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Abstract

The pathogenesis of metabolic dysfunction-associated steatotic liver disease-associated hepatocellular
carcinoma (MASLD-HCC) is complex and exhibits sex-specific differences. Effective methods for monitoring
MASLD progression to HCC are lacking. Transcriptomic data from liver tissue samples sourced from multiple
public databases were integrated. Utilizing both differential expression analysis and robust rank aggregation
analysis, differentially expressed genes (DEGs) in patients with MASLD-HCC were identified. Based on these
DEGs, diagnostic prediction models for MASLD (DP.MASLD) and HCC (DP.HCC) were constructed using
elastic net analysis for various comparisons, including steatosis versus normal, steatohepatitis versus steatosis,
and cancer versus non-cancer. Weighted gene correlation network analysis and gene set enrichment analysis
were conducted to unveil the underlying pathogenesis of MASLD-HCC in males. Five overlapping DEGs with
diagnostic significance in the progression from MASLD to HCC were identified, namely, AKRIBI0, CYRé1,
FABP4, GNMT, and THBSI. DP.HCC demonstrated excellent predictive accuracy, with an area under the curve
of 0.910 in the training group and 0.981 in the validation group. Similarly, DP.MASLD showed robust predictive
accuracy. The pathogenesis of MASLD-HCC in males primarily involves extracellular matrix-receptor
interaction, DNA replication, cell cycle, and T-cell receptor signaling. Overall, our study provides a quantitative
assessment tool for the early detection and monitoring of MASLD-HCC, highlighting the male-specific
molecular characteristics involved in its progression.

Keywords: metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic-associated steatohepatitis (MASH),
hepatocellular carcinoma (HCC), differentially expressed genes, diagnostic prediction model

Introduction

Liver cancer is among the most prevalent
malignancies globally, with hepatocellular carcinoma
(HCC) being the most common histological type of
primary liver cancer [1]. With the effective prevention
and treatment of viral liver diseases, more newly
diagnosed patients with HCC are “virus-free” [2].
Obesity, alcoholic fatty liver disease, and metabolic
dysfunction-associated  steatotic =~ liver  disease
(MASLD) can lead to HCC. Considering the global

increase in obesity and type 2 diabetes, MASLD is
becoming increasingly prevalent and is an important
underlying HCC etiology [3]. Recently, differences in
the incidence and pathogenesis of MASLD between
sexes have received attention. The prevalence and
severity of MASLD are higher in males than in
premenopausal females [4, 5]. A large cohort study of
patients with MASLD found that males had a higher
MASLD-associated HCC risk than females [6].
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Globally, each year, the number of new liver cancer
cases in males is more than twice that in females [1].
Proper consideration of sex differences will provide a
better understanding of MASLD-associated HCC
pathogenesis and aid in future sex-specific diagnosis
and therapy formulation.

Given the high incidence and poor prognosis
associated with MASLD-associated HCC, effective
methods for early detection remain insufficient.
Advances in imaging techniques like computed
tomography (CT), magnetic resonance imaging (MRI),
and transient elastography (VCTE) have improved
the accuracy of liver lesion detection [7, 8]. However,
these methods are not yet suitable for guiding HCC
surveillance [9]. Monitoring MASLD-associated HCC
and developing corresponding diagnostic and
treatment plans remain challenging. Serum
biomarkers, such as nucleic acids and proteins, have
shown greater potential in tumorigenesis surveillance
compared to imaging [10, 11]. Although
alpha-fetoprotein (AFP) was the first HCC serum
biomarker used in clinical practice, its limited
specificity and sensitivity underscore the need for
novel biomarkers [12, 13]. Genomic and proteomic
methodologies, combined with machine learning,
offer promising opportunities for detecting early
indicators and integrating them into routine screening
processes, thereby enhancing HCC diagnosis and
treatment [12, 14].

In this study, considering the decisive role of sex
differences and sample size on model predictive
accuracy, transcriptome data from the male cohort in
the Gene Expression Omnibus (GEO), ArrayExpress,
International Cancer Genome Consortium (ICGC),
and The Cancer Genome Atlas (TCGA) databases
were screened and integrated to develop approaches
for the early diagnosis and surveillance of
MASLD-HCC. Furthermore, the main functions and
molecular signaling pathways involved in the
progression of MASLD to HCC were explored. Our
findings will help in the early detection and
surveillance of MASLD-HCC progression. Moreover,
our findings will reveal the potential underlying
pathways that are relevant to the progression from
MASLD to HCC.

Materials and Methods

MASLD and HCC transcriptome data
extraction

The research design of this study is illustrated in
a flow diagram (Figure S1). Eligible studies related to
MASLD or HCC cohorts were searched and reviewed
using the GEO, ArrayExpress, TCGA, and ICGC
databases. The search strategy used for MASLD

involved: (NAFLD) OR (non alcoholic) OR
non-alcoholic) OR nonalcoholic)) AND (fatty liver
disease) OR fatty liver) OR fatty livers) OR liver) OR
livers) OR steatohepatitis) OR steatohepatitides))
AND “Homo sapiens”. Independent investigators
(Xiaoning Gan and Yuchuan Jiang) reviewed and
collected the eligible datasets that met the criteria as
follows: Inclusion criteria: (i) MASLD diagnosis based
on a standardized histopathological assessment
system designed by the Pathology Committee of the
MASH Clinical Research Network [15]; (ii) expression
profiling detection in liver tissue samples of male
patients; and (iii) availability of original expression
profiling data in both steatosis and steatohepatitis
specimens. Exclusion criteria: (i) datasets from
research on cell lines or animals; (ii) normal liver,
steatosis, and steatohepatitis groups with small
sample sizes (n < 5); and (ili) expression datasets
without transcriptomic data. Moreover, the search
strategy and selection criteria to retrieve and extract
the eligible datasets of the early-stage HCC male
cohort were consistent with those of previous studies
[16]. Discrepancies between the two investigators
were resolved through discussion among all authors.
Finally, a total of 372 human liver tissue specimens
from male patients with MASLD (GSE48452,
GSE61260, GSE89632, and EMEXP3291) and early
HCC (GSE76427, GSE84005, TCGA, and ICGC) were
included (Table 1).

