small number of bioinformatics 
analyses of BLCA without the support of real-world 
data[21,22], but have been revealed to promote tumor 
progression and regulate tumor-microenvironmental 
interactions in hepatocellular carcinoma and breast 
cancer[23,24]. CTSE and MAP1A were found to be 
associated with patient prognosis as in previous 
studies. While XAGE2, FXYD6 and CASQ2 are newly 
identified prognostic genes in this study, which 
provide new therapeutic targets in this field. 

Additionally, recent studies have identified new 
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therapeutic targets in BLCA, further broadening the 
scope of potential interventions. For instance, studies 
have highlighted the significance of RNA methylation 
regulators like METTL3 and ALKBH5 in shaping 
tumor behavior by modulating m6A RNA 
modifications, providing promising avenues for 
BLCA treatment[25,26]. Another study revealed that 
SDC1, a key regulator of epithelial-mesenchymal 
transition (EMT), plays a pivotal role in driving 
invasion and metastasis in BLCA[27]. These findings 
underscore the critical need for comprehensive 
investigations into emerging molecular targets, as 
they hold great potential for improving therapeutic 
outcomes in BLCA patients.  

The risk model established based on the above 
five critical genes—CTSE, MAP1A, FXYD6, XAGE2, 
and CASQ2—classifies BLCA patients into high- and 
low-risk groups, revealing significant differences in 
various aspects of clinicopathologic features, 
prognosis, and treatment outcomes. This classification 
allows for a more nuanced understanding of patient 
stratification and helps tailor treatment approaches. 
However, the predictive efficacy of this model in 
overall survival (OS) was not entirely satisfactory, 
with the 1, 3, and 5-year ROC curves yielding values 
around 0.66, which is below our desired threshold for 
clinical applicability. Recognizing that the prognosis 
of BLCA is influenced by a multitude of factors 
beyond genetic expression alone, several studies have 
underscored the importance of incorporating 
clinicopathologic characteristics into prognostic 
models to enhance predictive accuracy[15,19,28]. 
Building on this insight, we developed an enhanced 
prognostic model that integrates age, pathological 
T/N stage, and risk score derived from the initial 
five-gene model. This integrative approach 
acknowledges the complex interplay between genetic 
and clinical factors in determining patient outcomes. 
The resulting model demonstrated a slope of the 
calibration curve close to 1, indicating a high level of 
agreement between predicted and observed 
outcomes. Consequently, the predictive efficacy for 1, 
3, and 5-year OS was significantly improved, with 
ROC values ranging from 0.759 to 0.767. This marked 
improvement underscores the robustness of our 
enhanced model, providing a more reliable and 
accurate tool for predicting the prognosis of BLCA 
patients. The integration of clinicopathologic 
characteristics not only refines the risk stratification 
but also supports personalized treatment regimens, 
ultimately aiming to improve patient management 
and clinical outcomes in BLCA. 

Previous studies have shown that histone 
acetylation plays an important role in regulating the 
tumor microenvironment (TME), and histone 

deacetylase (HDAC) inhibitor CM-1758 can increase 
CD8+ T cell infiltration and promote macrophage 
polarization toward M1-like in the TME of BLCA 
patients, representing an attractive target for 
immunotherapy[29]. The results of GSEA analysis in 
our study also suggested significant differences in 
inflammation and immune-relevant pathways across 
the high and low-risk groups, so we further 
conducted a detailed analysis of immune cell 
infiltration in both groups and observed that a variety 
of immune cells including macrophages, activated NK 
cells, monocytes, and activated DCs were significantly 
divergent infiltration. Macrophages represent one of 
the major compartments in the TME, and earlier 
studies have demonstrated that signal transducer and 
activator of transcription 6 (STAT6) was acetylated by 
acetyltransferase CREB-binding protein (CBP), which 
inhibits macrophage M2 polarization resulting in the 
enhancement of anti-tumor immunity in 
macrophages[30]. Since one of the crucial cell types 
identified in the present study contained 
macrophages as well, and all of the five prognostic 
genes, except CTSE, were positively correlated with 
macrophage infiltration, it was suggested that 
modulation of macrophages in the TME by histone 
acetylation may be beneficial in enhancing anti-tumor 
immunity in BLCA patients. To comprehensively 
evaluate the role of the risk model in TME of BLCA 
patients, we further analyzed the immune 
checkpoints and immune scores of both groups, 
which revealed that the expression levels of most 
immune checkpoints were elevated in the high-risk 
group with higher immune scores, stromal scores, and 
ESTIMATE scores, suggesting that there may be 
differences in the immune properties across the two 
groups, where diverse elements in the complex TME 
interact to shape tumor behavior and its response to 
treatment. 

