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Abstract 

Background: Establishing the causal links between biomarkers and cancer enhances understanding of 
risk factors and facilitates the discovery of therapeutic targets. To this end, we used Mendelian 
randomization (MR) and colocalization analysis to explore the causal relationship of blood and urinary 
biomarkers (BUBs) with urological cancers (UCs). 
Methods: First, we used a two-sample MR study to explore the causal relationship between 33 BUBs 
and 4 UCs, while we performed reverse Mendelian randomization. After Bonferroni correction, for BUB 
and UC with significant causality we confirmed the direct causality by multivariate MR adjusting for 
relevant risk factors. We also applied two-step MR analysis to further explore the possible mediators 
between BUB and UC with significant causality, while colocalization analysis was performed for BUB, UC 
and possible mediators. Sensitivity analysis were performed to assess the robustness of the results. 
Results: A two-sample MR study found that there were 8 BUBs of CA, IGF-1, LPA, TP, CRE, BILD, TBIL 
and NAP with potential causality with some UCs (p<0.05), but after Bonferroni correction only IGF-1 
had a significant causality with PCa (OR = 1.14, 95% CI: 1.06–1.23; p=0.0006<0.05/33). Moreover, the 
causal relationship between IGF-1 and PCa remained significant (P<0.05) after adjusting for relevant risk 
factors in the multivariate MR study. The two-step MR study found SHBG to be a mediator between 
IGF-1 and PCa, and the colocalization analysis found that there was a common causal variant (nearby gene 
TNS3) between IGF-1 and SHBG (PPH4=93.21%), which further confirmed the mediating effect of SHBG. 
Conclusion: Strong evidence from our study suggests that IGF-1 increases the risk of PCa by decreasing 
SHBG levels, and in addition some BUBs were found to have a potential causal relationship with UCs. 
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Introduction 
Urological cancer (UC) encompasses a diverse 

range of tumors, including bladder cancer (BCa), 
prostate cancer (PCa), kidney cancer (KCa), and renal 
pelvis cancer (RPCa), among others. These cancers 
pose a significant threat to global health[1]. Since 
1990, the incidence of UC has increased 2.5-fold and 

the mortality rate has increased 1.6-fold[2], with this 
increase being particularly pronounced among men, 
accounting for approximately 33% of all reported 
malignancies in males[1]. This epidemiological reality 
underscores the urgent need to deepen our 
understanding of these cancers. However, each cancer 
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type has distinct pathogenesis, necessitating different 
diagnostic and therapeutic approaches[3]. Biomarkers 
are substances that can be objectively measured and 
evaluated as indicators of normal biological processes, 
pathogenic processes, or pharmacological responses 
to a therapeutic intervention. Clinically, they are used 
in disease diagnosis, prognosis, monitoring 
therapeutic efficacy, and drug development. 
Therefore, elucidating the relationship between 
biomarkers and cancer not only aids in exploring the 
association between biomarkers and cancer risk but 
also can effectively improve cancer diagnosis rates 
and facilitate the exploration and development of 
better therapeutic targets.  

Blood and urine biomarkers (BUB) are common 
laboratory tests, and recent observational studies have 
identified a close relationship between some 
biomarkers and UC[4, 5]. However, there are 
significant challenges in translating the findings of 
observational studies into effective cancer prevention 
and control strategies. This is because traditional 
observational designs are susceptible to various 
biases, such as residual confounding and reverse 
causality. Despite statistical and methodological 
efforts to address these issues, these biases often 
persist, making it difficult for observational studies to 
reliably establish causality between exposures and 
outcomes.  

Mendelian Randomization (MR) is an 
epidemiological method that uses genetic variation to 
assess causal relationships. It utilizes genetic variants 
as instrumental variables (IVs) to investigate the 
causal effects of exposure factors (e.g., biomarkers) on 
diseases (e.g., cancer). MR studies can overcome 
many limitations of traditional observational studies, 
providing more reliable evidence of causal 
relationships[6]. To this end, we performed a 
Mendelian randomization (MR) analysis to explore 
the causal associations of 33 BUBs with 4 UCs (BCa, 
PCa, RPCa, KCa). We hope that this study will 
contribute to the research on the prevention and 
treatment of UC. 