Table 1. Summary information of the eligible datasets used in our
study.

Dataset Platform Disease Samplesize  Sample type Sample
(liver tissue) source
GSE48452 GPL11532 MASLD Total=73; Normal=41; Germany
Male=15; Steatosis=14;
Female=58 Steatohepatitis=18
EMEXP3291 A-AFFY-183 MASLD Total=45; Normal=19; USA
Male=17; Steatosis=10;
Female=26 Steatohepatitis=16
GSE61260  GPL11532 MASLD Total=109; Normal=62; USA
Male=45; Steatosis=23;
Female=64 Steatohepatitis=24
GSE89632  GPL14951 MASLD Total=63; Normal=24; Canada
Male=34; Steatosis=20;
Female=29 Steatohepatitis=19
GSE84005  GPL5175 HCC Total=36; Normal=18; China
Male=32; Cancer=18
Female=4
GSE76427 GPL10558 HCC Total=83; Normal=28; Singapore
Male=64; Cancer=55
Female=19
TCGA TCGA HCC Total=187; Normal=18; USA
Male=131; Cancer=169
Female=56
ICGC HCCDB HCC Total=55; Normal=22; Japan
Male=34; Cancer=33
Female=21

HCC: hepatocellular carcinoma; HCCDB: Database of Hepatocellular Carcinoma;
ICGC: International Cancer Genome Consortium; MASLD: metabolic
dysfunction-associated steatotic liver disease; TCGA: The Cancer Genome Atlas.

https://lwww.jcancer.org



Journal of Cancer 2025, Vol. 16

919

MASLD and HCC transcriptome data
preprocessing and analysis

Processed data of MASLD and HCC microarray
datasets from the ArrayExpress and GEO databases
were obtained using R packages ArrayExpress [17]
and GEOquery [18], respectively. Microarray probes
for each dataset were transformed from probe IDs to
Entrez Gene IDs using the R package biomaRt [19].
For these microarray probes, if multiple probe IDs
were mapped to the same Entrez Gene ID, the Entrez
Gene ID expression value was calculated as the
median of the probe expression values. RNA-seq
datasets of HCC from TCGA and ICGC were
extracted using the R package GDCRNATools [20]
and the Database of Hepatocellular Carcinoma [21],
respectively. The batch effects among these datasets
were analyzed using t-distributed Stochastic
Neighbor Embedding (t-SNE) analysis and corrected
using ComBat in the R package sva [22].

Differential expression analysis (DEA) was
performed using the R package limma [23] for
MASLD and early-stage HCC datasets. Differentially
expressed genes (DEGs) were defined as those with
logs fold change (log2FC) > 0.5 and P < 0.05. The
logoFC of these DEGs was rescaled to the interval (-5
to 5). Then, the overlapping DEGs from these datasets
were analyzed using the robust rank aggregation
(RRA) method [24]. As the highest-confidence
diagnostic predictors for MASLD and HCC, DEGs
were further screened with a |logFC| > 2 and an
adjusted P-value of <0.05 in the RRA analysis.
Moreover, intersecting diagnostic predictors in the
training datasets of patients with MASLD and HCC
were selected using the R package VennDiagram [25].

DP.MASLD and DP.HCC model construction

The eligible datasets used in the MASLD study
were split into training (GSE48452, GSE61260, and
EMEXP3291) and validation (GSE89632) groups,
similar to those used in the HCC study (training:
GSE76427, TCGA, and ICGC; validation: GSE84005).
The identified predictors were further analyzed using
the elastic net [26] to generate a formula for
constructing diagnostic prediction models for
MASLD (DP.MASLD) and HCC (DP.HCC). To use
the elastic net, the expression data of the identified
diagnostic predictors were reduced to genes common
to all the merged datasets. The elastic net analysis
used the min-cvm penalty to fit a generalized linear
model. Leave-one-study-out cross-validation was
used for classifier testing in each training dataset, and
this classifier was then tested on the validation dataset
[27].

Bioinformatics analyses

Weighted gene correlation network analysis
(WGCNA) [28] was utilized to build a weighted gene
co-expression correlation network, and the distances
between different transcripts were measured using
the Pearson correlation coefficient. Construction of
the WGCNA network and detection of co-expressed
gene modules were conducted using an unsigned
topological overlap matrix, f power of 7, and
minimum module size of 30. The co-expressed gene
modules highly correlated with the characteristics of
MASLD-HCC were identified using WGCNA. The
gene sets of these modules were analyzed using Gene
Set Enrichment Analysis (GSEA) to explore the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways involved in MASLD
progression to HCC [29].

Hematoxylin-eosin (H&E)

Paired HCC and adjacent non-cancerous liver
tissues were collected from ten patients with
MASLD-associated HCC at the Second Affiliated
Hospital of Nanchang University (Nanchang, China)
between January 2023 and June 2024. The study
protocol received approval from the ethics committee
of the Second Affiliated Hospital of Nanchang
University, and informed consent was obtained from
all participants. The H&E staining procedure followed
the methodology outlined in our previous study [30]
and was conducted as follows: Liver tissues from
patients with MASLD-associated HCC were fixed in
10% formalin, embedded in paraffin, and sectioned to
the appropriate thickness. The sections were
deparaffinized in xylene and rehydrated through a
graded series of ethanol to water. Staining was
performed using Harris hematoxylin for eight
minutes and eosin for thirty seconds, followed by
dehydration, clearing, and mounting of the slides. All
specimens were evaluated and diagnosed by two
independent pathologists.