Finally, we additionally characterized the 
sensitivity towards potential drug treatments in the 
two groups of BLCA patients. Among 198 drugs, 
patients in the high-risk group were more sensitive to 
drugs such as pan-Akt pathway inhibitor (uprosertib) 
and a selective PI3Kδ inhibitor (AMG-319), as a 
critical pathway and molecule modulating the 
immune response in vitro and in vivo, which can 
inhibit cytokine regulation, PD-L1 expression, and 
tumor-infiltrating Regulatory T cells (Treg), and 
currently used in the treatment of breast cancer, colon 
cancer and B cell malignancies[31-33]. In contrast, 
low-risk patients show higher sensitivity to drugs like 
Temozolomide and selective MCL-1 inhibitor 
(AZD5991). Temozolomide penetrates the 
blood-tumor barrier efficiently and causes 
cytotoxicity by inducing DNA double-strand breaks, 
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representing a first-line chemotherapeutic agent for 
glioblastoma[34]. AZD5991 binds directly to Mcl-1 and 
induces rapid apoptosis in tumor cells through 
activation of the Bak-dependent mitochondrial 
apoptotic pathway, which is currently undergoing 
clinical trials in patients with hematologic 
malignancies[35]. It is believed that more patients 
could benefit from targeted therapies in the future 
through precise risk stratification. 

To summarize, following the identification and 
validation of five histone acetylation-related 
prognostic genes and two crucial cell types from the 
perspectives of multi-omics and multiple datasets, 
and the establishment of a risk model that can 
accurately predict the prognosis of the patients in our 
study, the BLCA patients were divided into high- and 
low-risk groups, with significant differences in the 
prognosis, clinicopathological characteristics, immune 
microenvironment, and drug susceptibility of the 
patients in the two groups, proposing promising 
targets for the stratified diagnosis and treatment of 
BLCA. However, there are still some undeniable 
limitations in this study. Firstly, the sample size used 
for testing was relatively small, with only 6 samples, 
which may affect the robustness and generalizability 
of our findings. To address this, future studies will 
include a larger cohort of BLCA patients to validate 
and refine the risk model. Secondly, the expression of 
prognostic genes in BLCA tissues and cells has not 
been validated in the real world, leading to potential 
deviations from the analysis of data from public 
databases. We plan to conduct extensive validation 
using real-world samples from diverse clinical 
settings to ensure the reliability of our findings. 
Lastly, more cellular or molecular-level experiments 
are required to verify the detailed mechanisms by 
which prognostic genes affect the prognosis of BLCA. 
Future research will focus on performing these 
experiments to elucidate the biological pathways 
involved, thereby strengthening the mechanistic 
understanding and clinical applicability of the 
identified prognostic genes. Addressing these 
limitations in future studies will be crucial for 
confirming our findings and enhancing the clinical 
applicability of our risk model. 

