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Abstract

Background: Killer Cell Lectin Like Receptor D1 (KLRDI) plays a crucial role in antitumor immunity.
However, its expression patterns across various cancers, its relationship with patient prognosis, and its
potential as an immunotherapy target remain inadequately understood.

Methods: We analyzed KLRD1 expression across various cancer types using multi-omics data from The
Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO)
databases, correlating it with patient prognosis. Single-cell RNA sequencing data were employed to further
explore KLRD1 expression in natural killer (NK) cells and exhausted CD8+ T cells (CD8Tex). Functional
enrichment analyses using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
identified the biological processes and pathways associated with KLRDI. Immune infiltration analysis,
conducted via CIBERSORT, assessed the relationship between KLRD1 expression and immune cell infiltration
within the tumor microenvironment. Furthermore, the Tracking Tumor Immunophenotype (TIP) meta-server
and Easier tool were employed to assess the role of KLRDI in the cancer immunity cycle and to predict
immunotherapy responses. Drug sensitivity was predicted using tools like CellMiner and the Genomics of Drug
Sensitivity in Cancer (GDSC) database to explore the link between KLRD1 expression and responsiveness to

various anticancer drugs.

Results: KLRD1 exhibits significant differential expression and strong prognostic value across cancers,
particularly as an independent prognostic factor in head and neck squamous cell carcinoma (HNSC). Single-cell
analysis revealed high expression of KLRD1 in NK and CD8Tex cells, indicating its critical role in antitumor
immune responses. Functional enrichment analyses showed that KLRDI is involved in several immune-related
signaling pathways, including NK cell-mediated cytotoxicity and T cell receptor pathways. Immune infiltration
analysis further confirmed a positive correlation between KLRDI expression and the infiltration of various
immune cells. Moreover, higher KLRD1 expression in HNSC is associated with enhanced immune pathway
activity, increased sensitivity to cell division inhibitors, and the identification of arachidonyltrifluoromethane as
a potential compound to counteract its oncogenic effects.

Conclusion: In HNSC, KLRDI is a key prognostic marker and potential target for personalized

immunotherapy.
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1. Introduction

Cancer remains one of the most significant
global health challenges, with 19.3 million new cases
and nearly 10 million deaths recorded in 2020 alone [1,
2]. Tumor recurrence and metastasis remain the

leading causes of death in cancer patients, with the
reshaping of the immune microenvironment by tumor
cells playing a crucial role in these processes, as well
as in drug resistance [3]. The introduction of immune
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checkpoint inhibitors (ICIs) in recent years has
transformed cancer treatment by activating the
immune system and enhancing anti-tumor responses,
resulting in considerable extensions in patient
survival [4-6]. However, the clinical application of
ICIs faces challenges such as low response rates and
short durations of effective response [7]. Therefore,
identifying novel immune checkpoints and
understanding their regulatory mechanisms has
become a crucial strategy to overcome these obstacles.

KLRD1, also known as CD94, plays a critical role
in immune surveillance by forming a receptor
complex with NKG2 molecules [8-10]. Many factors
influence the expression of KLRD1 molecules,
including cytokines such as IL-12 and IFN-gamma,
viral infections, and tumor factors. Furthermore,
KLRD1/NKG2A expression has been linked to
autoimmune illnesses, infectious diseases, and a
variety of cancers [11-15]. Lentz et al. found that the
KLRD1 molecule, an important pathway of the
immune checkpoint HLA-E, could be used as a new
therapeutic tool for immunotherapy of tumors [16,
17]. Platelet-derived RGS18 shields circulating tumor
cells from NK-mediated immune surveillance by
binding to the immune checkpoint HLA-E:KLRD1-
NKG2A, according to Liu et al. By blocking inhibitory
signaling, immune clearance of CTCs inhibits tumor
metastasis in vivo [18]. Meanwhile, the KLRD1-NKG2
complex can clear tumor cells by increasing NK cell
activation and killing, as well as preventing T-cell
attack on their own tissues by suppressing T-cell
immunity, so several drugs targeting the
KLRD1-NKG2 complex are in research or clinical
trials [19]. Research into KLRD1 is essential for
developing novel cancer therapies by improving
immune system detection.