Quantitative reverse transcription polymerase
chain reaction (RT-qPCR)

The RT-qPCR protocol was conducted in
accordance with our previous study [30] and
proceeded as follows: Total RNA was extracted from
liver tissues using TRIzol reagent (Invitrogen, CA,
USA) and reverse-transcribed into complementary
DNA (cDNA). RT-qPCR was performed using SYBR
Green Master Mix (Takara, Kyoto, Japan) on a
QuantStudio 5 Real-Time PCR System (Applied
Biosystems, USA). The expression levels of target
genes were normalized to  glyceraldehyde
3-phosphate dehydrogenase (GAPDH). The primer
sequences are detailed in Table S1.
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Statistical analyses

Statistical analyses were performed using R
(version 4.2.1, http:/ /www.R-project.org), GraphPad
Prism (version 8.3.0), SPSS (version 26.0; IBM Corp.),
and Microsoft Office 2016 software. The relative
expression levels of diagnostic predictors in MASLD
and HCC tissues compared with those in normal
tissues are represented by the average log>FC value.
The relative expression levels of these predictors were
illustrated using a heatmap. A Student's t-test was
used to examine the statistical differences in these
diagnostic predictors among the disease groups
(steatosis, steatohepatitis, and cancer). Additionally, a
paired t-test was used to further validate the
differential expression characteristics of these
diagnostic predictors between cancerous and adjacent
non-cancerous liver tissues in 10 patients with
MASLD-associated ~ HCC.  Receiver  operating
characteristic (ROC) curve analysis with the area
under the curve (AUC) was performed to assess the
diagnostic performances of the DP.MASLD, DP.HCC,
and their gene members in male patients with
MASLD and HCC using the R package pROC [31].

Results

Primary DEGs predicting MASLD progression
to HCC

By combining the DEA and RRA analyses, 101
DEGs (57 upregulated and 44 downregulated) were
identified in steatotic liver tissues compared with
normal liver tissues, 170 DEGs (103 upregulated and
67 downregulated) were identified in steatohepatitic
liver tissues compared with steatotic liver tissues, and
509 DEGs (172 upregulated and 337 downregulated)
were identified in cancerous liver tissues compared
with non-cancerous liver tissues (Table S2). Venn
diagram analysis showed that the three groups shared
five DEGs: AKR1B10, CYR61, FABP4, GNMI, and
THBS1 (Figure 1A). And, the relative expression
levels of these five DEGs in MASLD-HCC are
demonstrated (Figure 1B).

To validate our findings on the molecular
features of MASLD- HCC, we analyzed ten cases
using both histological and gene expression assays.
Histological examination with H&E staining revealed
distinct morphological characteristics between
steatotic liver tissue and HCC within MASLD samples
(Figure 1C). The left panel shows adjacent
non-cancerous liver tissue, which exhibits moderate
steatosis with hepatocytes containing lipid vacuoles
while maintaining a normal cellular structure. In
contrast, the right panel illustrates HCC tissue,
characterized by increased cell density, nuclear
pleomorphism, and prominent nucleoli, all of which

indicate malignancy. Furthermore, we conducted
RT-qPCR analysis to evaluate the differential
expression of the genes AKR1B10, CYR61, FABP4,
GNMT, and THBSI in liver tissues from patients with
MASLD-HCC (Figure 1D). The expression patterns of
these genes were consistent with large-scale
transcriptome data from multiple databases,
supporting their involvement in the progression from
MASLD to HCC. This comprehensive validation
underscores the potential of these genes as diagnostic
biomarkers for MASLD-associated HCC.

DP.MASLD and DP.HCC models predicting
MASLD progression to HCC

After adjusting the batch effect among the
training datasets (GSE48452, GSE61260, and
EMEXP3291) using t-SNE and ComBat (Figure S2),
the expression signatures of four DEGs (AKR1B10,
FABP4, GNMT, and THBS1) were selected to construct
the DP.MASLD models (Table 2). CYR61 was
excluded from the elastic net analysis as it was not a
DEG in the EMEXP3291 results. The risk score
formulae for DP.MASLD are as follows:

DP.MASLD (steatosis vs. normal) = —0.123864 +
3.342406 x expression level of FABP4 —1.421809 x
expression level of THBS1 — 1.275545 x expression

level of GNMT + 0.218167 x expression level of

AKRI1B10;

Risk score formula for DP.MASLD (steatohepatitis vs.
steatosis) = —=1.038706 + 2.501501 x expression level of
FABP4 - 1.1871 x expression level of THBS1 +
0.397837 x expression level of AKR1B10;

Risk score formula for DP.MASLD (steatohepatitis vs.
normal) = -1.162571 + 5.843907 x expression level of
FABP4 - 0.234709 x expression level of THBS1 —
1.275545 x expression level of GNMT + 0.616004 x
expression level of AKRIB10.

Table 2. Coefficient of gene signatures in diagnostic models for
predicting the MASLD progression to HCC in males.

Steatosis vs.
Normal

Gene Symbol
(Entrez ID)

Steatohepatitis ~ Steatohepatitis Cancerous vs.
vs. Steatosis vs. Normal Non-cancerous

-0.123864 -1.038706 -1.162571 1.668969
FABP4 (2167)  3.342406 2.501501 5.843907 0.947173
THBS1 (7057)  -1.421809 1.1871 -0.234709 -1.732848
GNMT (27232) -1.275545 0 -1.275545 -0.60475

AKRIB10 0.218167 0.397837 0.616004 0.862425
(57016)

Intercept

HCC: hepatocellular carcinoma; MASLD: metabolic dysfunction-associated
steatotic liver disease.