4. Materials and Methods 
4.1 Data collection and processing 

The tumor tissue samples (n = 6) were collected 
from patients diagnosed with BLCA, along with 
paraneoplastic tissue samples (n = 6) as controls. 
These were subjected to comprehensive profiling, 
including transcriptome sequencing, proteomic 
sequencing, and protein acetylation profiling. To 

mitigate potential disparities between the BLCA 
specimens and controls and to condense the 
multidimensional data, we employed Principal 
Component Analysis (PCA) on both the 
transcriptomic and protein acetylation datasets. We 
utilized the MaxQuant-Andromeda software to filter 
the low-quality protein data (FDR < 0.05, default 
parameter) and PCA to examine inter-group 
heterogeneity and reproducibility of samples within 
the BLCA and control groups.  

The gene expression profiles, clinical 
information, prognostic information, tumor 
mutational burden (TMB) data, and copy number 
variations (CNV) data of the TCGA-BLCA dataset 
were obtained from The Cancer Genome Atlas 
(TCGA, https://www.cancer.gov/ccg/research/ 
genome-sequencing/tcga) database. The 
TCGA-BLCA dataset encompassed 402 BLCA tumor 
tissue samples and 19 normal tissue samples. For the 
pre-processing method of the TCGA-BLCA dataset, 
we used the GDC mRNA quantitative analysis 
process to measure gene level expression. The specific 
process involves processing of raw read counts using 
STAR. For more details, please refer to 
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pi
pelines/Expression_mRNA_Pipeline/. The single-cell 
RNA sequencing (scRNA-seq) dataset GSE135337 of 
BLCA, and the transcriptome dataset GSE13507 
(survival information), were acquired from the Gene 
Expression Omnibus (GEO) database (https:// 
www.ncbi.nlm.nih.gov/geo/). The GSE135337 
comprised 7 BLCA tumor tissue samples and 1 
paraneoplastic tissue sample, while GSE13507 
included a total of 165 BLCA tumor tissue samples 
after filtering out samples with incomplete clinical 
data[36,37]. The GSE13507 dataset was preprocessed as 
follows: array data were processed using Illumina 
BeadStudio software. We used Quantile 
normalisation and log2 transformation to process the 
protein gene expression data. To export the data 
matrix, the "Sample Gene Profile" option was selected 
in the software. For RNA-seq reads, STAR (version 
2.0.4) was used to compare with the Ensembl 76 top 
component. For RNA-seq gene counts, 
Subread:featureCount (v1.4.5) and htseq (v0.8.0) were 
used for count derivation, and RSeQC (v2.3) was used 
for quality control of RNA-seq data. While gene 
RPKM quantification and normalisation was 
performed by Partek Genomics Suite software version 
6.6. 

In this study, we firstly performed a multi-omics 
joint analysis to screen and obtain 284 candidate 
genes, and then took the intersection with the 
differential genes in the single-cell dataset to finally 
obtain 15 key genes. Then, based on these 15 key 
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genes, TCGA-BLCA patients were consistently 
clustered to obtain two subtypes. Subsequently, the 
two subtypes as well as the BLCA/Control samples 
were analysed differentially in the TCGA-BLCA 
dataset respectively, and finally 318 candidate 
prognostic genes were obtained. Five prognostic 
genes were obtained by single-factor cox, multifactor 
cox and lsaao regression screening, and their risk 
scores were calculated to establish risk models. At the 
same time, the reliability of the risk model was 
verified in the TCGA-BLCA dataset and the GSE13507 
dataset. Thus, the joint analysis of transcriptome, 
proteome, acetylated proteome, single cell dataset, 
TCGA-BLCA dataset and GSE13507 dataset was 
achieved. 