This study seeks to assess the potential of KLRD1
as a therapeutic target in tumor immunotherapy
through an extensive pan-cancer analysis. We will
examine KLRD1 expression patterns, single-cell
landscape, and prognostic significance within TME.
Additionally, we will explore its impact on immune
landscape, resistance to immune therapies, and drug
sensitivity. This comprehensive analysis aims to
elucidate how KLRD1 modulates critical aspects of
tumor biology and evaluate its potential for
advancing future cancer treatments.

2. Materials and Methods

2.1 Data Sources and Preprocessing

This study utilized data from multiple publicly
available databases, including TCGA, GEO, and GTEx
database. RNA sequencing (RNA-Seq) data
encompassing various cancer types were downloaded
from the TCGA database, while normal tissue

RNA-Seq data were obtained from the GTEx database
to evaluate the differential expression.
Standardization of the data was performed using
log2(FPKM + 1) or log2(TPM + 1) transformations. To
ensure data quality, low-expression samples and
those with incomplete clinical information were
excluded, followed by data normalization.

2.2 Differential Expression Analysis

The differential expression of KLRDI1 across
various cancer types was analyzed using the "limma"
R package. To validate the reliability of the results,
independent datasets were selected from the GEO
database for verification.

2.3 Prognostic Analysis

The prognostic value of KLRDI1 in different
cancer patients was assessed using univariate and
multivariate Cox proportional hazards regression
models to calculate hazard ratios (HR) and their 95%
confidence intervals (Cl). Kaplan-Meier (KM) survival
analysis was employed to compare overall survival
rates between high and low expression groups.

2.4 Single-Cell RNA Sequencing Analysis

Multiple single-cell RNA-Seq datasets were
analyzed, including LIHC_GSE140228,
HNSC_GSE139324, and NSCLC_GSE127465. Raw
data were filtered, standardized, and normalized,
followed by the selection of highly variable genes and
linear dimensionality reduction. Clustering analysis
was then performed to identify cellular
subpopulations.

2.5 Functional Annotation and Pathway
Analysis

The "clusterProfiler" R package was used for GO
and KEGG enrichment analyses. Gene Set Enrichment
Analysis  (GSEA) was  utilized to assess
KLRD1-related signaling pathways.

2.6 Tumor Immune Infiltration Analysis

Using tools such as CIBERSORT, TIMER, and
ESTIMATE, the relative abundance of immune cells in
the tumor microenvironment (TME) can be calculated
to gain a better understanding of the immune
landscape in cancers. Additionally, the potential
involvement of KLRD1 in different stages of the
antitumor immune response was further investigated
using the Tracking Tumor Immunophenotype (TIP)
tool.

2.7 Immune Checkpoint Correlation Analysis

Expression data for KLRD1 and immune
checkpoint molecules were collected and visualized
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using heatmaps generated by the "ComplexHeatmap"
R package. Spearman correlation coefficients were
calculated to assess the relationships between KLRD1
and various immune checkpoint molecules.

2.8 Drug Sensitivity Analysis

To investigate the impact of KLRD1 expression
on cancer drug sensitivity, a systematic analysis was
performed wusing data from the GDSC and
connectivity map (cMAP). Statistical analysis was
conducted using the "pRRophetic" R package, which
combined p-values and effect sizes to evaluate the
association between KLRD1 expression and drug
sensitivity. Additionally, stratified analyses were
performed for different drugs to confirm the
sensitivity differences associated with KLRD1 in
specific treatments.

2.9 Statistical Analysis

All statistical analyses were conducted using R
software (version 4.2.0). Continuous variables were
compared using either t-tests for normally distributed
data. Categorical variables were evaluated using
chi-square tests, depending on sample size and
distribution. For all analyses, a p-value of less than
0.05 was considered statistically significant.