Materials and methods 
Study design 

MR studies must satisfy three key core 
assumptions[7]:(1) The genetic variants used as IVs 
must be associated with the exposure of interest; (2) 
The genetic variants must be independent of 
confounders; (3) The genetic variants must affect the 
outcome only through the exposure and not via any 
other pathway. Our MR study design meets the three 
core assumptions and adheres to the STROBE-MR 
guidelines (Supplementary STROBE-MR-checklist). 

We used a two-sample MR study to explore the causal 
relationship between 33 BUBs and 4 UCs, while we 
performed reverse Mendelian randomization. After 
Bonferroni correction, for BUB and UC with 
significant causality we confirmed the direct causality 
by multivariate MR adjusting for relevant risk factors. 
We also applied two-step MR analysis to further 
explore the possible mediators between BUB and UC 
with significant causality, while colocalization 
analysis was performed for BUB, UC and possible 
mediators. Sensitivity analysis were performed to 
assess the robustness of the results. The entire study 
design is shown in Figure 1. 

Data sources 
All data used in the MR analysis were obtained 

from publicly available genome-wide association 
studies (GWAS). Data for 33 BUBs were derived from 
a GWAS study of the UK Biobank (UKB), which 
included 363,228 participants of European ancestry[8]. 
We obtained the R10 version of the GWAS summary 
data for BCa, PCa, KCa, and RPCa from the FinnGen 
Consortium (https://finngen.gitbook.io/ 
documentation/). Four UC were diagnosed according 
to ICD-O-3, controls excluding all cancers. As PCa risk 
factors smoking (N=4,772), height (N=360,388) and as 
mediators hormone binding globulin (SHBG) 
(N=180,094), total testosterone (TTES) (N=194,453), 
bioavailable testosterone (BTES) (N=178,782), 
estradiol (EST) (N=206,927), their genetic related data 
are all from the IEU Open GWAS database. 
(https://gwas.mrcieu.ac.uk/). For more information 
on the above data, please refer to Supplementary 
Table S1. 

Instrumental variable selection 
 We used single nucleotide polymorphisms 

(SNPs) as IVs for genetic variation. First, we extracted 
SNPs with genome-wide significance for exposure in 
GWAS (p < 5 × 10-8). Second, we excluded SNPs with 
linkage disequilibrium (LD) (r2< 0.001, clumping 
distance=10,000 kb) to eliminated highly associated 
SNPs. Third, we harmonize the effect sizes and alleles 
of SNPs in the exposure and outcome data. To prevent 
weak instrumental variable bias, SNPs with 
F-statistics < 10 were removed (F=R2 (n-k-1)/k(1-R2)). 
We looked for confounding factors associated with 
BCa[9], PCa[10], KCa[11], and RPCa[12]. To minimize 
the bias caused by confounders we screened out SNPs 
strongly associated (p < 5 × 10-8) with confounders 
through the catalog website (https://www.ebi.ac.uk/ 
gwas/). All removed SNPs associated with 
confounders were shown in Supplementary Table S3. 
In addition, we identified and excluded horizontal 
pleiotropic outliers using the MR-PRESSO test, and 
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the excluded SNPs are shown in Supplementary Table 
S5. Finally, we used SNPs that met all the above 
criteria as IVs for the MR analysis. The characteristics 
of the SNPs used in this study are presented in 
Supplementary Table S2. 