4.2 Differential expression analysis 
To identify genes with significant differences in 

gene expression between the different sample groups 
in the self-sequencing transcriptome dataset 
(differential expression genes, DEGs), the R package 
DESeq2 (version 1.36.0) was used for the analysis 
(|log2FC| > 0.5, p-value < 0.05). Subsequently, 
differences and correlations between BLCA and 
control group proteins in the self-sequencing 
proteomic dataset were investigated using 
MaxQuant-Andromeda software (FDR < 0.05, 
thresholds could be adjusted according to screening) 
(differential expression proteins, DEPs). Finally, to 
identify acetylated proteins that differed between the 
BLCA and control groups in the self-sequencing 
proteomic acetylation dataset (differential expression 
acetylated proteins, DEPAs), the threshold was set at 
BLCA/Control > 1.2 (or BLCA/Control < 0.8) with a P 
value < 0.05[38]. Subsequently, the R package 
'clusterProfiler' (v 4.6.2)[39] was utilized for Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes 
(KEGG) enrichment analyses to investigate latent 
functions of DEGs, DEPs, and DEPAs (p-value < 0.05 
and count ≥ 1). Additionally, subcellular localization 
analysis was implemented utilizing the WoLF PSORT 
software (https://wolfpsort.hgc.jp/) to predict the 
position of DEPAs in subcellular fraction. 

4.3 Screening and functional annotation of 
candidate genes regulated by acetylation 

In order to understand the expression between 
differential genes and differential proteins, the 
intersection of differential genes/differential proteins 
with the same expression trend was taken separately 
and then the result was taken as a concatenation to get 
intersection genes/intersection proteins. 
Subsequently, to obtain the candidate genes 
(PA-DEGs), we performed spearman correlation 
analysis (|R| > 0.6 and p-value < 0.05) of intersection 

genes/intersection proteins with DEPAs. Functional 
annotation was supported by the R package 
'clusterProfiler' to explore the biological functions 
served by each candidate gene (p-value < 0.05 and 
count ≥ 1). Additionally, to understand the 
relationships among candidate genes at the protein 
level, a protein-protein interaction (PPI) network was 
synthesized through the Search Tool for the Retrieval 
of Interacting Genes (STRING, 
https://www.string-db.org/) database and 
visualized via Cytoscape software (v 3.7.2) 
(Confidence coefficient > 0.9)[39]. 

4.4 Quality control of scRNA-seq data 
Quality control was performed on the single-cell 

dataset GSE135337 using the R package 'Seurat' (v 
4.3.0.1)[40]. Parameters min. cells = 3 and min. features 
= 200 were set to create 'Seurat' objects, thereby 
filtering out the large number of pseudocells 
generated during the sequencing process. The double 
cell rate was set at 8% for samples with more than 
10,000 cells and 5% for samples with less than 10,000 
cells. The library size was required to be greater than 
500 and less than 95% when the number of cells was 
less than 10,000, and greater than 500 and less than 
92% when the number of cells was greater than 
10,000. Additionally, mitochondrial content was 
restricted to less than 10%. Subsequently, 2,000 genes 
with the highest standardized variance were 
identified using the 'vst' method in the 
'FindVariableFeatures' function after data 
standardization. Integration of the data was 
performed using the 'FindIntegrationAnchors' and 
'IntegrateData' functions to mitigate batch effects. 
Linear transformations were applied for scaling, 
followed by PCA to standardize gene variance and 
maintain equal weight. Regression correction based 
on library size and gene number was applied to 
minimize bias from highly expressed genes. 
Furthermore, normalization ensured uniform cell 
distribution and outlier removal. The standard 
deviation of principal components was calculated 
using the 'ScoreJackStraw' function for further 
analysis. 

4.5 Cell annotation 
The 'FinBLCAeighbors' and 'FindClusters' 

functions were utilized for unsupervised clustering 
analysis. The 'FindClusters' was opted for obtaining 
cell clusters via grouping cells iteratively with the 
resolution being 0.3. Cell clusters were visualized by 
uniform manifold approximation and projection 
(UMAP). Furthermore, marker genes of cell clusters 
were identified via 'FindAllMarkers' and compared 
with marker genes of each cell type in the CellMarker 
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database (http://biocc.hrbmu.edu.cn/CellMarker/ 
or http://bio-bigdata.hrbmu.edu.cn/CellMarker/) to 
obtain cell types. Besides, the proportions of cell types 
in every sample of the scRNA dataset were illustrated 
in bar graphs. The discrepancies in proportions of 
each cell type between BLCA and controls were also 
depicted. 

