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Abstract 

The pathogenesis of metabolic dysfunction-associated steatotic liver disease-associated hepatocellular 
carcinoma (MASLD-HCC) is complex and exhibits sex-specific differences. Effective methods for monitoring 
MASLD progression to HCC are lacking. Transcriptomic data from liver tissue samples sourced from multiple 
public databases were integrated. Utilizing both differential expression analysis and robust rank aggregation 
analysis, differentially expressed genes (DEGs) in patients with MASLD-HCC were identified. Based on these 
DEGs, diagnostic prediction models for MASLD (DP.MASLD) and HCC (DP.HCC) were constructed using 
elastic net analysis for various comparisons, including steatosis versus normal, steatohepatitis versus steatosis, 
and cancer versus non-cancer. Weighted gene correlation network analysis and gene set enrichment analysis 
were conducted to unveil the underlying pathogenesis of MASLD-HCC in males. Five overlapping DEGs with 
diagnostic significance in the progression from MASLD to HCC were identified, namely, AKR1B10, CYR61, 
FABP4, GNMT, and THBS1. DP.HCC demonstrated excellent predictive accuracy, with an area under the curve 
of 0.910 in the training group and 0.981 in the validation group. Similarly, DP.MASLD showed robust predictive 
accuracy. The pathogenesis of MASLD-HCC in males primarily involves extracellular matrix-receptor 
interaction, DNA replication, cell cycle, and T-cell receptor signaling. Overall, our study provides a quantitative 
assessment tool for the early detection and monitoring of MASLD-HCC, highlighting the male-specific 
molecular characteristics involved in its progression. 

Keywords: metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic-associated steatohepatitis (MASH), 
hepatocellular carcinoma (HCC), differentially expressed genes, diagnostic prediction model 

Introduction 
Liver cancer is among the most prevalent 

malignancies globally, with hepatocellular carcinoma 
(HCC) being the most common histological type of 
primary liver cancer [1]. With the effective prevention 
and treatment of viral liver diseases, more newly 
diagnosed patients with HCC are “virus-free” [2]. 
Obesity, alcoholic fatty liver disease, and metabolic 
dysfunction-associated steatotic liver disease 
(MASLD) can lead to HCC. Considering the global 

increase in obesity and type 2 diabetes, MASLD is 
becoming increasingly prevalent and is an important 
underlying HCC etiology [3]. Recently, differences in 
the incidence and pathogenesis of MASLD between 
sexes have received attention. The prevalence and 
severity of MASLD are higher in males than in 
premenopausal females [4, 5]. A large cohort study of 
patients with MASLD found that males had a higher 
MASLD-associated HCC risk than females [6]. 
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Globally, each year, the number of new liver cancer 
cases in males is more than twice that in females [1]. 
Proper consideration of sex differences will provide a 
better understanding of MASLD-associated HCC 
pathogenesis and aid in future sex-specific diagnosis 
and therapy formulation. 

Given the high incidence and poor prognosis 
associated with MASLD-associated HCC, effective 
methods for early detection remain insufficient. 
Advances in imaging techniques like computed 
tomography (CT), magnetic resonance imaging (MRI), 
and transient elastography (VCTE) have improved 
the accuracy of liver lesion detection [7, 8]. However, 
these methods are not yet suitable for guiding HCC 
surveillance [9]. Monitoring MASLD-associated HCC 
and developing corresponding diagnostic and 
treatment plans remain challenging. Serum 
biomarkers, such as nucleic acids and proteins, have 
shown greater potential in tumorigenesis surveillance 
compared to imaging [10, 11]. Although 
alpha-fetoprotein (AFP) was the first HCC serum 
biomarker used in clinical practice, its limited 
specificity and sensitivity underscore the need for 
novel biomarkers [12, 13]. Genomic and proteomic 
methodologies, combined with machine learning, 
offer promising opportunities for detecting early 
indicators and integrating them into routine screening 
processes, thereby enhancing HCC diagnosis and 
treatment [12, 14]. 

In this study, considering the decisive role of sex 
differences and sample size on model predictive 
accuracy, transcriptome data from the male cohort in 
the Gene Expression Omnibus (GEO), ArrayExpress, 
International Cancer Genome Consortium (ICGC), 
and The Cancer Genome Atlas (TCGA) databases 
were screened and integrated to develop approaches 
for the early diagnosis and surveillance of 
MASLD-HCC. Furthermore, the main functions and 
molecular signaling pathways involved in the 
progression of MASLD to HCC were explored. Our 
findings will help in the early detection and 
surveillance of MASLD-HCC progression. Moreover, 
our findings will reveal the potential underlying 
pathways that are relevant to the progression from 
MASLD to HCC. 

Materials and Methods 
MASLD and HCC transcriptome data 
extraction 

The research design of this study is illustrated in 
a flow diagram (Figure S1). Eligible studies related to 
MASLD or HCC cohorts were searched and reviewed 
using the GEO, ArrayExpress, TCGA, and ICGC 
databases. The search strategy used for MASLD 

involved: (NAFLD) OR (non alcoholic) OR 
non-alcoholic) OR nonalcoholic)) AND (fatty liver 
disease) OR fatty liver) OR fatty livers) OR liver) OR 
livers) OR steatohepatitis) OR steatohepatitides)) 
AND “Homo sapiens”. Independent investigators 
(Xiaoning Gan and Yuchuan Jiang) reviewed and 
collected the eligible datasets that met the criteria as 
follows: Inclusion criteria: (i) MASLD diagnosis based 
on a standardized histopathological assessment 
system designed by the Pathology Committee of the 
MASH Clinical Research Network [15]; (ii) expression 
profiling detection in liver tissue samples of male 
patients; and (iii) availability of original expression 
profiling data in both steatosis and steatohepatitis 
specimens. Exclusion criteria: (i) datasets from 
research on cell lines or animals; (ii) normal liver, 
steatosis, and steatohepatitis groups with small 
sample sizes (n < 5); and (iii) expression datasets 
without transcriptomic data. Moreover, the search 
strategy and selection criteria to retrieve and extract 
the eligible datasets of the early-stage HCC male 
cohort were consistent with those of previous studies 
[16]. Discrepancies between the two investigators 
were resolved through discussion among all authors. 
Finally, a total of 372 human liver tissue specimens 
from male patients with MASLD (GSE48452, 
GSE61260, GSE89632, and EMEXP3291) and early 
HCC (GSE76427, GSE84005, TCGA, and ICGC) were 
included (Table 1). 