Statistical analysis 
We used the inverse-variance weighted (IVW) 

method as the primary MR analysis. IVW assumes 
that all genetic instruments are valid and provides a 
weighted average of the SNP-specific causal 
estimates. This method offers high statistical power 

under the assumption that there is no horizontal 
pleiotropy[13]. Cochrane's Q-tests were performed to 
scrutinize SNP-related heterogeneity for each 
exposure. In the presence of significant heterogeneity 
(p < 0.05), a fixed-effects IVW (FE-IVW) model was 
used; conversely, a random-effects IVW (RE-IVW) 
model was used. In addition, we performed a variety 
of other complementary MR Methods, including 
MR-Egger, weighted median (WM), Constrained 
maximum likelihood (cML), Debiased 
inverse-variance weighted method (dIVW), Robust 
adjusted profile score (RAPS), and Bayesian weighted 

 

 
Figure 1. The overview of the study design and flowchart in this study (by Figdraw). SNPs, Single nucleotide polymorphisms; GWAS, Genome-wide association study; LD, 
Linkage disequilibrium; MR, Mendelian randomization; IVW, Inverse variance weighted; WM, weighted median; RAPS, Robust adjusted profile score; cML, Constrained maximum 
likelihood; DIVW, Debiased inverse-variance weighted method; BWMR, Bayesian weighted Mendelian randomization. 
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Mendelian randomization (BWMR) to bolster the 
robustness and credibility of the MR outcomes. The 
MR-Egger method uses the regression intercept as an 
indicator to test potential multiple effects, and a P 
value less than 0.05 indicates pleiotropic effects. When 
more than 50% of the IVs are valid, the results of the 
weighted median method are reliable. cML is used to 
exclude bias caused by correlated and uncorrelated 
pleiotropy[14]. The dIVW method eliminates the 
weak instrumental bias of the IVW method and is 
more robust under many weak instruments[15]. RAPS 
allows the inclusion of weak instrumental variables 
and provides robust statistical estimates for MR 
through these weak instruments[16]. BWMR can not 
only take into account the uncertainty of estimated 
weak and weak level multinomial effects, but can also 
adaptively detect outliers due to a small number of 
large level multinomial effects, allowing causal 
inferences to be made despite the presence of 
multinomial effects[17]. The leave-one-out method 
was used in sensitivity analysis to assess the effect of 
individual SNPs on overall causal estimates. In 
addition, we performed sensitivity analysis on the MR 
results using scatter plots and funnel plots. We used 
the Steiger Test to detected the selected SNPs for 
potential reverse causality between BUB and UC. Due 
to the multiple testing of each type of UC with 33 
different BUBs measures, we applied Bonferroni 
correction. A p-value of less than 
0.0015(0.05/33=0.0015) was considered indicative of a 
significant causal relationship, while results with 
p-values between 0.05 and 0.0015 were considered 
indicative of a suggestive causal relationship. In 
addition, reverse MR analysis was performed to 
verify whether there was an inverse causal 
relationship between the 4 UCs and 33 BUBs. After 
Bonferroni correction, for BUB and UC with 
significant causality we confirmed the direct causality 
by multivariate MR adjusting for relevant risk factors. 

To understand the potential causal mechanism 
between IGF-1 and PCa, mediation analysis was 
performed. Previous studies have found a strong 
relationship between sex hormone levels and PCa 
risk, so we selected SHBG, TTES, BTL, and EST as 
potential mediators. We first explored the causal 
effects of IGF-1 with potential mediators to identify 
important mediators. We then analyzed the causal 
relationships between possible mediators and PCa 
(among them, the SNPs included in the analysis of 
mediators to IGF-1 will remove the SNPs used in the 
IGF-1-PCa) (Table 1). In addition, we performed 
colocalization analysis on exposures, possible 
mediators and outcomes that showed a causal 
relationship with MR studies to determine whether 
they share the same causal variant[18]. Posterior 

probability of colocalization (PPH4) >80% indicates 
support for a common causal variant.  

All statistical analysis and data visualizations 
were performed with the “TwoSampleMR”, 
“MRPRESSO”, “Forestplot” and “MRcML” R 
packages in R software version 4.3.3 (R Foundation 
for Statistical Computing, Vienna, Austria). 