3. Results

3.1 Validation of KLRD1 Expression and Its
Genomic Implications

We analyzed KLRD1 gene expression using
RNA sequencing data from TCGA, revealing
significantly lower expression in breast invasive
carcinoma (BRCA), cholangiocarcinoma (CHOL),
colon adenocarcinoma (COAD), liver hepatocellular
carcinoma (LIHC), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), prostate
adenocarcinoma (PRAD), thyroid carcinoma (THCA),
and uterine corpus endometrial carcinoma (UCEC),
compared to normal tissues. Conversely, higher
KLRD1 expression was noted in HNSC, kidney
chromophobe (KICH), kidney renal clear cell
carcinoma (KIRC) (Figure 1A). Integrated analysis
with GTEx data confirmed these patterns (Figure 1B),
emphasizing the potential clinical significance of
KLRD1 as a biomarker. Univariate Cox survival
analysis showed significant prognostic value for
KLRD1 in several cancers, acting as a protective factor
in adrenocortical carcinoma (ACC), cervical
squamous cell carcinoma and endocervical
adenocarcinoma (CESC), HNSC, low-grade glioma
(LGG), and skin cutaneous melanoma (SKCM)
(Figure 1C). The validation using the GEO dataset
(E_MTAB_8588) confirmed elevated KLRD1

expression specifically in HNSC (Supplementary
Figures 1A). Furthermore, within HNSC, higher

KLRD1 expression correlated negatively with
aneuploidy and ploidy scores (Supplementary
Figures 1B-D). In summary, these findings

underscore the potential of KLRD1 as a valuable
biomarker for HNSC and its association with genomic
stability.

3.2 KLRDI1 Expression in Single-Cell
Landscapes

Single-cell analysis revealed that KLRDI is
predominantly expressed in NK cells and CD8Tex
cells across various cancers, particularly in bladder
cancer (BLCA), HNSC, KIRC, non-small cell lung
cancer (NSCLC), pancreatic cancer (PAAD),
peripheral blood mononuclear cells (PBMC), and
SKCM (Figure 2A). Further validation through
detailed analyses of datasets (LIHC_GSE140228,
HNSC_GSE139324, NSCLC_GSE127465) demonstra-
ted that KLRD1 predominantly clusters in NK cells,
with significantly higher expression compared to
CD8Tex cells (Figures 2B-D). This consistent
overexpression in NK cells highlights the role of
KLRD1 as a marker for immune activity and a
potential target in cancer immunotherapy.

3.3 Independent Prognostic Value of KLRDI in
HNSC

Given the significant differences in KLRD1
across differential analysis, genomic stability, and
univariate prognostics, along with its predictive
capability in single-cell analyses, we further explored
its independent prognostic value and underlying
molecular mechanisms. Univariate analysis revealed
that M stage, radiation therapy, and age were
significantly associated with the survival of HNSC
patients, with KLRD1 emerging as a potential
independent predictor of survival. This finding was
corroborated by multivariate Cox survival analysis,
which confirmed that radiation therapy and age were
closely related to survival, while KLRD1 remained an
independent predictor, regardless of other clinical
factors (Figure 3A).

To further support our findings, we constructed
a nomogram based on KLRD1 expression to enhance
prognostic evaluation in clinical practice. Calibration
curves showed that the predicted survival closely
aligned with the ideal curve, indicating robust
predictive performance (Figure 3B-C). Additionally,
Kaplan-Meier survival analysis using data from the
TCGA database further validated the prognostic
capability of KLRD1, confirming that low KLRD1
expression is associated with poorer outcomes in
HNSC patients (Figure 3D-F). The consistent linear
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relationship between KLRD1 expression and survival
risk indicates that KLRD1 is a stable and reliable
prognostic factor, making it a valuable biomarker for
evaluating patient prognosis across diverse patient

groups (Figure 3G). These results suggest that KLRD1
may play a crucial role in the pathophysiology of
HNSC.
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Figure 1: Differential Expression and Prognostic Value of KLRD1 Across Various Cancers. (A) Differential mRNA expression of KLRD1 across multiple cancers based on data
from the TCGA database. Significance levels: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. (B) Comparison of KLRD expression between tumor and normal tissues, combining
data from TCGA and GTEx. Significance levels: *P<0.05, **P<0.01, ***P<0.0001. (C) Prognostic value of KLRDI in different cancers, analyzed for Overall Survival (OS),

Disease-Specific Survival (DSS), and Progression-Free Interval (PFI).
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below. The relative risk is described using the hazard ratio (HR) and 95% confidence interval (Cl). An HR greater than | indicates a risk factor, while an HR less than | suggests
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Restricted cubic spline analysis to explore whether the risk associated with KLRD1 is non-linear across four survival outcomes (OS, DSS, PFI, DFI).
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3.4 Pathway-Level Analysis and Functional
Insights into KLRD1 in HNSC