For consistency with the gene members in the
DP.MASLD model, the DP.HCC model was built
based on the expressive signatures of these four
predictors: AKR1B10, FABP4, GNMT, and THBSI
(Table 2). The batch effect among the training datasets
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(GSE76427, TCGA, and ICGC) was adjusted using
t-SNE and ComBat (Figure S3). The risk score formula
for DP.HCC was established as follows:

DP.HCC (cancerous versus non-cancerous) = 1.668969
+0.947173 x expression level of FABP4 —1.732848 x
expression level of THBS1 — 0.60475% expression level
of GNMT + 0.862425 x expression level of AKR1B10.

Based on the lowest multinomial deviance, we
identified a multinomial classifier for all the samples
from the training datasets (Figure 2A). The heatmap
shows the relative expression levels of the four genes
(AKR1B10, FABP4, GNMT, and THBSI) in normal,
steatosis, and steatohepatitis tissues across the three
training datasets (Figure 2B). We evaluated the
classifier on three independent training datasets
(Figure 2C) and one independent validation dataset
(Figure 2D) to validate our method. The overall
accuracy (fraction of correctly classified samples) of

A
Steatohepatitis Steatosis
Cancer
& |
AKR1B10 (57016) g
1
CYR61 (3491) 0
| -1

FABP4 (2167)

GNMT (27232)

THBS1 (7057)

the multinomial classifier for the cross-validation of
the training datasets was 79.2%. Across the validation
datasets, the overall accuracy was 64.7% (Table S3).

Based on the lowest binomial deviance, we
identified a binomial classifier for all samples from
the training datasets (Figure 3A). The heatmap shows
the relative expression levels of the four genes in
cancerous and non-cancerous liver tissues across the
training datasets (Figure 3B). To validate our method,
we evaluated the classifier using three independent
training datasets (Figure 3C) and one independent
validation dataset (Figure 3D). The overall accuracy of
the binomial classifier for cross-validation of the
training datasets was 80.8%. Across the validation
datasets, the overall accuracy was 96.9% (Table S4).
Thus, we established robust models for predicting
MASLD-HCC using transcriptomic data derived from
multiple platforms.
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Figure 1. Identification of the expression levels of DEGs in MASLD-associated HCC. (A) As illustrated in the Venn Diagram, five robust DEGs (AKRIB10, CYRé61, FABP4, GNMT,
and THBSI) were identified from the intersection of DEGs from the steatosis (steatotic liver tissues versus normal liver tissues), steatohepatitis (steatohepatitic liver tissues
versus steatotic liver tissues), and cancer groups (cancerous liver tissues versus non-cancerous liver tissues). (B) Compared with the control group, the relative expression levels
of each gene represent the log:FC values of the DEGs (AKRIBI0, CYR61, FABP4, GNMT, and THBSI) in the steatosis (steatotic liver tissues versus normal liver tissues),
steatohepatitis (steatohepatitic liver tissues versus normal liver tissues) and cancer groups (cancerous liver tissues versus non-cancerous liver tissues). (C) Histopathological
section of MASLD-associated HCC and adjacent liver tissue stained with H&E. (D) Compared with the control group (adjacent liver tissues), the relative expression levels of each
DEGs (AKRIB10, CYRé1, FABP4, GNMT, and THBST) in the cancer groups (HCC tissues). DEGs: differentially expressed genes; FC: fold change; HCC: hepatocellular carcinoma;
MASLD: metabolic dysfunction-associated steatotic liver disease; RRA: robust rank aggregation. AT: adjacent liver tissue; CA: cancer tissue; HCC: hepatocellular carcinoma; H&E:

hematoxylin and eosin; *: P < 0.05; **: P < 0.01.
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Figure 2. Construction and validation of a four-gene diagnostic classifier for MASLD. (A) Multinomial deviance as a function of the regularization parameter lambda for
cross-validation on the training datasets. The dots correspond to the mean, and the error bars correspond to the standard deviation. The coefficients of the four genes were
selected using lambda with the minimum multinomial deviance, marked with a blue dashed line (lambda = 0.011, log(lambda) = —4.510). (B) Heatmap describing the expression
levels of selected genes in a multinomial classifier erected by the training datasets. Each row represents a gene with its Entrez Gene ID in parentheses, and each column represents
a sample. (C) Estimated probabilities for the samples in the training datasets (GSE48452, EMEXP3291, and GSE61260). (D) Estimated probabilities for the samples in the validation
dataset (GSE89632). For each sample, three points correspond to the probability that the sample belongs to the respective class. The samples are sorted by true class probability
within each dataset and class. For most samples, the probability of the true subtype is close to I, indicating an unambiguous classification. MASLD: metabolic

dysfunction-associated steatotic liver disease.

Diagnostic performance of the DP.MASLD and
DP.HCC models for predicting MASLD
progression to HCC

To confirm the diagnostic performance of the
DP.MASLD model and its gene members in
predicting normal liver, steatosis, and steatohepatitis
tissue classification, ROC analyses were performed on
MASLD samples in the training group (GSE48452,
GSE61260, and EMEXP3291). The AUC of the
DP.MASLD model (steatosis versus normal) was
0.903 (95% confidence interval [95% CI]: 0.807-0.998; P
< 0.001; sensitivity: 70.00%, specificity: 100%,
diagnostic threshold value: -5.013; Figure 4A). The

AUC of the DP.MASLD model (steatohepatitis versus
steatosis) was 0.897 (95% CI: 0.793-1.000; P < 0.001;
sensitivity: 85.00%, specificity: 89.47%, diagnostic
threshold value: 1.443; Figure 4B). The AUC of the
DP.MASLD model (steatohepatitis versus normal)
was 0.986 (95% CI: 0.793-1.000; P < 0.001; sensitivity:
89.47%, specificity: 100.00%, diagnostic threshold
value: -3.575; Figure 4C). The results showed that the
DP.MASLD model significantly improved the
prediction performance over its four-gene signatures
alone, including AKR1B10, FABP4, GNMI, and
THBS1 (Figure 4A-C, Table 3).
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Figure 3. Construction and validation of a four-gene diagnostic classifier for HCC. (A) Binomial deviance as a function of the regularization parameter lambda for cross-validation
on the training datasets. The dots correspond to the mean, and the error bars correspond to the standard deviation. The coefficients of the four genes were selected using
lambda with minimum binomial deviance, marked with a blue dashed line (lambda = 0.022, log(lambda) = —-3.817). (B) Heatmap describing the expression levels of the selected
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probability of the true class. For most samples, the probability of the true subtype is close to 1, indicating an unambiguous classification. HCC: hepatocellular carcinoma; ICGC:

International Cancer Genome Consortium; TCGA: The Cancer Genome Atlas.