4.6 Identification of key genes 
DEGs in different cell types of BLCA and normal 

control were obtained using the "FindMarkers" 
function (log2FC > 0.5, p-value < 0.05, Minpct = 0.25) 
and these DEGs were taken in concatenated sets to 
obtain scRNA-DEGs. The intersection of 
scRNA-DEGs and PA-DEGs was identified as key 
genes. The 'circlize' package (v 0.4.15)[9] was employed 
to reveal relationships among key genes. Ulteriorly, 
other genes maintaining similar functions with key 
genes were predicted in the GeneMANIA database 
(https://genemania.org/), and a gene-gene 
interaction (GGI) network revealing the interactions 
and functions among genes was developed. 

4.7 Screening of crucial cell types 
To clarify the differences in expression levels of 

key genes in BLCA samples and control samples 
across cell types in the single-cell dataset GSE135337, 
we performed estimations. The cell types in which 
key genes expressed variously were selected as crucial 
cell types (p-value < 0.05). To explore variations of 
pathways in which cell types were enriched, we 
performed gene set variation analysis (GSVA). 
Subsequently, heterogeneity analysis was performed 
on crucial cell types to reveal the diversity and 
characteristics within these specific cell types. 
Concretely, the data of crucial cell types were 
extracted, followed by secondary dimensionality 
reduction and clustering to annotate crucial cell types 
into distinct subclusters. Subclusters were displayed 
using UMAP, and the discrepant proportion of 
subclusters between BLCA and controls in crucial cell 
types was displayed by a bar chart. 

4.8 Pseudo-temporal trajectory and cell 
communication analyses of crucial cell types 

To identify differentiation differences of crucial 
cell types, the differential genes between BLCA and 
controls in crucial cell types were accessed via the 
'differentialGeneTest' functions, pseudo-temporal 
trajectory analysis of crucial cell types was then 
accomplished through the R package 'Monocle' (v 
2.30.0)[10]. Moreover, the expression of key genes in 
different branches was defined to understand the 
changes in pivotal gene expression in crucial cell 
types at different time points. To understand the ways 

cell types communicated, cell communication analysis 
proceeded by analyzing the ligand-receptor 
relationship of the features in the single-cell 
expression profile in the CellPhoneDB database. 

4.9 Unsupervised consensus clustering 
In order to better identify BLCA-related 

subtypes, clustering analysis was conducted on 402 
BLCA tumor tissue samples from the TCGA-BLCA 
dataset using the R package 'ConsensusClusterPlus' (v 
1.60.0)[41]. To ensure robust classification, the 
clustering process was iterated 100 times, with the 
optimal 'k' value (number of clusters) determined 
based on the relative change in the area under the 
cumulative distribution function (CDF) curves and 
the consensus matrix. Subsequently, Kaplan-Meier 
(K-M) survival curves were generated using the R 
package 'survminer' (v 0.4.9)[42] to assess survival 
differences among different clusters (p-value < 0.05). 
Differential expression analysis was performed using 
the R package 'DESeq2' to identify Cluster-DEGs 
between clusters and BLCA-DEGs between BLCA 
samples and controls in the TCGA-BLCA dataset 
(|Log2FC| > 2 and adj. p-value < 0.05). The functions 
of Cluster-DEGs were explored through GO and 
KEGG enrichment analysis (adj. p-value < 0.05 and 
count ≥ 1). Candidate prognostic genes were 
identified by intersecting Cluster-DEGs with 
BLCA-DEGs. 