Transitioning from gene-level analysis to
pathway-level analysis allows for more biologically
meaningful  insights and provides greater
interpretability of life phenomena. By analyzing the
Pearson correlation between gene expression z-scores
and GSVA scores for 14 tumor-related states, it was
found that in HNSC, KLRD1 is positively correlated
with the activity of several pathways, including
angiogenesis, apoptosis, differentiation, DNA
damage, epithelial-mesenchymal transition, stemness,
quiescence, proliferation, metastasis, invasion, and
inflammation (Figure 4A). To further explore these
relationships, samples were divided into high and
low expression groups based on KLRD1 expression
levels, with the top 30% defined as the
high-expression group and the bottom 30% as the
low-expression group. GSEA was then performed
using the KEGG gene sets. The analysis revealed that
pathways related to the immune system and
immune-related diseases were significantly enriched
in the KLRD1 high-expression group. These pathways
include the renin-angiotensin system, immune
checkpoint signaling, NK cell-mediated cytotoxicity,
asthma, and allograft rejection. Additionally,
pathways associated with the excretory system,
endocrine and metabolic diseases, cardiovascular
diseases, and signaling molecules and interactions
were significantly enriched in the KLRD1
high-expression group (Figure 4B).

KLRD1 high expression is typically associated
with synchronous changes in multiple genes,
impacting various aspects of cellular signaling, gene
expression regulation, cell differentiation, and disease
progression. To gain a deeper understanding of the
functional roles of KLRD1, we conducted GO and
KEGG functional enrichment analyses of its
co-expressed genes. The GO analysis revealed
significant enrichment in cell killing, NK
cell-mediated cytotoxicity and immunity, cytolytic
granules, external side of the plasma membrane,
immunological synapse, immune receptor activity,
MHC class 1/protein binding. These findings suggest
that KLRD1 is involved in immune-related processes,
particularly those linked to NK cell functions and
immune synapse formation. KEGG pathway analysis
further supported these findings, showing significant
enrichment in pathways such as NK cell-mediated
cytotoxicity, T cell receptor signaling pathway, and
graft-versus-host disease (Figure 4C-D). Thses insight
broadens our understanding of the impact KLRD1 has
on cancer biology.

3.5 The Contribution of KLRDI to Immune
Infiltration in HNSC

Building on pathway-level insights into KLRD1,
we investigated its role in immune infiltration within
the HNSC microenvironment. We analyzed the
association of KLRD1 with estimated scores, immune
scores, and stromal scores in HNSC (Figure 5A-C).
The results showed significant positive correlations,
with correlation coefficients of 0.65, 0.70, and 0.56,
respectively. Additionally, further analysis revealed a
strong association between KLRD1 and various
immune cells, including T cells, B cells, NK cells,
myeloid dendritic cells, CD8+ T cells, Ml
macrophages, and M2 macrophages. To explore these
immune mechanisms in greater detail, we divided
HNSC patients into high and low KLRD1 expression
groups. In the high-expression group, KLRD1
remained significantly correlated with the infiltration
of these immune cells, further supporting its role in
immune infiltration (Figure 5D-E). These findings
suggest that KLRD1 may provide new opportunities
for developing targeted immunotherapies in HNSC.