The predictive performance of the DP.MASLD
model and its gene members were verified using the
validation group (GSE89632). The DP.MASLD model
(steatosis versus normal) AUC was 0.805 (95% CI:
0.626-0.985; P = 0.010; sensitivity: 64.28%, specificity:
100.00%, diagnostic threshold value: -6.030; Figure
4D). The DP.MASLD model (steatohepatitis versus
steatosis) AUC was 0.762 (95% CI: 0.560-0.964; P =
0.038; sensitivity: 57.14%, specificity: 88.89%,
diagnostic threshold value: 0.134; Figure 4E). The

DP.MASLD model (steatohepatitis versus normal)
AUC was 0.939 (95% CI: 0.964-1.000; P < 0.001;
sensitivity: 77.78%, specificity: 100.00%, diagnostic
threshold value: -4.424; Figure 4F). The results
showed that although the DP.MASLD model did not
achieve the highest accuracy in the validation group;
it showed significant improvements and enhanced
robustness in diagnosing MASLD compared to its
gene members (Figure 4D-F, Table 3).
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Figure 4. Diagnostic value of the DP.MASLD model and its gene members in MASLD samples. (A) ROC curves of the DP.MASLD model and its gene members for the
classification of MASLD (steatosis versus normal) in the training group (GSE48452, GSE61260, and EMEXP3291). (B) ROC curves of the DP.MASLD model and its gene members
for the classification of MASLD (steatohepatitis versus steatosis) in the training group. (C) ROC curves of the DP.MASLD model and its gene members for MASLD
(steatohepatitis versus normal) in the training group. (D) ROC curves of the DP.MASLD model and its gene members for the classification of MASLD (steatosis versus normal)
in the validation group. (E) ROC curves of the DP.MASLD model and its gene members for the classification of MASLD (steatohepatitis versus steatosis) in the validation group.
(F) ROC curves of the DP.MASLD model and its gene members for the classification of MASLD (steatohepatitis versus normal) in the validation group. GNMT was excluded from
the ROC curve analyses used to distinguish steatohepatitis and steatosis because its coefficient was zero in the formula of the DP.MASLD model (steatohepatitis versus steatosis).
AUC: area under the curve; DP.MASLD: diagnostic prediction model for MASLD; MASLD: metabolic dysfunction-associated steatotic liver disease; ROC: receiver operating

characteristic; 95% Cl: 95% confidence interval.

In the early-stage HCC training datasets
(GSE76427, TCGA, and ICGC), we performed ROC
analyses to confirm the predictive performance of the
DP.HCC model and its gene members for
non-cancerous and  cancerous liver tissue
classification. The AUC of DP.HCC model for the
diagnosis of HCC was 0.910 (95% CI: 0.868-0.952; P <
0.001) with a sensitivity of 85.16%, a specificity of
91.49%, and a diagnostic threshold value of -1.236
(Figure 5A). The predictive performance of the
DP.HCC model and its gene members was further
verified in a validation group of early-stage HCC
(GSE84005). The AUC of DP.HCC model for the
diagnosis of HCC was 0.981 (95% CI: 0.946-1.000; P <
0.001) with a sensitivity of 87.50%, a specificity of
100.00%, and a diagnostic threshold value of -3.622
(Figure 5B). AKR1B10 was excluded from the ROC
curve analysis as its expression data were not
available in the GSE84005 dataset matrix file. The
results showed that the DP.HCC model significantly
enhanced the prediction performance compared to its

gene members alone (Table 4). Both the DP.HCC and
DP.MASLD models exhibit excellent accuracy and
robustness in monitoring MASLD-HCC progression.

Molecular mechanisms underlying oncogenesis
in MASLD progression to HCC

Here, we performed WGCNA on a merged
expression matrix (GSE48452, GSE61260, GSE89632,
and EMEXP3291) of 111 samples from males with
MASLD. By setting the soft-thresholding power to
seven (scale-free R? = 0.85), we identified 25 modules
(Figure S4; non-clustering genes in gray). The
correlation coefficients between attributes (AKR1B10,
GNMT, DP.HCC score, MASLD histological class, and
age) and eigenvalues of each module are presented in
a heatmap (Figure 6A). Gene modules with an
absolute total correlation coefficient >1.5 with these
attributes (AKR1B10, GNMT, DP.HCC score, MASLD
histological class) were identified from the heatmap.
Consequently, we identified purple (300 genes),
light-yellow (69 genes), and dark-turquoise (38 genes)
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modules, all of which were significantly correlated
with the DP.HCC score (R =0.21, P < 0.05; R = 0.69, P
< 0.05; R = 0.61, P < 0.05, respectively) and MASLD
histological class (R = 0.37, P < 0.05; R = 0.54, P < 0.05;
R =0.68, P < 0.05, respectively) (Figure 6B).

Table 3. Predictive performance of the DP.MASLD model for
MASLD tissue classification.