 

Table 1. Summary information of the eligible datasets used in our 
study.  

Dataset Platform Disease Sample size Sample type  
(liver tissue) 

Sample 
source 

GSE48452 GPL11532 MASLD Total=73; 
Male=15; 
Female=58 

Normal=41; 
Steatosis=14; 
Steatohepatitis=18 

Germany 

EMEXP3291 A-AFFY-183 MASLD Total=45; 
Male=17; 
Female=26 

Normal=19; 
Steatosis=10; 
Steatohepatitis=16 

USA 

GSE61260 GPL11532 MASLD Total=109; 
Male=45; 
Female=64 

Normal=62; 
Steatosis=23; 
Steatohepatitis=24 

USA 

GSE89632 GPL14951 MASLD Total=63; 
Male=34; 
Female=29 

Normal=24; 
Steatosis=20; 
Steatohepatitis=19 

Canada 

GSE84005 GPL5175 HCC Total=36; 
Male=32; 
Female=4 

Normal=18; 
Cancer=18 

China 

GSE76427 GPL10558  HCC Total=83; 
Male=64; 
Female=19 

Normal=28; 
Cancer=55 

Singapore 

TCGA TCGA HCC Total=187; 
Male=131; 
Female=56 

Normal=18; 
Cancer=169 

USA 

ICGC HCCDB HCC Total=55; 
Male=34; 
Female=21 

Normal=22; 
Cancer=33 

Japan 

HCC: hepatocellular carcinoma; HCCDB: Database of Hepatocellular Carcinoma; 
ICGC: International Cancer Genome Consortium; MASLD: metabolic 
dysfunction-associated steatotic liver disease; TCGA: The Cancer Genome Atlas. 
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MASLD and HCC transcriptome data 
preprocessing and analysis 

Processed data of MASLD and HCC microarray 
datasets from the ArrayExpress and GEO databases 
were obtained using R packages ArrayExpress [17] 
and GEOquery [18], respectively. Microarray probes 
for each dataset were transformed from probe IDs to 
Entrez Gene IDs using the R package biomaRt [19]. 
For these microarray probes, if multiple probe IDs 
were mapped to the same Entrez Gene ID, the Entrez 
Gene ID expression value was calculated as the 
median of the probe expression values. RNA-seq 
datasets of HCC from TCGA and ICGC were 
extracted using the R package GDCRNATools [20] 
and the Database of Hepatocellular Carcinoma [21], 
respectively. The batch effects among these datasets 
were analyzed using t-distributed Stochastic 
Neighbor Embedding (t-SNE) analysis and corrected 
using ComBat in the R package sva [22]. 

Differential expression analysis (DEA) was 
performed using the R package limma [23] for 
MASLD and early-stage HCC datasets. Differentially 
expressed genes (DEGs) were defined as those with 
log2 fold change (log2FC) > 0.5 and P < 0.05. The 
log2FC of these DEGs was rescaled to the interval (-5 
to 5). Then, the overlapping DEGs from these datasets 
were analyzed using the robust rank aggregation 
(RRA) method [24]. As the highest-confidence 
diagnostic predictors for MASLD and HCC, DEGs 
were further screened with a |log2FC| > 2 and an 
adjusted P-value of <0.05 in the RRA analysis. 
Moreover, intersecting diagnostic predictors in the 
training datasets of patients with MASLD and HCC 
were selected using the R package VennDiagram [25]. 

DP.MASLD and DP.HCC model construction 
The eligible datasets used in the MASLD study 

were split into training (GSE48452, GSE61260, and 
EMEXP3291) and validation (GSE89632) groups, 
similar to those used in the HCC study (training: 
GSE76427, TCGA, and ICGC; validation: GSE84005). 
The identified predictors were further analyzed using 
the elastic net [26] to generate a formula for 
constructing diagnostic prediction models for 
MASLD (DP.MASLD) and HCC (DP.HCC). To use 
the elastic net, the expression data of the identified 
diagnostic predictors were reduced to genes common 
to all the merged datasets. The elastic net analysis 
used the min–cvm penalty to fit a generalized linear 
model. Leave-one-study-out cross-validation was 
used for classifier testing in each training dataset, and 
this classifier was then tested on the validation dataset 
[27]. 

Bioinformatics analyses 
Weighted gene correlation network analysis 

(WGCNA) [28] was utilized to build a weighted gene 
co-expression correlation network, and the distances 
between different transcripts were measured using 
the Pearson correlation coefficient. Construction of 
the WGCNA network and detection of co-expressed 
gene modules were conducted using an unsigned 
topological overlap matrix, β power of 7, and 
minimum module size of 30. The co-expressed gene 
modules highly correlated with the characteristics of 
MASLD-HCC were identified using WGCNA. The 
gene sets of these modules were analyzed using Gene 
Set Enrichment Analysis (GSEA) to explore the Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways involved in MASLD 
progression to HCC [29]. 

Hematoxylin-eosin (H&E) 
Paired HCC and adjacent non-cancerous liver 

tissues were collected from ten patients with 
MASLD-associated HCC at the Second Affiliated 
Hospital of Nanchang University (Nanchang, China) 
between January 2023 and June 2024. The study 
protocol received approval from the ethics committee 
of the Second Affiliated Hospital of Nanchang 
University, and informed consent was obtained from 
all participants. The H&E staining procedure followed 
the methodology outlined in our previous study [30] 
and was conducted as follows: Liver tissues from 
patients with MASLD-associated HCC were fixed in 
10% formalin, embedded in paraffin, and sectioned to 
the appropriate thickness. The sections were 
deparaffinized in xylene and rehydrated through a 
graded series of ethanol to water. Staining was 
performed using Harris hematoxylin for eight 
minutes and eosin for thirty seconds, followed by 
dehydration, clearing, and mounting of the slides. All 
specimens were evaluated and diagnosed by two 
independent pathologists. 