4.10 Construction of a risk model 
In TCGA-BLCA dataset, we used univariate Cox 

regression analysis (p-value < 0.005), Proportional 
Hazards (PH) assumption test (p-value > 0.05), 
multivariate Cox regression analysis (p-value < 0.05), 
and the least absolute shrinkage and selection 
operator (LASSO) regression algorithm, employed 
using 'survival' (v 3.5-7) and 'glmnet' (v 4.1-8) 
packages in R, to compute the weight for each 
variable[43,44]. In this case, PH assumes the underlying 
assumption that the effect of covariates on survival 
does not change over time, i.e., the risk ratio h(t)/h0(t) 
is fixed. We tested the Cox proportional risk model 
using the Schoenfeld residual method, which requires 
the residuals to be independent of time. If the results 
show a non-random relationship between the 
residuals and time, it indicates a violation of the 
proportional risk assumption. Therefore, the p-value 
for the PH test needs to be greater than 0.05. In 
contrast, the Lasso regression uses 10-fold 
cross-validation, where the sample data are randomly 
divided into 10 subsamples. Nine of these subsamples 
are used to estimate the model, and the resulting 
model was used to predict the explanatory variables 
for the remaining 1 subsample to obtain the mean 
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square error (MSE). This was repeated to obtain 10 
mean square errors, the average of which was the 
cross-validated MSE for the entire sample data. 
Finally, The prognostic genes were identified for use 
in constructing the risk prediction model with the 
following formula: risk score = � coef (genei) ×n

i=1
expr (genei) . Moreover, the BLCA patients in 
TCGA-BLCA dataset (the number of cases in the high 
and low risk groups were 201 and 200 respectively) 
were categorized as high- and low- risk teams in 
compliance with median risk score. The R packages 
'ggplot2' (v 3.3.5) and 'survminer' (v 0.4.9) were 
exploited to create a risk curve and K-M survival 
curve to assess the prognostic ability of risk model. In 
addition, the predictive performance of the risk model 
was evaluated by the receiver operating characteristic 
(ROC) curves, which were plotted using the R 
package 'survivalROC' (v 1.0.3.1). In the GSE13507 
validation set (the number of cases in the high and 
low risk groups were 83 and 82 respectively), risk 
curves and prognostic gene heatmaps were plotted 
using the R package ggplot2, respectively. 
Meanwhile, KM curves and ROC curves of high and 
low risk groups were plotted using R package 
survminer (version 0.4.9) and R package survivalROC 
(version 1.0.3) as a way to validate the predictive 
effect of the risk model. 

4.11 Independent prognostic analysis 
To determine whether the risk model possessed 

independent prognostic value, and to thoroughly 
investigate other independent prognostic factors 
predicting the prognosis of BLCA patients, gender, 
age, stage, risk score, as well as pathologic T, N, and 
M stages were included in univariate Cox regression 
analysis (p-value < 0.05), Proportional Hazards (PH) 
hypothesis test (p-value > 0.05), and multivariate Cox 
regression analysis (p-value < 0.05) in the samples of 
the TCGA-BLCA dataset to identify independent 
prognostic factors. Subsequently, a nomogram model 
was developed to predict patient prognosis 
incorporating these factors. Importantly, ROC and 
calibration curves were created to assess the clinical 
application value of the nomogram model. 

4.12 Stratified survival analysis 
To explore the relationships between various 

clinicopathological factors with independent 
prognostic significance and risk score, as well as 
between clinicopathological factors and prognostic 
genes, and clinicopathological factors and overall 
survival (OS). The discrepancies in risk score, 
prognostic genes' expression, and high/low-risk 
patients' survival between clinical subgroups were 
estimated by the Wilcoxon rank-sum test in the 

TCGA-BLCA data (N = 401) (p-value < 0.05). 

4.13 The expression of prognostic genes 
To understand the expression patterns of 

prognostic genes in the TCGA-BLCA dataset, the 
expression levels between BLAC and controls were 
demonstrated by box plots. In addition, in order to 
investigate the expression characteristics of 
prognostic genes in different molecular subtypes of 
BLCA, the R packages 'ConsensusMIBC' (version 
1.1.0) and 'BLCAsubtyping' (version 2.1.1) were used 
to classify BLCA patients into different molecular 
subtypes (basal and luminal). The Wilcoxon test was 
used for the expression levels of prognostic genes 
between subtypes (p < 0.05). Besides, the 
immunohistochemically stained landscape of 
prognostic genes in urinary bladder and urothelial 
cancer was acquired from the Human Protein Atlas 
(HPA, https://www.proteinatlas.org/) database. 