Steatosis versus Normal

Variables  Training group Validation group

AUC  95%CI P-value AUC 95% CI P-value
DP.MASLD 0.903  0.807-0.998 P <0.001* 0.805 0.626-0.985 P =0.010*
AKR1B10 0588 0.418-0.759 P =0.273 0.643 0.416-0.870 P =0.228
FABP4 0.855  0.740-0.971 P <0.001* 0.669 0.449-0.889  P=0.155
GNMT 0.768  0.646-0.891 P <0.001* 0.695 0.436-0.953 P =0.101
THBS1 0.552 0.388-0.716 P =0.518 0.948 0.867-1.000 P <0.001*

Steatohepatitis versus Steatosis

Variables  Training group Validation group

AUC  95% CI P-value AUC 95% CI P-value
DP.MASLD 0.897  0.793-1.000 P <0.001* 0.762 0.560-0.964 P =0.038*
AKR1B10  0.705 0.539-0.872 P =0.028* 0.794 0.593-0.994 P =0.020*
FABP4 0.850  0.728-0.976 P <0.001* 0.738 0.525-0.951 P =0.059
GNMT N/A N/A N/A N/A N/A N/A
THBS1 0.724  0.564-0.884 P =0.017* 0.698 0.477-0.920 P =0.115

Steatohepatitis versus Normal

Variables  Training group Validation group

AUC  95% CI P-value AUC 95% CI P-value
DP.MASLD 0.986  0.964-1.000 P <0.001* 0.939 0.840-1.000 P <0.001*
AKR1B10  0.830 0.717-0.943 P <0.001* 0.899 0.764-1.000 P =0.003*
FABP4 0.985  0.956-1.000 P <0.001* 0.919 0.803-1.000 P =0.002*
GNMT 0.844  0.735-0.952 P <0.001* 0.576 0.309-0.843 P =0.569
THBS1 0.703  0.559-0.847 P =0.013* 1.000 1.000-1.000 P <0.001*

AUC: area under the curve; 95% CI: 95% confidence interval; MASLD: metabolic
dysfunction-associated steatotic liver disease; DP.MASLD: diagnostic prediction

model for MASLD. *Statistically significant (P < 0.05).

Table 4. Predictive performance of the DP.HCC model for HCC
tissue classification.

Variables  Training group Validation group

AUC 95% CI P-value AUC 95% CI P-value
DP.HCC 0910 0.868-0.952 P <0.001* 0.981 0.946-1.000 P <0.001*
AKRIB10 0.832 0.779-0.884 P <0.001* N/A N/A N/A
FABP4 0.677 0.604-0.751 P <0.001* 0574 0.352-0.796 P =0.474
GNMT 0.652 0.577-0.727 P =0.001* 0.922 0.808-1.000 P <0.001*
THBS1 0.736 0.657-0.815 P <0.001* 0.832 0.687-0.978 P =0.001*

AUC: area under the curve; 95% CI: 95% confidence interval; HCC: hepatocellular
carcinoma; DP.HCC: diagnostic prediction model for HCC. *Statistically significant
(P <0.05).

To better understand the molecular mechanisms
underlying MASLD progression to HCC, GSEA
analysis was performed to analyze the enriched
co-expressed genes in the three modules (purple,
light-yellow, and dark-turquoise). The co-expressed
genes in the three modules were significantly
enriched in several KEGG pathways including
extracellular matrix-receptor interaction, DNA
replication, and T-cell receptor signaling (q-value <
0.05, Figure 6C). GO analysis results indicated that, at
the biological process level, the co-expressed genes in
these three modules were closely associated with the
cellular response to transforming growth factor beta
stimulus, DNA replication, and lymphocyte
differentiation (q-value < 0.05, Figure 6D).
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Figure 5. Diagnostic value of the DP.HCC model and its gene members in HCC samples. (A) ROC curves of the DP.HCC model and its gene members for the classification of
HCC tissues (cancerous versus non-cancerous) in the training group (GSE76427, TCGA, and ICGC). (B) ROC curves of the DP.HCC model and its gene members for the
classification of HCC tissues (cancerous versus non-cancerous) in the validation group (GSE84005). AUC: area under the curve; DP.HCC: diagnostic prediction model for HCC;
HCC: hepatocellular carcinoma; ROC: receiver operating characteristic; 95% Cl: 95% confidence interval.
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Figure 6. Functional pathways of modules related to oncogenesis from MASLD to HCC. (A) WGCNA showes correlations between module eigengenes and MASLD attributes
(AKRIB10, GNMT, DP.HCC score, MASLD histological class, and age). Each block contains the correlation coefficient and P-value. (B) Verification of the correlation between
WGCNA gene modules and MASLD traits (DP.HCC score and MASLD histological class). Scatter plots were used to illustrate the correlations of gene significance for traits
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KEGG gene sets (P < 0.05) enriched by co-expressed genes in the WGCNA gene modules of dark-turquoise, light-yellow, and purple. (D-F) Results of GO analysis, including
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dark-turquoise, light-yellow, and purple modules. DP.HCC: diagnostic prediction model for HCC; GO: Gene Ontology; HCC: hepatocellular carcinoma; KEGG: Kyoto
Encyclopedia of Genes and Genomes; MASLD: metabolic dysfunction-associated steatotic liver disease; WGCNA: Weighted gene correlation network analysis.
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At the cellular component level, the co-expressed
genes were linked to the collagen-containing
extracellular matrix, chromosomal region, and
external side of plasma membrane (g-value < 0.05,
Figure 6E). Regarding molecular function, the
co-expressed genes were identified as extracellular
matrix structural constituent, single-stranded DNA
helicase activity, and ATP-dependent activity acting
on DNA (g-value < 0.05, Figure 6F). The pathways
enriched by the co-expressed genes in the three
modules are closely related to MASLD progression to
HCC in male patients (Table S5).