Quantitative reverse transcription polymerase 
chain reaction (RT-qPCR) 

The RT-qPCR protocol was conducted in 
accordance with our previous study [30] and 
proceeded as follows: Total RNA was extracted from 
liver tissues using TRIzol reagent (Invitrogen, CA, 
USA) and reverse-transcribed into complementary 
DNA (cDNA). RT-qPCR was performed using SYBR 
Green Master Mix (Takara, Kyoto, Japan) on a 
QuantStudio 5 Real-Time PCR System (Applied 
Biosystems, USA). The expression levels of target 
genes were normalized to glyceraldehyde 
3-phosphate dehydrogenase (GAPDH). The primer 
sequences are detailed in Table S1. 
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Statistical analyses 
Statistical analyses were performed using R 

(version 4.2.1, http://www.R-project.org), GraphPad 
Prism (version 8.3.0), SPSS (version 26.0; IBM Corp.), 
and Microsoft Office 2016 software. The relative 
expression levels of diagnostic predictors in MASLD 
and HCC tissues compared with those in normal 
tissues are represented by the average log2FC value. 
The relative expression levels of these predictors were 
illustrated using a heatmap. A Student's t-test was 
used to examine the statistical differences in these 
diagnostic predictors among the disease groups 
(steatosis, steatohepatitis, and cancer). Additionally, a 
paired t-test was used to further validate the 
differential expression characteristics of these 
diagnostic predictors between cancerous and adjacent 
non-cancerous liver tissues in 10 patients with 
MASLD-associated HCC. Receiver operating 
characteristic (ROC) curve analysis with the area 
under the curve (AUC) was performed to assess the 
diagnostic performances of the DP.MASLD, DP.HCC, 
and their gene members in male patients with 
MASLD and HCC using the R package pROC [31]. 

Results 
Primary DEGs predicting MASLD progression 
to HCC 

By combining the DEA and RRA analyses, 101 
DEGs (57 upregulated and 44 downregulated) were 
identified in steatotic liver tissues compared with 
normal liver tissues, 170 DEGs (103 upregulated and 
67 downregulated) were identified in steatohepatitic 
liver tissues compared with steatotic liver tissues, and 
509 DEGs (172 upregulated and 337 downregulated) 
were identified in cancerous liver tissues compared 
with non-cancerous liver tissues (Table S2). Venn 
diagram analysis showed that the three groups shared 
five DEGs: AKR1B10, CYR61, FABP4, GNMT, and 
THBS1 (Figure 1A). And, the relative expression 
levels of these five DEGs in MASLD-HCC are 
demonstrated (Figure 1B). 

To validate our findings on the molecular 
features of MASLD- HCC, we analyzed ten cases 
using both histological and gene expression assays. 
Histological examination with H&E staining revealed 
distinct morphological characteristics between 
steatotic liver tissue and HCC within MASLD samples 
(Figure 1C). The left panel shows adjacent 
non-cancerous liver tissue, which exhibits moderate 
steatosis with hepatocytes containing lipid vacuoles 
while maintaining a normal cellular structure. In 
contrast, the right panel illustrates HCC tissue, 
characterized by increased cell density, nuclear 
pleomorphism, and prominent nucleoli, all of which 

indicate malignancy. Furthermore, we conducted 
RT-qPCR analysis to evaluate the differential 
expression of the genes AKR1B10, CYR61, FABP4, 
GNMT, and THBS1 in liver tissues from patients with 
MASLD-HCC (Figure 1D). The expression patterns of 
these genes were consistent with large-scale 
transcriptome data from multiple databases, 
supporting their involvement in the progression from 
MASLD to HCC. This comprehensive validation 
underscores the potential of these genes as diagnostic 
biomarkers for MASLD-associated HCC. 

DP.MASLD and DP.HCC models predicting 
MASLD progression to HCC 

After adjusting the batch effect among the 
training datasets (GSE48452, GSE61260, and 
EMEXP3291) using t-SNE and ComBat (Figure S2), 
the expression signatures of four DEGs (AKR1B10, 
FABP4, GNMT, and THBS1) were selected to construct 
the DP.MASLD models (Table 2). CYR61 was 
excluded from the elastic net analysis as it was not a 
DEG in the EMEXP3291 results. The risk score 
formulae for DP.MASLD are as follows: 

DP.MASLD (steatosis vs. normal) = −0.123864 + 
3.342406 × expression level of FABP4 − 1.421809 × 
expression level of THBS1 − 1.275545 × expression 

level of GNMT + 0.218167 × expression level of 
AKR1B10; 

Risk score formula for DP.MASLD (steatohepatitis vs. 
steatosis) = −1.038706 + 2.501501 × expression level of 

FABP4 − 1.1871 × expression level of THBS1 + 
0.397837 × expression level of AKR1B10; 

Risk score formula for DP.MASLD (steatohepatitis vs. 
normal) = −1.162571 + 5.843907 × expression level of 

FABP4 − 0.234709 × expression level of THBS1 − 
1.275545 × expression level of GNMT + 0.616004 × 

expression level of AKR1B10. 

Table 2. Coefficient of gene signatures in diagnostic models for 
predicting the MASLD progression to HCC in males. 

Gene Symbol 
(Entrez ID) 

Steatosis vs. 
Normal 

Steatohepatitis 
vs. Steatosis 

Steatohepatitis 
vs. Normal 

Cancerous vs. 
Non-cancerous 

Intercept –0.123864 –1.038706 –1.162571 1.668969 
FABP4 (2167) 3.342406 2.501501 5.843907 0.947173 
THBS1 (7057) –1.421809 1.1871 –0.234709 –1.732848 
GNMT (27232) –1.275545 0 –1.275545 –0.60475 
AKR1B10 
(57016) 

0.218167 0.397837 0.616004 0.862425 

HCC: hepatocellular carcinoma; MASLD: metabolic dysfunction-associated 
steatotic liver disease. 