Results 
Two-sample MR 

 The results of the two-sample MR analysis (IVW 
method) for 33 BUBs with 4UCs are presented in 
Figure 2. We found that 8 BUBs were associated with 
UC risk (Figure 3) and reverse Mendelian analysis 
does not find that there is no reverse causality 
(Supplementary Table S8). All results are shown to be 
robust through sensitivity analysis, details are 
provided in the Supplementary Material.  

In BCa, we found a potential link between CA 
and its risk (Figure 3). Through Cochran’s Q test 
(Supplementary Table S6), we did not find 
heterogeneity in gene IVS related to CA 
(Pheterogeneity=0.414), so we selected the FE-IVW as the 
main MR analysis. FE-IVW results showed that CA 
increased the risk of BCa (OR = 1.35, 95% CI: 1.12-1.63; 
p=0.002). WM (OR = 1.60, 95% CI: 1.17-2.19; p=0.004), 
cML(OR = 1.36, 95% CI: 1.11-1.67; p=0.004), dIVW(OR 
= 1.36, 95% CI: 1.12-1.64; p=0.002), RAPS(OR = 1.37, 
95% CI: 1.13-1.67; p=0.001), and BWMR(OR = 1.36, 
95% CI: 1.12-1.65; p=0.002) methods also yielded 
results consistent with FE-IVW. However, MR-Egger 
(OR = 1.35, 95% CI: 0.95-1.93; p=0.096) results showed 
no statistical significance, but exhibited the same 
trend.  

Our MR analysis showed that IGF-1 had a 
significant causal relationship with PCa risk, but LPA 
and TP may have a potential causal relationship with 
PCa risk (Figure 3). We selected RE-IVW as the 
primary MR analysis because its Cochran's Q test 
results showed heterogeneity (Pheterogeneity<0.05), as 
shown in Supplementary Table S6. The results of 
RE-IVW analysis found that IGF-1 (OR = 1.14, 95% CI: 
1.06-1.23; p<0.001) and LPA (OR = 1.12, 95% CI: 
1.01-1.25; p=0.038) were associated with increased risk 
of PCa (Figure 3). The MR-Egger, WM, cML, dIVW, 
RAPS and BWMR methods for both of them also 
obtained results consistent with RE-IVW 
(Supplementary Table S4). The results of the RE-IVW 
method revealed that TP (OR = 0.84, 95% CI: 0.75–
0.94; p=0.002) can reduce the risk of PCa, and the WM 
(OR = 0.80, 95% CI: 0.68-0.93; p=0.005), cML(OR = 
0.84, 95% CI: 0.76-0.94; p=0.001), dIVW(OR = 0.84, 
95% CI: 0.75-0.94; p=0.002), RAPS(OR = 0.85, 95% CI: 
0.75-0.95; p=0.005), and BWMR (OR = 0.84, 95% CI: 
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0.76-0.94; p=0.002) methods also confirmed this result. 
MR Egger analysis failed to detect a statistically 
significant association but indicated a similar trend 
(OR = 0.88, 95% CI: 0.68-1.13; p=0.319).  

 Cochran's Q test for CRE (Pheterogeneity=0.603), 
BILD (Pheterogeneity=0.234) and TBIL (Pheterogeneity=0.070) 
in RPCa did not reveal the presence of heterogeneity 
(Supplementary Table S6). The results of FE-IVW 
analysis revealed that CRE (OR = 1.87, 95% CI: 1.00–
3.48; p=0.048), BILD (OR = 2.09, 95% CI: 1.12–3.91; 
p=0.021), and TBIL (OR = 2.07, 95% CI: 1.17–3.67; 
p=0.013) were potentially associated with the risk of 
RPCa. In CRE, no statistically significant association 
was found between the MR Egger (OR = 0.65, 95% CI: 
0.16–2.68; p=0.552) and WM (OR = 1.19, 95% CI: 0.43–
3.27; p=0.735) methods, but the WM method showed 
a similar trend to FE-IVW, while the MR Egger 
method indicated an opposite trend to FE-IVW. All 
other MR analysis methods for CRE, BILD and TBIL 
gave consistent results with their corresponding 
FE-IVW (Supplementary Table S4).  