Discussion

The most common liver disease worldwide is
MASLD, characterized by  excessive lipid
accumulation in hepatocytes. Due to its complex
etiology and lack of methods to diagnose MASLD,
experts have developed new diagnostic criteria and
renamed these conditions metabolic
dysfunction-associated fatty liver disease [32].
However, the molecular mechanisms underlying
pathological fatty liver progression to HCC remain
unclear. The increasing incidence of MASLD and the
concurrent increase in the number of hepatocellular
carcinoma (HCC) cases at a global level is a matter of
concern [33]. HCC has several risk factors, of which
MASLD and its associated metabolic disturbances are
of great interest due to their accelerating rise in
incidence worldwide. The HCC annual incidence
among patients with MASLD is approximately 1.8 per
1,000 person-years [34]. MASLD, a metabolic
inflammation-based liver disease, shows a sex-specific
prevalence with a higher incidence in males than
females [35]. Compared with females, males exhibit
increased visceral fat deposition, lack estrogen
signaling, and tend to synthesize fatty acids for fat
storage. Males with MASLD also experience more
severe hepatic fibrosis and a higher HCC incidence
than females [36, 37]. There is an increasing awareness
regarding the effects of sex on liver disease and cancer
outcomes [38, 39]. Therefore, it is necessary to explore
non-invasive biomarkers to develop a novel strategy
for the early detection of male patients with
MASLD-associated HCC [40, 41].

Currently, liver biopsy remains the gold
standard for diagnosing MASLD and HCC in clinical
practice. However, its invasive nature and various
limitations make it impractical for the early diagnosis
and monitoring of MASLD-HCC [40, 42]. Serum
biomarkers such as aspartate aminotransferase (AST),
alanine aminotransferase (ALT), and
alpha-fetoprotein (AFP) provide valuable insights
into liver function, inflammation, and disease risk
[43]. Nevertheless, these biomarkers have limitations,

including a lack of specificity and sensitivity, and they
do not offer real-time insights. Therefore, there is a
pressing need to enhance existing markers and
discover novel markers [43]. Molecular diagnostics
have introduced personalized medicine, helping
doctors understand the relationship between genetics
and liver function. This approach facilitates
customized diagnosis, disease prediction, and
treatment for patients with liver disease [44]. Omics
technologies, including genomics, transcriptomics,
proteomics, and metabolomics, are leading the way in
finding new biomarkers, enabling precise diagnosis
and personalized care [14]. The integration of omics
data with advanced algorithms, including machine
learning, holds significant promise for identifying
novel molecular markers and enhancing personalized
monitoring, prevention, and treatment strategies.
Recent studies have increasingly employed machine
learning to identify accurate biomarkers and
molecular diagnostics for MASLD-HCC. Research has
demonstrated that the GALAD score model,
developed from serum markers and clinical features,
is more accurate and reliable for monitoring HCC in
patients with chronic liver disease compared to
traditional single markers [45]. Although this study
did not differentiate between the various causes of
chronic liver disease, subsequent research indicates
that it can also assess HCC risk in patients with
MASH [46]. Recently, Luis A. Rodriguez et al
developed a highly accurate predictive model
utilizing electronic health data from over 1.8 million
patients with MASLD to differentiate between those
with and without HCC. This model serves as a
promising  starting  point for  monitoring
MASLD-HCC [47], although it does not elucidate the
molecular mechanisms underlying MASLD-HCC.
Therefore, the novel biomarkers and molecular model
we identified based on transcriptomic data are
essential for monitoring MASLD-HCC. These
findings not only demonstrate high accuracy and
reliability across various datasets but also provide a
robust foundation for developing tailored clinical
strategies for diagnosing, predicting, and treating
MASLD-HCC.

In the present study, transcriptomic data of male
liver samples from GEO, ArrayExpress, TCGA, and
ICGC databases were used to establish prediction
models for the early detection and surveillance of
MASLD-associated HCC. Five DEGs with diagnostic
values for male MASLD-associated HCC were
screened: AKR1B10, CYR61, FABP4, GNMIT, and
THBS1. The DP.HCC and DP.MASLD models were
established using the elastic net method to analyze
these DEGs. The AUC of the DP.HCC model in the
training and validation datasets was 0.910 and 0.981,
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respectively. Thus, we established molecular models
with robust and reliable accuracy for the quantitative
assessment of the MASLD-HCC progression risk in
males. The DP.MASLD and DP.HCC models not only
demonstrate strong predictive performance but also
provide a cost-effective alternative to traditional
diagnostic methods. By utilizing non-invasive
biomarkers and transcriptomic data, these models can
reduce healthcare costs and enhance patient comfort,
particularly in high-risk male populations. The
increasing availability and affordability of molecular
testing platforms, such as RT-qPCR and RNA-seq,
further improve the feasibility of implementing these
models in clinical practice. They can be seamlessly
integrated into routine screening for the early
detection of MASLD-associated HCC with minimal
disruption to current workflows. Moreover, by
integrating these models with electronic health record
systems, automated risk assessments could become a
reality, leading to timely interventions and improved
patient outcomes. Ultimately, we aim to advance the
development of novel diagnostic approaches and
sex-specific therapies for male patients with
MASLD-associated HCC.