 
For consistency with the gene members in the 

DP.MASLD model, the DP.HCC model was built 
based on the expressive signatures of these four 
predictors: AKR1B10, FABP4, GNMT, and THBS1 
(Table 2). The batch effect among the training datasets 
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(GSE76427, TCGA, and ICGC) was adjusted using 
t-SNE and ComBat (Figure S3). The risk score formula 
for DP.HCC was established as follows:  

DP.HCC (cancerous versus non-cancerous) = 1.668969 
+ 0.947173 × expression level of FABP4 − 1.732848 × 

expression level of THBS1 − 0.60475× expression level 
of GNMT + 0.862425 × expression level of AKR1B10. 

Based on the lowest multinomial deviance, we 
identified a multinomial classifier for all the samples 
from the training datasets (Figure 2A). The heatmap 
shows the relative expression levels of the four genes 
(AKR1B10, FABP4, GNMT, and THBS1) in normal, 
steatosis, and steatohepatitis tissues across the three 
training datasets (Figure 2B). We evaluated the 
classifier on three independent training datasets 
(Figure 2C) and one independent validation dataset 
(Figure 2D) to validate our method. The overall 
accuracy (fraction of correctly classified samples) of 

the multinomial classifier for the cross-validation of 
the training datasets was 79.2%. Across the validation 
datasets, the overall accuracy was 64.7% (Table S3). 

Based on the lowest binomial deviance, we 
identified a binomial classifier for all samples from 
the training datasets (Figure 3A). The heatmap shows 
the relative expression levels of the four genes in 
cancerous and non-cancerous liver tissues across the 
training datasets (Figure 3B). To validate our method, 
we evaluated the classifier using three independent 
training datasets (Figure 3C) and one independent 
validation dataset (Figure 3D). The overall accuracy of 
the binomial classifier for cross-validation of the 
training datasets was 80.8%. Across the validation 
datasets, the overall accuracy was 96.9% (Table S4). 
Thus, we established robust models for predicting 
MASLD-HCC using transcriptomic data derived from 
multiple platforms. 

 

 
Figure 1. Identification of the expression levels of DEGs in MASLD-associated HCC. (A) As illustrated in the Venn Diagram, five robust DEGs (AKR1B10, CYR61, FABP4, GNMT, 
and THBS1) were identified from the intersection of DEGs from the steatosis (steatotic liver tissues versus normal liver tissues), steatohepatitis (steatohepatitic liver tissues 
versus steatotic liver tissues), and cancer groups (cancerous liver tissues versus non-cancerous liver tissues). (B) Compared with the control group, the relative expression levels 
of each gene represent the log2FC values of the DEGs (AKR1B10, CYR61, FABP4, GNMT, and THBS1) in the steatosis (steatotic liver tissues versus normal liver tissues), 
steatohepatitis (steatohepatitic liver tissues versus normal liver tissues) and cancer groups (cancerous liver tissues versus non-cancerous liver tissues). (C) Histopathological 
section of MASLD-associated HCC and adjacent liver tissue stained with H&E. (D) Compared with the control group (adjacent liver tissues), the relative expression levels of each 
DEGs (AKR1B10, CYR61, FABP4, GNMT, and THBS1) in the cancer groups (HCC tissues). DEGs: differentially expressed genes; FC: fold change; HCC: hepatocellular carcinoma; 
MASLD: metabolic dysfunction-associated steatotic liver disease; RRA: robust rank aggregation. AT: adjacent liver tissue; CA: cancer tissue; HCC: hepatocellular carcinoma; H&E: 
hematoxylin and eosin; *: P < 0.05; **: P < 0.01. 
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Figure 2. Construction and validation of a four-gene diagnostic classifier for MASLD. (A) Multinomial deviance as a function of the regularization parameter lambda for 
cross-validation on the training datasets. The dots correspond to the mean, and the error bars correspond to the standard deviation. The coefficients of the four genes were 
selected using lambda with the minimum multinomial deviance, marked with a blue dashed line (lambda = 0.011, log(lambda) = –4.510). (B) Heatmap describing the expression 
levels of selected genes in a multinomial classifier erected by the training datasets. Each row represents a gene with its Entrez Gene ID in parentheses, and each column represents 
a sample. (C) Estimated probabilities for the samples in the training datasets (GSE48452, EMEXP3291, and GSE61260). (D) Estimated probabilities for the samples in the validation 
dataset (GSE89632). For each sample, three points correspond to the probability that the sample belongs to the respective class. The samples are sorted by true class probability 
within each dataset and class. For most samples, the probability of the true subtype is close to 1, indicating an unambiguous classification. MASLD: metabolic 
dysfunction-associated steatotic liver disease. 

 

Diagnostic performance of the DP.MASLD and 
DP.HCC models for predicting MASLD 
progression to HCC 

To confirm the diagnostic performance of the 
DP.MASLD model and its gene members in 
predicting normal liver, steatosis, and steatohepatitis 
tissue classification, ROC analyses were performed on 
MASLD samples in the training group (GSE48452, 
GSE61260, and EMEXP3291). The AUC of the 
DP.MASLD model (steatosis versus normal) was 
0.903 (95% confidence interval [95% CI]: 0.807–0.998; P 
< 0.001; sensitivity: 70.00%, specificity: 100%, 
diagnostic threshold value: -5.013; Figure 4A). The 

AUC of the DP.MASLD model (steatohepatitis versus 
steatosis) was 0.897 (95% CI: 0.793–1.000; P < 0.001; 
sensitivity: 85.00%, specificity: 89.47%, diagnostic 
threshold value: 1.443; Figure 4B). The AUC of the 
DP.MASLD model (steatohepatitis versus normal) 
was 0.986 (95% CI: 0.793–1.000; P < 0.001; sensitivity: 
89.47%, specificity: 100.00%, diagnostic threshold 
value: -3.575; Figure 4C). The results showed that the 
DP.MASLD model significantly improved the 
prediction performance over its four-gene signatures 
alone, including AKR1B10, FABP4, GNMT, and 
THBS1 (Figure 4A–C, Table 3). 
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Figure 3. Construction and validation of a four-gene diagnostic classifier for HCC. (A) Binomial deviance as a function of the regularization parameter lambda for cross-validation 
on the training datasets. The dots correspond to the mean, and the error bars correspond to the standard deviation. The coefficients of the four genes were selected using 
lambda with minimum binomial deviance, marked with a blue dashed line (lambda = 0.022, log(lambda) = –3.817). (B) Heatmap describing the expression levels of the selected 
genes in the binomial classifier erected by the training datasets. Each row represents a gene with its Entrez Gene ID in parentheses, and each column represents a sample. (C) 
Estimated probabilities for samples in the training datasets (GSE76427, TCGA, and ICGC). (D) Estimated probabilities for the samples in the validation dataset (GSE84005). For 
each sample, two points correspond to the probability that the sample belongs to the respective class. Within each dataset and class, the samples are sorted according to the 
probability of the true class. For most samples, the probability of the true subtype is close to 1, indicating an unambiguous classification. HCC: hepatocellular carcinoma; ICGC: 
International Cancer Genome Consortium; TCGA: The Cancer Genome Atlas. 