In KCa, we only found that NAP may reduce the 
risk of its (Figure 3), a result confirmed by six MR 
analysis, FE-IVW (OR = 0.81, 95% CI: 0.68–0.96; 
p=0.014), WM (OR = 0.73, 95% CI: 0.55–0.98; p=0.037), 

cML (OR = 0.78, 95% CI: 0.64–0.95; p=0.014), dIVW 
(OR = 0.80, 95% CI: 0.67–0.96; p=0.014), RAPS (OR = 
0.77, 95% CI: 0.64–0.92; p=0.004) and BWMR (OR = 
0.80, 95% CI: 0.67–0.95; p=0.013). However, the 
MR-Egger method obtained the opposite trend, but it 
was not statistically significant (OR = 1.02, 95% CI: 
0.70–1.49; p=0.914).  

MVMR 
In the MVMR study, there was still a significant 

causal relationship between IGF-1 and PCa after 
adjusting for related risk factors such as smoking and 
height (Figure 4). 

Two-step MR 
Among sex hormones, a two-step MR study 

identified SHBG as a potential mediator of IGF-1 and 
PCa (Figure 5). Specifically, increased IGF-1 
concentration can downregulate SHBG levels 
(Beta=-0.033, 95% CI: -0.044to-0.022), and increased 
SHBG levels can reduce the risk of PCa (OR = 0.807, 
95% CI: 0.674-0.967). Therefore, IGF-1 increases 
prostate cancer risk by reducing SHBG levels (Table 
1). 

 

 
Figure 2. The heatmap of IVW analysis results for 33 blood and urine biomarkers (BUBs) with 4 urological cancers (UCs). All BUB abbreviations are shown in supplementary 
table S1. (Drawing is performed by site www.chiplot.online). 
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Table 1. Two-step Mendelian randomization study. Beta is used 
for continuous variables and OR is used for categorical variables.  

Exposure Outcome n.SNP Method Beta/OR (95%cl) Pvalue 
IGF1 SHBG 

(mediator) 
262 IVW -0.033(-0.044to-0.022) 1.38E-08 

IGF1 TTES 
(mediator) 

282 IVW -0.025 (-0.051to0.001) 0.056 

IGF1 BTES 
(mediator) 

319 IVW 0.033(0.011to0.055) 0.003 

IGF1 EST 
(mediator) 

325 IVW 0.001(0.003to0.006) 0.655 

SHBG 
(mediator) 

PCa 227 IVW 0.807 (0.674to0.967) 0.020 

TTES 
(mediator) 

PCa 149 IVW 1.014(0.927to1.110) 0.756 

BTES 
(mediator) 

PCa 76 IVW 1.067(0.922to1.235) 0.385 

EST 
(mediator) 

PCa 12 IVW 0.864 (0.208to3.581) 0.840 

hormone binding globulin (SHBG), total testosterone (TTES), bioavailable 
testosterone (BTES), estradiol (EST) 

 

Colocalization analysis 
In the colocalization analysis of IGF-1, SHBG and 

PCa, we only found that IGF-1 shared a common 
causal variant with SHBG (PPH4 = 93.21%), which 
further confirmed the mediating effect of SHBG, as 
detailed in Table 2. In addition, colocalization analysis 
studies revealed that the Lead SNP for IGF-1 sharing a 
causal variant with SHBG is rs4724477 and it is close 
to the TNS3 gene (Figure 6). 

 

Table 2. Colocalization analysis between IGF-1, SHBG and PCa. 
PP.H0 =neither exposure nor outcome has a genetic association in 
the region, PP.H1 = only exposure has a genetic association in the 
region, PP.H2 = only outcome has a genetic association in the 
region, PP.H3 = both exposure and outcome are associated but 
have different causal variants, PP.H4 = both exposure and 
outcome are associated and share a single causal variant. 