3.6 KLRDI in the Immune Landscape and
Subtype Characteristics of HNSC

To further explore the role of KLRD1 in the
immune landscape of HNSC, we analyzed its
association with immune checkpoints and subtypes,
aiming to understand its link to key immune
checkpoint regulation involved in immune evasion
and tumor progression. Significant differences
between high and low KLRD1 expression groups
were observed in immune-stimulatory genes,
immune-inhibitory genes, chemokines, and HLA
molecules. In the high KLRD1 expression group,
genes like C100rf54, TMEM173, CXCL9-17, HLA-A-C,
and PVRL2 were upregulated, along with CD40LG,
TMIGD2, TNFRSF13B, TNFSF14, CCL23-24, CCL?7,
KIR2DL1, and KIR2DL3 (Figure 6A). High KLRD1
expression was associated with elevated immune
regulatory molecule expression, somatic copy number
alterations (SCNAs), and epigenetic changes,
particularly in the HLA family (Figure 6B). This high
expression corresponds to an intricate immune
regulatory landscape, including increased leukocyte
and stromal fractions, lymphocyte infiltration, TCR
and BCR diversity, and a strong interferon-gamma
response. Conversely, low KLRD1 expression
correlated with higher genomic instability, active
wound healing processes, and a reduction in immune
response diversity (Figure 6C).
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Immune subtype analysis revealed that high
KLRD1 expression is predominantly found in the C1
and C2 subtypes, with C1 linked to tissue healing and
C2 dominated by interferon-gamma signaling, crucial
for antitumor immune responses. KLRD1 expression
was also notably elevated in Atypical and
Mesenchymal subtypes, which are associated with
unique molecular features, increased invasiveness,
and therapy resistance. In contrast, lower KLRD1
expression was observed in the Basal and Classical
subtypes, which have different molecular and clinical
characteristics (Figure 6D-E). This distribution
suggests that KLRD1 plays varied roles depending on
the tumor's immune context and molecular profile,
influencing both tumor progression and its interaction
with the immune system.

3.7 Anticancer Immune Response and Drug
Sensitivity

The anticancer immune response comprises
seven sequential steps: release of cancer cell antigens,
antigen presentation, immune cell priming and
activation, immune cell trafficking to the tumor,
infiltration, recognition by T cells, and cancer cell
killing [20]. TIP meta-server integrates "ssGSEA" and
"CIBERSORT" to analyze and visualize the anticancer
immune status across these steps using RNA-seq or
microarray data. Spearman correlation analysis
revealed that in HNSC, KLRD1 is positively
correlated with immune cell trafficking (Step 4) but
predominantly negatively correlated with other steps
of the cancer immunity cycle (Figure 7A).
Additionally, the Easier tool, based on a
cancer-specific immune response model, predicts
immunotherapy responses using RNA-seq data [21].
High KLRD1 expression is linked to increased activity
of immune microenvironment indicators, including
cytotoxic T  cells, inflammatory T  cells,
tumor-infiltrating lymphocytes, and tumor-associated

lymphoid structures, further underscoring its
potential in boosting immune responses.
Spearman  correlation analysis of gene

expression and drug sensitivity using GDSC
databases revealed that higher KLRD1 expression is
associated with increased sensitivity to cell division
inhibitors, with TAK-715, CAY10603, and Tubastatin
A showing the strongest negative correlations with
the half-maximal inhibitory concentration (IC50).
Additionally, connectivity map (cMAP) analysis
identified arachidonyltrifluoromethane as a potential
compound that may counteract the oncogenic effects
of dysregulated KLRD1 expression (Figure 7J-K). In
HNSC, KLRD1 expression is closely associated with
immune response regulation and drug sensitivity,
highlighting its potential as a key biomarker for

forecasting the response to specific anticancer drugs.

4. Discussion

Cancer is a major disease that poses a serious
threat to human health and significantly affects
prognosis [1, 2, 22, 23]. Despite progress in traditional
therapies  like  surgery, radiotherapy, and
chemotherapy, overall outcomes remain less than
idea [24]. In recent years, immunotherapy,
particularly immune checkpoint blockade, has gained
prominence due to its potential to improve patient
survival rates substantially [25, 26]. HNSC, the sixth
most common  malignancy = worldwide, s
characterized by high rates of local recurrence, lymph
node metastasis, and treatment failure, resulting in
poor outcomes in advanced stages [27].
Immunotherapy has emerged as a promising
treatment option for HNSC [28-30]. However, only a
small subset of patients benefits from this approach
[31], underscoring the need for novel therapeutic
biomarkers to better guide immunotherapy strategies
in HNSC.

KLRD1 is critical in regulating immune
functions and tumor immune evasion within the
tumor microenvironment [9, 11, 12]. Exploring the
potential of KLRD1 as a novel immune checkpoint is
of great clinical significance. We systematically
analyzed the expression characteristics of KLRD1
across various cancer types and its associations with
genomic instability, immune microenvironment, and
clinical prognosis. The results indicate that KLRD1
exhibits significant differential expression in multiple
cancer types, with particularly strong relevance in
HNSC, where its high expression correlates with
better prognosis. These findings provide robust
support for KLRD1 as a potential biomarker and
therapeutic target, highlighting its critical role in
cancer development, progression, and immune
regulation.