 
The predictive performance of the DP.MASLD 

model and its gene members were verified using the 
validation group (GSE89632). The DP.MASLD model 
(steatosis versus normal) AUC was 0.805 (95% CI: 
0.626-0.985; P = 0.010; sensitivity: 64.28%, specificity: 
100.00%, diagnostic threshold value: -6.030; Figure 
4D). The DP.MASLD model (steatohepatitis versus 
steatosis) AUC was 0.762 (95% CI: 0.560-0.964; P = 
0.038; sensitivity: 57.14%, specificity: 88.89%, 
diagnostic threshold value: 0.134; Figure 4E). The 

DP.MASLD model (steatohepatitis versus normal) 
AUC was 0.939 (95% CI: 0.964-1.000; P < 0.001; 
sensitivity: 77.78%, specificity: 100.00%, diagnostic 
threshold value: -4.424; Figure 4F). The results 
showed that although the DP.MASLD model did not 
achieve the highest accuracy in the validation group; 
it showed significant improvements and enhanced 
robustness in diagnosing MASLD compared to its 
gene members (Figure 4D–F, Table 3). 
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Figure 4. Diagnostic value of the DP.MASLD model and its gene members in MASLD samples. (A) ROC curves of the DP.MASLD model and its gene members for the 
classification of MASLD (steatosis versus normal) in the training group (GSE48452, GSE61260, and EMEXP3291). (B) ROC curves of the DP.MASLD model and its gene members 
for the classification of MASLD (steatohepatitis versus steatosis) in the training group. (C) ROC curves of the DP.MASLD model and its gene members for MASLD 
(steatohepatitis versus normal) in the training group. (D) ROC curves of the DP.MASLD model and its gene members for the classification of MASLD (steatosis versus normal) 
in the validation group. (E) ROC curves of the DP.MASLD model and its gene members for the classification of MASLD (steatohepatitis versus steatosis) in the validation group. 
(F) ROC curves of the DP.MASLD model and its gene members for the classification of MASLD (steatohepatitis versus normal) in the validation group. GNMT was excluded from 
the ROC curve analyses used to distinguish steatohepatitis and steatosis because its coefficient was zero in the formula of the DP.MASLD model (steatohepatitis versus steatosis). 
AUC: area under the curve; DP.MASLD: diagnostic prediction model for MASLD; MASLD: metabolic dysfunction-associated steatotic liver disease; ROC: receiver operating 
characteristic; 95% CI: 95% confidence interval. 

 
In the early-stage HCC training datasets 

(GSE76427, TCGA, and ICGC), we performed ROC 
analyses to confirm the predictive performance of the 
DP.HCC model and its gene members for 
non-cancerous and cancerous liver tissue 
classification. The AUC of DP.HCC model for the 
diagnosis of HCC was 0.910 (95% CI: 0.868-0.952; P < 
0.001) with a sensitivity of 85.16%, a specificity of 
91.49%, and a diagnostic threshold value of -1.236 
(Figure 5A). The predictive performance of the 
DP.HCC model and its gene members was further 
verified in a validation group of early-stage HCC 
(GSE84005). The AUC of DP.HCC model for the 
diagnosis of HCC was 0.981 (95% CI: 0.946-1.000; P < 
0.001) with a sensitivity of 87.50%, a specificity of 
100.00%, and a diagnostic threshold value of -3.622 
(Figure 5B). AKR1B10 was excluded from the ROC 
curve analysis as its expression data were not 
available in the GSE84005 dataset matrix file. The 
results showed that the DP.HCC model significantly 
enhanced the prediction performance compared to its 

gene members alone (Table 4). Both the DP.HCC and 
DP.MASLD models exhibit excellent accuracy and 
robustness in monitoring MASLD-HCC progression. 

Molecular mechanisms underlying oncogenesis 
in MASLD progression to HCC 

Here, we performed WGCNA on a merged 
expression matrix (GSE48452, GSE61260, GSE89632, 
and EMEXP3291) of 111 samples from males with 
MASLD. By setting the soft-thresholding power to 
seven (scale-free R2 = 0.85), we identified 25 modules 
(Figure S4; non-clustering genes in gray). The 
correlation coefficients between attributes (AKR1B10, 
GNMT, DP.HCC score, MASLD histological class, and 
age) and eigenvalues of each module are presented in 
a heatmap (Figure 6A). Gene modules with an 
absolute total correlation coefficient >1.5 with these 
attributes (AKR1B10, GNMT, DP.HCC score, MASLD 
histological class) were identified from the heatmap. 
Consequently, we identified purple (300 genes), 
light-yellow (69 genes), and dark-turquoise (38 genes) 
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modules, all of which were significantly correlated 
with the DP.HCC score (R = 0.21, P < 0.05; R = 0.69, P 
< 0.05; R = 0.61, P < 0.05, respectively) and MASLD 
histological class (R = 0.37, P < 0.05; R = 0.54, P < 0.05; 
R = 0.68, P < 0.05, respectively) (Figure 6B). 

 

Table 3. Predictive performance of the DP.MASLD model for 
MASLD tissue classification. 