Exposure Outcome n.SNPs PP.H0 PP.H1 PP.H2 PP.H3 PP.H4 
IGF-1 SHBG 359 1.50E-302 5.44% 3.97E-303 1.35% 93.21% 
SHBG PCa 382 2.72E-301 82.63% 4.99E-302 15.15% 2.21% 
IGF-1 PCa 337 5.50E-301 96.50% 1.57E-302 2.75% 00.76% 

 

Discussion 
The mortality and morbidity of UC are high 

worldwide and their diagnostic and therapeutic 
interventions are limited[1, 19]. Therefore, it is 

important to develop new strategies for the treatment 
of UC. This study systematically investigated the 
causal relationship between 33 common BUBs and 4 
UCs using MR analysis, which provides direction for 
research on the prevention and treatment of UC.  

BCa is a common form of UC for which smoking, 
gender and age are the main risk factors[9]. Some 
observational studies have found strong links 
between BUB and BCa, and they may help in 
diagnosis and treatment of the disease[20, 21]. Our 
MR study found that serum CA increased the risk of 
BCa. Serum CA is an important electrolyte in the body 
that is necessary for various physiologic processes, 
and some studies have found that the higher the 
serum CA, the worse the prognosis for cancer patients 
[22]. In BCa, a previous retrospective study found that 
high serum CA increased the risk of bone metastasis 
in BCa[23]. However, we did not find other 
correlation studies between CA and BCa, and the 
relationship between the two remains unclear. 
Inflammation is widely recognized as a critical 
contributor to carcinogenesis[24], including the 
development of bladder cancer[9]. Emerging evidence 
suggests that elevated serum CA levels may activate 
the NF-κB pathway, promoting the expression of 
pro-inflammatory mediators via calmodulin and 
protein kinase C[25, 26]. Additionally, CA can 
stimulate NLRP3 inflammasome activation, 
facilitating the maturation and release of key 
inflammatory cytokines, such as IL-1β and IL-18, 
through both direct and indirect mechanisms[27]. CA 
also activates specific ion channels, including TRPV4, 
further enhancing the secretion of pro-inflammatory 
factors[28, 29]. These pathways collectively suggest 
that elevated serum CA may contribute to bladder 
cancer risk by driving inflammatory responses. 
Moreover, calcium-dependent signaling pathways, 
including calmodulin and protein kinase C, play 
pivotal roles in regulating the cell cycle, cell 
proliferation, and apoptosis[30]. Elevated serum CA 
levels may dysregulate these processes, promoting 
abnormal proliferation of bladder epithelial cells 
through these pathways, which could further increase 
the risk of bladder cancer development.  

 

 
Figure 3. Two-sample MR forest plot of BUB causally related to UC. 
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Figure 4. MVMR forest plot of IGF-1 and risk factors (smoking, height) with prostate cancer. 

 
Figure 5. Schematic diagram of mediating effects of SHBG levels. (A) The total effect between insulin-like growth factor 1 (IGF-1) and prostate cancer (PCa). c is the total effect 
using genetically predicted IGF-1 as exposure and PCa as outcome. (B) The total effect was decomposed into: (i) indirect effect using a two-step approach (where a is the total 
effect of IGF-1 on sex hormone-binding globulin (SHBG), and b is the effect of IGF-1 on PCa) and the product method (a × b); (ii) direct effect (c′ = c – a × b). Proportion mediated 
was the indirect effect divided by the total effect. 