The four DEGs (AKR1B10, FABP4, GNMT, and
THBS1) selected to build the diagnostic models had
been previously examined as molecular markers of
MASLD and HCC. AKR1B10, a human nicotinamide
adenine  dinucleotide = phosphate = (NADPH)-
dependent reductase, was upregulated in HCC and
MASLD [48]. AKR1B10 is a potent marker for
differentiating early HCCs from benign hepatic
lesions, with better diagnostic performance than AFP
[49]. Although MASH is diagnosed via biopsy,
non-invasive methods are preferable. Serum or
plasma AKR1B10 could be a non-invasive biomarker
for predicting MASLD progression and HCC
development [50]. Moreover, the study suggests that
the E2F1/AUF1/AKR1B10 axis may represent a
potential therapeutic target for HCC [51]. Fatty
acid-binding protein 4 (FABP4) plays a crucial role in
fatty acid transport and is significantly elevated in the
serum of patients with MASLD and HCC [52]. FABP4
may contribute to carcinogenesis, particularly in the
context of underlying obesity [52, 53]. Targeting the
FABP4-related fatty acid metabolic axis could
potentially prevent the progression of MASH to HCC
[54]. Glycine N-methyltransferase (GNMT) is the most
abundant methyltransferase and an important
enzyme involved in S-adenosylmethionine catabolism
in the liver [55]. MASLD development and
progression to HCC are characterized by the
downregulation of GNMT. Loss of liver GNMT
promotes liver steatosis and the transition to HCC
[56]. Furthermore, GNMT deficiency may impair the

efficacy of transarterial chemoembolization (TACE) in
HCC treatment by affecting hypoxia signaling and
glycolysis pathways [57]. Thrombospondin 1
(THBS1/TSP1), a  matricellular  glycoprotein,
modulates various cellular functions by interacting
with extracellular proteins and cell-surface receptors.
Although its role in liver diseases is not fully
understood [58], research indicates that THBSI
promoter  methylation may  inhibit tumor
angiogenesis in HCC, suggesting THBS1 as a potential
therapeutic target [59]. While the diagnostic and
therapeutic potential of these biomarkers in MASLD
and HCC requires further validation, our findings
offer valuable insights for exploring candidate
biomarkers for the diagnosis and treatment of
MASLD-associated HCC.

It is well-established that MASLD can progress
from simple steatosis to steatohepatitis and further
develop into HCC [60]. However, the specific
molecular events in the liver that drive this
progression remain poorly understood. Recently,
several studies have attempted to explore hub genes
and mechanisms involved in the pathological process
of MASLD or MASH. For example, using
bioinformatic analyses, two research groups
identified one consistent hub gene (AKR1B10) for the
liver steatosis progression to MASH [61, 62]. Wu et al.
conducted WGCNA on two GEO datasets (GSE48452
and GSE89632) and screened 10 potential hub genes in
MASLD [63]. Immune infiltration analysis has also
revealed the pathways related to MASH
inflammation [62, 64]. However, the hub genes
identified in these studies did not distinguish between
male and female patients. Additionally, they only
analyzed DEGs between MASLD (steatosis or
steatohepatitis) and normal liver tissues but not
between HCC and non-cancerous tissue samples. In
fact, sex, sex hormones, and gender habits affect the
risk profiles and phenotypes of liver disease [38, 65].
Thus, appropriately considering these aspects could
lead to a better understanding of the sex differences in
MASLD-HCC risk, molecular characteristics, and
therapeutic targets and aid in achieving sex-specific
therapies.

In this study, we focused on male patients who
are at an elevated risk of developing MASLD-HCC.
We investigated the disease progression from normal
liver tissue through MASLD to HCC. Utilizing
WGCNA, GO functional, and KEGG pathway
enrichment analyses, our results demonstrate that the
pathogenesis of MASLD-HCC in males is primarily
associated with dysregulation in the cell cycle, DNA
replication, extracellular matrix-receptor interaction,
and T-cell receptor signaling pathways. Notably, the
cell cycle checkpoint functions as a critical regulatory
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mechanism for DNA replication, ensuring the
prevention of genetic errors during cell division [66].
This underscores the close connection between the cell
cycle and DNA replication pathways, where their
dysregulation plays a crucial role in occurrence and
development of MASLD-HCC [67]. Chronic liver
inflammation in MASH has been identified as a
potential trigger for HCC, even in the absence of
cirrhosis [68]. T-cell receptor pathways significantly
contribute to carcinogenesis and the regulation of
liver tumorigenesis in MASLD. For instance, in
MASH mouse models, the activation of CD8+ T cells
and natural killer T cells has been shown to accelerate
tumor development [69]. Conversely, CD4+ T cells are
essential for effective immune surveillance, reducing
the risk of malignant transformation in hepatocytes
[70]. The selective loss of CD4+ T lymphocytes in
MASLD may facilitate HCC progression [71]. The
tumor microenvironment in HCC is characterized by
interactions between various immune cells and
non-immune stromal cells, such as cancer-associated
fibroblasts and endothelial cells. The extracellular
matrix-receptor interaction pathway plays a vital role
in shaping the HCC tumor microenvironment [72].
Additionally, stromal cells within the tumor
microenvironment are key regulators of tumor
growth, invasion, and metastasis [73, 74].

Our study had the following limitations: First,
the overlapping DEGs between MASLD and HCC
screened here may not fully represent the DEGs in
MASLD progression to HCC because the HCC
samples might include patients with other
HCC-associated diseases such as viral hepatitis and
alcoholic liver disease. Second, it is crucial to integrate
clinical information to enhance the robustness of our
model. Future studies that involve the integration of
clinical data to further refine and validate our model’s
predictive capabilities are significant. Third, we
focused only on male patients and screened for
common DEGs between MASLD and HCC. In the
future, the exact roles of DEGs in female patients with
MASLD and HCC should be studied accordingly, and
the molecular characteristics of MASLD-associated
HCC in males and females should be compared.

Conclusions

Our study established a robust and accurate
molecular model for monitoring the progression of
MASLD-HCC in male patients, providing a valuable
risk assessment tool for disease progression. This tool
is expected to enhance early diagnosis, pathological
grading and support the molecular classification of
MASLD-HCC in clinical practice. Moreover, our
research elucidates the key biological functions and
molecular pathways involved in the progression from

MASLD to HCC, offering critical insights into the
underlying molecular mechanisms. These findings
may provide valuable insights into the molecular
characteristics of MASLD-HCC in males, facilitating
the development of sex-specific therapies.
Consequently, our study lays a solid theoretical
foundation for the future development of molecular
diagnostics and targeted therapies specifically
designed for male MASLD-HCC patients.
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