  Steatosis versus Normal  
Variables Training group  Validation group 
 AUC 95% CI P–value  AUC 95% CI P–value 
DP.MASLD 0.903 0.807–0.998 P < 0.001*  0.805 0.626–0.985 P = 0.010* 
AKR1B10 0.588 0.418–0.759 P = 0.273  0.643 0.416–0.870 P = 0.228 
FABP4 0.855 0.740–0.971 P < 0.001*  0.669 0.449–0.889 P = 0.155 
GNMT 0.768 0.646–0.891 P < 0.001*  0.695 0.436–0.953 P = 0.101 
THBS1 0.552 0.388–0.716 P = 0.518  0.948 0.867–1.000 P < 0.001* 
  Steatohepatitis versus Steatosis  
Variables Training group  Validation group 
 AUC 95% CI P–value  AUC 95% CI P–value 
DP.MASLD 0.897 0.793–1.000 P < 0.001*  0.762 0.560–0.964 P = 0.038* 
AKR1B10 0.705 0.539–0.872 P = 0.028*  0.794 0.593–0.994 P = 0.020* 
FABP4 0.850 0.728–0.976 P < 0.001*  0.738 0.525–0.951 P = 0.059 
GNMT N/A N/A N/A  N/A N/A N/A 
THBS1 0.724 0.564–0.884 P = 0.017*  0.698 0.477–0.920 P = 0.115 
  Steatohepatitis versus Normal  
Variables Training group  Validation group 
 AUC 95% CI P–value  AUC 95% CI P–value 
DP.MASLD 0.986 0.964–1.000 P < 0.001*  0.939 0.840–1.000 P < 0.001* 
AKR1B10 0.830 0.717–0.943 P < 0.001*  0.899 0.764–1.000 P = 0.003* 
FABP4 0.985 0.956–1.000 P < 0.001*  0.919 0.803–1.000 P = 0.002* 
GNMT 0.844 0.735–0.952 P < 0.001*  0.576 0.309–0.843 P = 0.569 
THBS1 0.703 0.559–0.847 P = 0.013*  1.000 1.000–1.000 P < 0.001* 

AUC: area under the curve; 95% CI: 95% confidence interval; MASLD: metabolic 
dysfunction-associated steatotic liver disease; DP.MASLD: diagnostic prediction 

model for MASLD. *Statistically significant (P < 0.05). 
 

Table 4. Predictive performance of the DP.HCC model for HCC 
tissue classification. 

Variables Training group  Validation group 
AUC 95% CI P–value  AUC 95% CI P–value 

DP.HCC 0.910 0.868–0.952 P < 0.001*  0.981 0.946–1.000 P < 0.001* 
AKR1B10 0.832 0.779–0.884 P < 0.001*  N/A N/A N/A 
FABP4 0.677 0.604–0.751 P < 0.001*  0.574 0.352–0.796 P = 0.474 
GNMT 0.652 0.577–0.727 P = 0.001*  0.922 0.808–1.000 P < 0.001* 
THBS1 0.736 0.657–0.815 P < 0.001*  0.832 0.687–0.978 P = 0.001* 

AUC: area under the curve; 95% CI: 95% confidence interval; HCC: hepatocellular 
carcinoma; DP.HCC: diagnostic prediction model for HCC. *Statistically significant 
(P < 0.05). 

 
To better understand the molecular mechanisms 

underlying MASLD progression to HCC, GSEA 
analysis was performed to analyze the enriched 
co-expressed genes in the three modules (purple, 
light-yellow, and dark-turquoise). The co-expressed 
genes in the three modules were significantly 
enriched in several KEGG pathways including 
extracellular matrix-receptor interaction, DNA 
replication, and T-cell receptor signaling (q-value < 
0.05, Figure 6C). GO analysis results indicated that, at 
the biological process level, the co-expressed genes in 
these three modules were closely associated with the 
cellular response to transforming growth factor beta 
stimulus, DNA replication, and lymphocyte 
differentiation (q-value < 0.05, Figure 6D).  

 
 

 
Figure 5. Diagnostic value of the DP.HCC model and its gene members in HCC samples. (A) ROC curves of the DP.HCC model and its gene members for the classification of 
HCC tissues (cancerous versus non-cancerous) in the training group (GSE76427, TCGA, and ICGC). (B) ROC curves of the DP.HCC model and its gene members for the 
classification of HCC tissues (cancerous versus non-cancerous) in the validation group (GSE84005). AUC: area under the curve; DP.HCC: diagnostic prediction model for HCC; 
HCC: hepatocellular carcinoma; ROC: receiver operating characteristic; 95% CI: 95% confidence interval. 
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Figure 6. Functional pathways of modules related to oncogenesis from MASLD to HCC. (A) WGCNA showes correlations between module eigengenes and MASLD attributes 
(AKR1B10, GNMT, DP.HCC score, MASLD histological class, and age). Each block contains the correlation coefficient and P-value. (B) Verification of the correlation between 
WGCNA gene modules and MASLD traits (DP.HCC score and MASLD histological class). Scatter plots were used to illustrate the correlations of gene significance for traits 
versus module membership in the dark-turquoise, light-yellow, and purple modules. The Pearson score and P-value of each module are shown at the top left of each figure. (C) 
KEGG gene sets (P < 0.05) enriched by co-expressed genes in the WGCNA gene modules of dark-turquoise, light-yellow, and purple. (D–F) Results of GO analysis, including 
biological process gene sets (P < 0.05) (D), cellular component gene sets (P < 0.05) (E), and molecular function gene sets (P < 0.05) (F), enriched by co-expressed genes in the 
dark-turquoise, light-yellow, and purple modules. DP.HCC: diagnostic prediction model for HCC; GO: Gene Ontology; HCC: hepatocellular carcinoma; KEGG: Kyoto 
Encyclopedia of Genes and Genomes; MASLD: metabolic dysfunction-associated steatotic liver disease; WGCNA: Weighted gene correlation network analysis. 
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At the cellular component level, the co-expressed 
genes were linked to the collagen-containing 
extracellular matrix, chromosomal region, and 
external side of plasma membrane (q-value < 0.05, 
Figure 6E). Regarding molecular function, the 
co-expressed genes were identified as extracellular 
matrix structural constituent, single-stranded DNA 
helicase activity, and ATP-dependent activity acting 
on DNA (q-value < 0.05, Figure 6F). The pathways 
enriched by the co-expressed genes in the three 
modules are closely related to MASLD progression to 
HCC in male patients (Table S5). 