 
Figure 6. Association map of Lead SNPs on chromosomes for IGF-1 and SHBG sharing causal variants. 
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 PCa is a common malignancy among men, with 
more than 1.4 million new cases diagnosed 
annually[1], and its major risk factors include age, 
family history , etc[10]. Our MR analysis identified 
associations between IGF-1, LPA, and TP with the risk 
of PCa. Specifically, we found that IGF-1 significantly 
increased the risk of PCa. IGF-1 is a peptide hormone 
produced in the human body that plays a crucial role 
in metabolism, tissue repair, and cell survival. Our 
findings are consistent with previous observational 
studies, further supporting the critical role of IGF-1 in 
the pathogenesis of PCa[31-33]. Experimental studies 
have found that IGF-1 can promote cancer cell 
proliferation and migration as well as inhibit 
apoptosis through AKT/FOXO3A/BIM[34], 
PI3K-AKT-mTOR[35] and RAS-MAPK[36] pathways, 
and it has also been found that it promotes 
angiogenesis in prostate cancer[37], which may be one 
of the reasons for the increase in the risk of PCa by 
IGF-1. However, we further found through a two-step 
Mendelian randomization study that IGF-1 increases 
the risk of PCa by reducing SHBG. In PCa, we were 
able to find a linear relationship between elevated 
IGF-1 and total SHBG from observational studies, but 
due to methodological issues in epidemiological 
studies we were unable to confirm that it was IGF-1 
that downregulated SHBG synthesis[38]. Although 
the specific mechanism by which IGF-1 reduces SHBG 
is not clear, our co-localisation analysis study revealed 
that IGF-1 and SHBG share a common causal variant, 
and the leader SNP of the variant is rs4724477 (near 
TNS3 gene). These SNPs and genes may serve as 
important targets for future studies on the 
relationship between IGF-1 and SHBG. From our 
results, we speculate that IGF-1 may inhibit hepatic 
synthesis of SHBG by activating various downstream 
signalling pathways such as PI3K/AKT and MAPK 
through its receptor IGF1R[39]. In addition, IGF-1 is 
closely related to obesity, and it may also affect 
hepatic lipid metabolism and regulate SHBG through 
signalling pathways in adipocytes[40]. The fact that 
lower SHBG can increase the risk of PCa is perhaps 
better explained. It is known that the growth and 
development of prostate cancer usually depends on 
androgen stimulation such as testosterone, and 
androgen receptor inhibitors are one of the commonly 
used drugs for the treatment of prostate cancer[41]. 
The biological activity of testosterone is reduced when 
combined with SHBG[42]. Therefore, reduced SHBG 
levels may increase testosterone bioactivity (increased 
levels of bioavailable testosterone), thereby increasing 
the carcinogenic effects of testosterone on PCa. In 
addition, IGF-1 can enhance the expression and 
activity of androgen receptors[43]. These may account 
for the increased risk of PCa with IGF-1 

downregulation of SHBG. Our study also found that 
LPA may be a risk factor for PCa. Two previous 
prospective cohort studies have indicated a positive 
association between LPA levels and the risk of 
PCa[44]. Additionally, another MR study has yielded 
similar results[45]. Although there are no direct 
studies to elucidate the mechanism by which LPA 
promotes PCa, LPA is an important 
immune/inflammatory regulator[46], so we speculate 
that it contributes to the development of PCa through 
pro-inflammation and modulation of immunity. In 
contrast, this study found that TP levels may be 
inversely related to PCa risk. Consistent with our 
findings, a cohort study from the UKB also found that 
higher TP levels are associated with a reduced risk of 
PCa (OR = 0.88, 95% CI: 0.84–0.93)[47]. Serum TP 
includes various proteins with anti-inflammatory and 
antioxidant properties, particularly albumin. Albumin 
has the ability to scavenge free radicals and reduce 
oxidative stress[48], which is a significant factor in the 
occurrence and progression of cancer[49]. 
Additionally, immunoglobulins within total protein 
can enhance tumor immune responses through 
various mechanisms, effectively improving the ability 
to recognize and eliminate potential cancer cells[50]. 
These beneficial effects of TP may help explain why it 
can reduce the risk of PCa. 