4.14 Gene set enrichment analysis (GSEA) and 
mutational landscape characterization betwixt 
two risk teams 

Firstly, the GSEA was conducted through the 
'clusterProfiler' and 'org.Hs.eg.db' (v 3.13.0) packages 
in R to compare the variations in the KEGG signaling 
pathway between the two risk teams (|NES| > 1, 
NOM p < 0.05 and q < 0.25). The background gene 
sets, c5.go.v7.4.entrez.gmt (GO) and c2.cp.kegg.v7.4 
.entrez.gmt (KEGG), were retrieved from the GSEA 
website (http://www.gsea-msigdb.org/gsea/ 
msigdb). The R package 'maftools' (v 2.12.0)[45] was 
employed to characterize the tumor mutation status 
between two risk teams by calculating Somatic 
mutation information in the TCGA-BLCA dataset. 
Besides, the discrepancies of TMB between the two 
risk teams were computed and compared by the 
Wilcoxon rank-sum test (p-value < 0.05). We 
proceeded to investigate the mutation rates of several 
frequently mutated genes, including TP53, EGFR, 
FGFR, and KDM6A, in both the high-risk and low-risk 
teams. 

4.15 Immune cell infiltration (ICI) and drug 
sensitivity analyses 

The characterization of ICI could indicate the 
prognosis of BLCA patients. We used the CIBERSORT 
algorithm to calculate the proportions of 22 immune 
cells between two risk groups. Wilcoxon rank-sum 
tests (p-value < 0.05) were employed to select 
discrepant immune cells and differentially expressed 
immune checkpoints between the two groups. 
Immune checkpoints represented a category of 
immunosuppressive molecules expressed on immune 
cells, regulating the extent of immune activation. 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

1502 

Spearman's correlation analysis was conducted to 
explore the relationships between discrepant immune 
cells, differential immune checkpoints, and prognostic 
genes. Additionally, the Estimation algorithm was 
utilized to assess the discrepancies in stromal score, 
immune score, and ESTIMATE score, evaluating 
immune and stromal components in BLCA tumor 
tissue. Infiltrating stromal and immune cells are a 
major component of normal cells in tumour tissues, 
interfere with tumour signalling in molecular studies 
and have an important role in tumour biology. 

Chemotherapy was commonly used in the 
clinical treatment of malignant tumours. In this study, 
198 kinds of drugs were gathered from the Genomics 
of Drug Sensitivity in Cancer (GDSC) database 
(https://www.cancerrxgene.org/) and the 
half-maximal inhibitory concentration (IC50) was 
assessed for each patient using the R package 
oncoPredict (version 0.2). Subsequently, the top 5 
sensitive drugs were selected in the high/low-risk 
teams by ranking them according to logFC and their 
correlations with risk score were assessed. The drugs 
searched in GDSC and Cancer Therapeutics Response 
Portal (CTRP) databases simultaneously were 
evaluated for their correlations with risk scores. 

4.16 Statistical analysis 
The R program (v 4.2.2) was responsible for 

bioinformatics analysis in this study. The survival 
differences were analyzed by the Log-rank test. The 
inter-group discrepancies were contrasted by the 
Wilcoxon rank-sum test, and a p-value below 0.05 was 
regarded to be statistically significant. 

5. Conclusion 
In summary, this study identifies CTSE, XAGE2, 

MAP1A, CASQ2, and FXYD6 as pivotal prognostic 
biomarkers for BLCA. The establishment of a risk 
model and a nomogram model based on these genes 
provides a novel and effective tool for predicting the 
clinical outcome of BLCA patients. These findings are 
expected to contribute significantly to the prognostic 
evaluation and personalized treatment strategies for 
individuals with BLCA. 

Supplementary Material 
Supplementary figures.  
https://www.jcancer.org/v16p1479s1.pdf 
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