Discussion 
The most common liver disease worldwide is 

MASLD, characterized by excessive lipid 
accumulation in hepatocytes. Due to its complex 
etiology and lack of methods to diagnose MASLD, 
experts have developed new diagnostic criteria and 
renamed these conditions metabolic 
dysfunction-associated fatty liver disease [32]. 
However, the molecular mechanisms underlying 
pathological fatty liver progression to HCC remain 
unclear. The increasing incidence of MASLD and the 
concurrent increase in the number of hepatocellular 
carcinoma (HCC) cases at a global level is a matter of 
concern [33]. HCC has several risk factors, of which 
MASLD and its associated metabolic disturbances are 
of great interest due to their accelerating rise in 
incidence worldwide. The HCC annual incidence 
among patients with MASLD is approximately 1.8 per 
1,000 person-years [34]. MASLD, a metabolic 
inflammation-based liver disease, shows a sex-specific 
prevalence with a higher incidence in males than 
females [35]. Compared with females, males exhibit 
increased visceral fat deposition, lack estrogen 
signaling, and tend to synthesize fatty acids for fat 
storage. Males with MASLD also experience more 
severe hepatic fibrosis and a higher HCC incidence 
than females [36, 37]. There is an increasing awareness 
regarding the effects of sex on liver disease and cancer 
outcomes [38, 39]. Therefore, it is necessary to explore 
non-invasive biomarkers to develop a novel strategy 
for the early detection of male patients with 
MASLD-associated HCC [40, 41]. 

Currently, liver biopsy remains the gold 
standard for diagnosing MASLD and HCC in clinical 
practice. However, its invasive nature and various 
limitations make it impractical for the early diagnosis 
and monitoring of MASLD-HCC [40, 42]. Serum 
biomarkers such as aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), and 
alpha-fetoprotein (AFP) provide valuable insights 
into liver function, inflammation, and disease risk 
[43]. Nevertheless, these biomarkers have limitations, 

including a lack of specificity and sensitivity, and they 
do not offer real-time insights. Therefore, there is a 
pressing need to enhance existing markers and 
discover novel markers [43]. Molecular diagnostics 
have introduced personalized medicine, helping 
doctors understand the relationship between genetics 
and liver function. This approach facilitates 
customized diagnosis, disease prediction, and 
treatment for patients with liver disease [44]. Omics 
technologies, including genomics, transcriptomics, 
proteomics, and metabolomics, are leading the way in 
finding new biomarkers, enabling precise diagnosis 
and personalized care [14]. The integration of omics 
data with advanced algorithms, including machine 
learning, holds significant promise for identifying 
novel molecular markers and enhancing personalized 
monitoring, prevention, and treatment strategies. 
Recent studies have increasingly employed machine 
learning to identify accurate biomarkers and 
molecular diagnostics for MASLD-HCC. Research has 
demonstrated that the GALAD score model, 
developed from serum markers and clinical features, 
is more accurate and reliable for monitoring HCC in 
patients with chronic liver disease compared to 
traditional single markers [45]. Although this study 
did not differentiate between the various causes of 
chronic liver disease, subsequent research indicates 
that it can also assess HCC risk in patients with 
MASH [46]. Recently, Luis A. Rodriguez et al. 
developed a highly accurate predictive model 
utilizing electronic health data from over 1.8 million 
patients with MASLD to differentiate between those 
with and without HCC. This model serves as a 
promising starting point for monitoring 
MASLD-HCC [47], although it does not elucidate the 
molecular mechanisms underlying MASLD-HCC. 
Therefore, the novel biomarkers and molecular model 
we identified based on transcriptomic data are 
essential for monitoring MASLD-HCC. These 
findings not only demonstrate high accuracy and 
reliability across various datasets but also provide a 
robust foundation for developing tailored clinical 
strategies for diagnosing, predicting, and treating 
MASLD-HCC. 

In the present study, transcriptomic data of male 
liver samples from GEO, ArrayExpress, TCGA, and 
ICGC databases were used to establish prediction 
models for the early detection and surveillance of 
MASLD-associated HCC. Five DEGs with diagnostic 
values for male MASLD-associated HCC were 
screened: AKR1B10, CYR61, FABP4, GNMT, and 
THBS1. The DP.HCC and DP.MASLD models were 
established using the elastic net method to analyze 
these DEGs. The AUC of the DP.HCC model in the 
training and validation datasets was 0.910 and 0.981, 
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respectively. Thus, we established molecular models 
with robust and reliable accuracy for the quantitative 
assessment of the MASLD-HCC progression risk in 
males. The DP.MASLD and DP.HCC models not only 
demonstrate strong predictive performance but also 
provide a cost-effective alternative to traditional 
diagnostic methods. By utilizing non-invasive 
biomarkers and transcriptomic data, these models can 
reduce healthcare costs and enhance patient comfort, 
particularly in high-risk male populations. The 
increasing availability and affordability of molecular 
testing platforms, such as RT-qPCR and RNA-seq, 
further improve the feasibility of implementing these 
models in clinical practice. They can be seamlessly 
integrated into routine screening for the early 
detection of MASLD-associated HCC with minimal 
disruption to current workflows. Moreover, by 
integrating these models with electronic health record 
systems, automated risk assessments could become a 
reality, leading to timely interventions and improved 
patient outcomes. Ultimately, we aim to advance the 
development of novel diagnostic approaches and 
sex-specific therapies for male patients with 
MASLD-associated HCC. 