 RPCa is a very rare malignant tumor of the 
kidney, and little is known about the epidemiology of 
this disease[51]. Results from our MR study suggest 
that elevated BILD, TBIL, and CRE may increase its 
risk. Bilirubin is the end product of heme metabolism, 
primarily derived from the breakdown of aging red 
blood cells and the decomposition of other heme-rich 
tissues. TBIL includes both BILD and indirect 
bilirubin, with BILD being converted from indirect 
bilirubin. Contrary to our findings, some studies have 
shown that bilirubin can reduce the risk of cancer[52, 
53], likely due to the antioxidant properties of direct 
bilirubin[53]. However, other studies have found that 
bilirubin is not associated with cancer risk[54], and 
some even suggest that bilirubin may increase the risk 
of cancer[55]. For RPCa, there is currently no direct 
evidence that bilirubin can directly damage the renal 
pelvis and cause cancer. BILD is excreted into the 
small intestine via bile. In the intestine, BILD is 
converted by gut microbiota into urobilinogen and 
stercobilinogen. Some urobilinogen is filtered through 
the kidneys and enters the urine, where it can be 
oxidized to urobilin. This process may produce free 
radicals and reactive oxygen species (ROS). These free 
radicals and ROS can cause oxidative stress, leading 
to cellular damage and DNA mutations, which can 
contribute to carcinogenesis[49]. This may explain 
why bilirubin increases the risk of RPCa. Our MR 
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analysis showed that CRE increased the risk of RPCa. 
Previous observational studies have found that renal 
insufficiency increases the risk of RPCa[56], and our 
findings further confirm this conclusion, but the 
specific mechanism is unclear. Elevated levels of CRE 
are often a sign of renal insufficiency, which triggers 
chronic inflammation and oxidative stress, leading to 
cellular damage and an increased risk of cancer[57], 
and as renal function declines, urinary toxins (e.g., 
CREs) are not excreted efficiently, resulting in their 
accumulation in the body, where they may cause 
direct damage to DNA or induce cancerous changes 
by interfering with normal cellular metabolism[58]. 
These may be the reasons why CRE increase the risk 
of RPCa. 

In our MR analysis, we found that NAP might 
reduce the risk of KCa. Proteinuria is composed of 
albumin and NAP, and urinary NAP is related to 
kidney diseases such as tubulointerstitial damage[59]. 
From previous studies, it is clear that proteinuria and 
albuminuria are a risk factor for cancer (including 
KCa) [60-63], but there are no studies that have found 
an association between NAP in urine and cancer 
(including KCa). The components of non-albumin 
proteinuria typically consist of various NAP (such as 
immunoglobulins) derived from different 
physiological and pathological processes[64]. Among 
these, antioxidant-related proteins (such as 
superoxide dismutase)[65]and metal ion-binding 
proteins (such as ferritin and transferrin)[66] can 
reduce oxidative stress levels. Additionally, some 
proteins, such as adiponectin and lectins, can inhibit 
the production of pro-inflammatory cytokines, 
including interleukin-6 and tumor necrosis factor-α, 
thereby reducing the inflammatory response[67]. It is 
possible that these anti-inflammatory and 
antioxidative effects of NAP contribute to the reduced 
risk of KCa. 

The strength of our study is the comprehensive 
and systematic assessment of 33 BUBs and 4 UCs 
risks, as well as the exploration of their possible 
mechanisms. However, there are some limitations to 
this study. Firstly, the study population was limited to 
individuals of European ancestry, potentially 
restricting the applicability of the findings to other 
populations. Secondly, despite the use of various 
sensitivity tests to examine our results, it was not 
possible to test the independence and exclusion 
hypotheses in the MR analysis, so the possibility of 
multiple effects cannot be completely ruled out. 
Thirdly, since the GWAS data used are summary data 
and without specific information on individuals, we 
were unable to perform subgroup analysis. Fourth, 
our analysis was limited to cancer risk rather than 
progression and therefore may not provide 

information on the utility of targeted biomarkers in 
the context of cancer treatment. Because of these 
limitations, these findings need to be validated by 
studies in other ethnic populations, as well as further 
experimental and clinical studies to determine their 
potential value in clinical practice. 

Conclusions 
In conclusion, strong evidence from our study 

suggests that IGF-1 increases the risk of PCa by 
decreasing SHBG levels, and our MR study identified 
potential associations between CA, LPA, TP, BILD, 
CRE, TBIL, and NAP with certain UCs risks. These 
findings warrant further research to understand these 
biomarkers' roles in urological cancers, explore their 
potential as therapeutic targets, and improve 
prevention and treatment strategies. 
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