TME is shaped by three key immune functions:
immune clearance, immune balance, and immune
evasion [32, 33]. These processes are supported by a
complex array of immune cells, including both
adaptive and innate immune system components.
Within the adaptive immune system, T cells,
particularly CD8+ cytotoxic T cells and CD4+ helper T
cells, play central roles. CD8+ T cells are essential for
recognizing and eliminating tumor cells via MHC I,
while CD4+ T cells, specifically Thl cells, activate
CD8+ T cells and NK cells to enhance antitumor
activity [34-36]. Our single-cell level analysis supports
the high expression of KLRD1 in NK cells and
CD8Tex cells, with particularly prominent expression
in NK cells. Elevated expression of KLRD1 may play
an important role in balancing tumor immune
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surveillance and immune evasion. KLRD1 expression
is closely related to the infiltration of various immune
cells, especially in HNSC, where these associations are
more pronounced. Moreover, our pathway and
functional enrichment analyses demonstrate that high
KLRD1 expression is significantly enriched in
pathways related to the immune-related diseases.
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This further elucidates the multiple roles of KLRD1 in
regulating immune responses within the tumor
microenvironment. Notably, KLRD1 expression
varies significantly among different immune subtypes
of HNSC, with particularly high expression in
subtypes associated with IFN-y signaling and tissue
repair.
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Figure 7: Analysis of KLRD1 in Cancer Immunity Cycle and Drug Sensitivity in HNSC. (A) Correlation analysis between KLRD1 expression and various steps of the cancer
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Our study reveals that KLRD1 plays a
multifaceted role in the anticancer immune response
and drug sensitivity in HNSC. Analysis based on the
cancer immunity cycle shows that KLRDI1 is
positively associated with immune cell trafficking but
negatively correlated with other steps, such as
immune cell priming, activation, and cancer cell
killing. This suggests that while KLRD1 may facilitate
the movement of immune cells towards tumors, its
role in other immune processes could be more
complex. Supporting this, high KLRD1 expression
correlates with increased activity of key immune
components, including  cytotoxic T  cells,
tumor-infiltrating lymphocytes, and inflammatory T
cells, potentially enhancing the efficacy of
immunotherapy. Additionally, findings from drug
sensitivity analyses indicate that higher KLRD1
expression is linked to greater sensitivity to cell
division inhibitors, such as TAK-715, CAY10603, and
Tubastatin A. The identification of
arachidonyltrifluoromethane  as a  potential
countermeasure for dysregulated KLRD1 expression
further opens new therapeutic possibilities. Overall,
KLRD1 involvement in immune regulation and drug
response highlights its potential in targeted
treatments in HNSC, though its complex role in
immune processes warrants further investigation.

Through the development of monoclonal
antibodies targeting KLRD1, the binding between
KLRD1 and its ligands can be blocked, thereby
enhancing the anti-tumor activity of NK cells and T
cells. For example, NKG2A, a subtype of KLRD1, has
shown potential efficacy in various tumor types when
targeted with specific antibodies [19, 37, 38].
Additionally, combining KLRD1-targeted therapies
with other immunotherapies, such as immune
checkpoint inhibitors, may significantly improve
treatment outcomes. Studies have demonstrated that
the combination of NKG2A monoclonal antibodies
with PD-1 inhibitors effectively activates the immune
system and enhances anti-tumor responses [39].
Furthermore, vaccines targeting KLRD1 can activate
specific immune responses, improving the body's
immune surveillance against tumors In iNKT cell
therapy, introducing single-chain antibodies targeting
KLRD1 into T cells enables them to more effectively
recognize and attack tumor cells expressing the
relevant ligands [40, 41]. Although KLRD1-targeted
immunotherapy is still in a developmental stage,
researchers are actively exploring its potential
applications across different cancer types and
addressing possible resistance issues. Advances in
this area offer new hope for cancer treatment.

Despite the important biological functions and
clinical implications of KLRD1 revealed in this study,

several limitations remain. Firstly, although we
conducted extensive data analysis using public
databases, these findings need further validation in
larger clinical cohorts. Additionally, future studies
should aim to validate these findings through
experimental approaches.
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