The four DEGs (AKR1B10, FABP4, GNMT, and 
THBS1) selected to build the diagnostic models had 
been previously examined as molecular markers of 
MASLD and HCC. AKR1B10, a human nicotinamide 
adenine dinucleotide phosphate (NADPH)- 
dependent reductase, was upregulated in HCC and 
MASLD [48]. AKR1B10 is a potent marker for 
differentiating early HCCs from benign hepatic 
lesions, with better diagnostic performance than AFP 
[49]. Although MASH is diagnosed via biopsy, 
non-invasive methods are preferable. Serum or 
plasma AKR1B10 could be a non-invasive biomarker 
for predicting MASLD progression and HCC 
development [50]. Moreover, the study suggests that 
the E2F1/AUF1/AKR1B10 axis may represent a 
potential therapeutic target for HCC [51]. Fatty 
acid-binding protein 4 (FABP4) plays a crucial role in 
fatty acid transport and is significantly elevated in the 
serum of patients with MASLD and HCC [52]. FABP4 
may contribute to carcinogenesis, particularly in the 
context of underlying obesity [52, 53]. Targeting the 
FABP4-related fatty acid metabolic axis could 
potentially prevent the progression of MASH to HCC 
[54]. Glycine N-methyltransferase (GNMT) is the most 
abundant methyltransferase and an important 
enzyme involved in S-adenosylmethionine catabolism 
in the liver [55]. MASLD development and 
progression to HCC are characterized by the 
downregulation of GNMT. Loss of liver GNMT 
promotes liver steatosis and the transition to HCC 
[56]. Furthermore, GNMT deficiency may impair the 

efficacy of transarterial chemoembolization (TACE) in 
HCC treatment by affecting hypoxia signaling and 
glycolysis pathways [57]. Thrombospondin 1 
(THBS1/TSP1), a matricellular glycoprotein, 
modulates various cellular functions by interacting 
with extracellular proteins and cell-surface receptors. 
Although its role in liver diseases is not fully 
understood [58], research indicates that THBS1 
promoter methylation may inhibit tumor 
angiogenesis in HCC, suggesting THBS1 as a potential 
therapeutic target [59]. While the diagnostic and 
therapeutic potential of these biomarkers in MASLD 
and HCC requires further validation, our findings 
offer valuable insights for exploring candidate 
biomarkers for the diagnosis and treatment of 
MASLD-associated HCC. 

It is well-established that MASLD can progress 
from simple steatosis to steatohepatitis and further 
develop into HCC [60]. However, the specific 
molecular events in the liver that drive this 
progression remain poorly understood. Recently, 
several studies have attempted to explore hub genes 
and mechanisms involved in the pathological process 
of MASLD or MASH. For example, using 
bioinformatic analyses, two research groups 
identified one consistent hub gene (AKR1B10) for the 
liver steatosis progression to MASH [61, 62]. Wu et al. 
conducted WGCNA on two GEO datasets (GSE48452 
and GSE89632) and screened 10 potential hub genes in 
MASLD [63]. Immune infiltration analysis has also 
revealed the pathways related to MASH 
inflammation [62, 64]. However, the hub genes 
identified in these studies did not distinguish between 
male and female patients. Additionally, they only 
analyzed DEGs between MASLD (steatosis or 
steatohepatitis) and normal liver tissues but not 
between HCC and non-cancerous tissue samples. In 
fact, sex, sex hormones, and gender habits affect the 
risk profiles and phenotypes of liver disease [38, 65]. 
Thus, appropriately considering these aspects could 
lead to a better understanding of the sex differences in 
MASLD-HCC risk, molecular characteristics, and 
therapeutic targets and aid in achieving sex-specific 
therapies. 

In this study, we focused on male patients who 
are at an elevated risk of developing MASLD-HCC. 
We investigated the disease progression from normal 
liver tissue through MASLD to HCC. Utilizing 
WGCNA, GO functional, and KEGG pathway 
enrichment analyses, our results demonstrate that the 
pathogenesis of MASLD-HCC in males is primarily 
associated with dysregulation in the cell cycle, DNA 
replication, extracellular matrix-receptor interaction, 
and T-cell receptor signaling pathways. Notably, the 
cell cycle checkpoint functions as a critical regulatory 
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mechanism for DNA replication, ensuring the 
prevention of genetic errors during cell division [66]. 
This underscores the close connection between the cell 
cycle and DNA replication pathways, where their 
dysregulation plays a crucial role in occurrence and 
development of MASLD-HCC [67]. Chronic liver 
inflammation in MASH has been identified as a 
potential trigger for HCC, even in the absence of 
cirrhosis [68]. T-cell receptor pathways significantly 
contribute to carcinogenesis and the regulation of 
liver tumorigenesis in MASLD. For instance, in 
MASH mouse models, the activation of CD8+ T cells 
and natural killer T cells has been shown to accelerate 
tumor development [69]. Conversely, CD4+ T cells are 
essential for effective immune surveillance, reducing 
the risk of malignant transformation in hepatocytes 
[70]. The selective loss of CD4+ T lymphocytes in 
MASLD may facilitate HCC progression [71]. The 
tumor microenvironment in HCC is characterized by 
interactions between various immune cells and 
non-immune stromal cells, such as cancer-associated 
fibroblasts and endothelial cells. The extracellular 
matrix-receptor interaction pathway plays a vital role 
in shaping the HCC tumor microenvironment [72]. 
Additionally, stromal cells within the tumor 
microenvironment are key regulators of tumor 
growth, invasion, and metastasis [73, 74]. 

Our study had the following limitations: First, 
the overlapping DEGs between MASLD and HCC 
screened here may not fully represent the DEGs in 
MASLD progression to HCC because the HCC 
samples might include patients with other 
HCC-associated diseases such as viral hepatitis and 
alcoholic liver disease. Second, it is crucial to integrate 
clinical information to enhance the robustness of our 
model. Future studies that involve the integration of 
clinical data to further refine and validate our model’s 
predictive capabilities are significant. Third, we 
focused only on male patients and screened for 
common DEGs between MASLD and HCC. In the 
future, the exact roles of DEGs in female patients with 
MASLD and HCC should be studied accordingly, and 
the molecular characteristics of MASLD-associated 
HCC in males and females should be compared. 

Conclusions 
Our study established a robust and accurate 

molecular model for monitoring the progression of 
MASLD-HCC in male patients, providing a valuable 
risk assessment tool for disease progression. This tool 
is expected to enhance early diagnosis, pathological 
grading and support the molecular classification of 
MASLD-HCC in clinical practice. Moreover, our 
research elucidates the key biological functions and 
molecular pathways involved in the progression from 

MASLD to HCC, offering critical insights into the 
underlying molecular mechanisms. These findings 
may provide valuable insights into the molecular 
characteristics of MASLD-HCC in males, facilitating 
the development of sex-specific therapies. 
Consequently, our study lays a solid theoretical 
foundation for the future development of molecular 
diagnostics and targeted therapies specifically 
designed for male MASLD-HCC patients. 
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