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Abstract 

The ubiquitin-proteasome system influences cancer progression through multiple mechanisms. Due to 
the extensive proteasomal modifications observed in cancer tissues, ubiquitination is closely related to 
various biological functions with cancer. However, the roles of ubiquitin-related genes (UbRGs) in breast 
cancer (BC) have not been thoroughly investigated. In this study, we retrieved 763 reliable UbRGs and 
identified a potential prognostic signature for breast cancer patients. Additionally, we analyzed eight 
overall survival-associated UbRGs using univariate Cox proportional hazard regression in the Cancer 
Genome Atlas (TCGA) database. Subsequently, we used Lasso-Cox risk regression analysis to generate 
prognostic characteristics of UbRGs associated with overall survival (OS), validated in an external cohort 
(GSE158309). Next, we compared differences in tumor microenvironment and drug sensitivity between 
subgroups, describing the potential impact of UbRGs on the landscape of the tumor immune 
microenvironment and their predictive significance for therapeutic resistance to different strategies. 
Furthermore, a nomogram model containing eight genes, histology, subtype, T status, N status, and the 
American Joint Committee on Cancer (AJCC) stage was constructed. Finally, in vitro and in vivo 
experiments validated the effects of FBXL6 and PDZRN3 on breast cancer development. In conclusion, 
we demonstrate that ubiquitin-related genes are closely associated with breast cancer prognosis, immune 
environment, and drug sensitivity. Our results offer a new insight into breast cancer treatment. 
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1. Introduction 
Breast cancer became the most prevalent cancer 

in the world in 2020 and was the fifth leading cause of 
cancer mortality worldwide[1]. Early-stage breast 
cancer patients generally have a better prognosis. 
However, advanced-stage breast cancer can still have 
a poor prognosis due to its varying heterogeneity[2]. 
Breast cancer has a complex pathogenesis that 

includes gene mutations, immune abnormalities, 
dysregulation of apoptosis, increased cell 
proliferation, invasion, and metastasis[3]. Targeted 
therapy has become a prominent area of research in 
breast cancer[4]. Therefore, we need to develop novel 
biomarkers for breast cancer detection and identify 
new therapeutic approaches to improve the prognosis 
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of metastatic breast cancer[5-7]. Consequently, a new 
biomarker is still needed to identify such BC patients. 

Ubiquitination is a common post-translational 
modification that regulates protein stability and 
degradation. It typically occurs in enzyme-dependent 
reactions and can be reversiblel[8]. Ubiquitination 
involves three main types of enzymes: ubiquitin- 
activating enzymes (E1s), ubiquitin-conjugating 
enzymes (E2s), and ubiquitin-protein ligases (E3s)[9]. 
These UbRGs form a complex network for modifying 
protein substrates[10]. UbRGs regulate many 
biological processes, including protein degradation 
and the cell cycle[11]. Numerous tumor-associated 
proteins undergo ubiquitination and are degraded in 
a proteasome-dependent manner[12]. Some 
ubiquitin-associated proteins interact with 
cancer-associated proteins as one of the critical 
mechanisms of breast cancer pathogenesis. It has been 
shown that RNF126 makes triple-negative breast 
cancer patients more sensitive to radiation by 
controlling DNA damage repair through the 
ATR-CHK1 pathway[13]. Thus, dysfunction in 
ubiquitination has the potential to promote the 
development of breast cancer[14]. Yang et al. selected 
four ubiquitination genes associated with breast 
cancer prognosis but did not perform analyses related 
to immune and drug susceptibility[15]. Zhao et al. 
revealed that UbRGs might interact with the immune 
phenotype of TNBC, but not in patients with whole 
breast cancer[16]. Thus, there remains a need to 
further reveal the predictive value of the UbRGs in 
breast cancer. 

In this study, we constructed a reliable signature 
derived from UbRGs and systematically evaluated its 
role in the prognosis of BC patients. We revealed 
potential implications among TME features. We also 
explored its response to endocrine therapy, 
chemotherapy, and targeted therapy. Then, a 
monogram graph was created that combined risk 
scores with other clinical indicators to predict the 
survival probability of BC patients. Finally, the effects 
of FBXL6 and PDZRN3 on breast carcinogenesis were 
experimentally verified. Our analysis suggests that 
UbRGs may be useful as predictive biomarkers for 
breast cancer and are crucial to the disease's 
development. 

2. Materials and Methods   
2.1 Data acquisition and collection of UbRGs 

The workflow is shown in Figure 1. We collected 
763 ubiquitin-related genes from the iUUCD 2.0 
database for our study. The gene expression profiles 
and corresponding clinical data for breast cancer were 
obtained from TCGA (a training cohort) and GEO (an 

external validation cohort). After excluding patients 
without clinicopathological data or OS time 
information, we obtained 112 normal breast samples, 
700 breast cancer samples from TCGA-BRCA, and 460 
breast cancer patients from GSE158309. 

2.2 Consensus clustering analysis 
We used a method called "PAM" to identify 

patient subtypes based on the expression levels of 
UbRGs in the TCGA-BRCA dataset. The number of 
clusters was determined in the TCGA-BRCA cohort 
using the R package "ConsensusClusterPlus", and the 
process was repeated 1,000 times to ensure the 
stability of the classification[17]. We utilized 
Kaplan-Meier survival curves to compare overall 
survival across the different clusters in the TCGA 
dataset. We performed a three-dimensional principal 
component analysis (PCA) to visualize the differences 
in the distribution of subtypes. The “limma” R 
package was used to analyze differentially expressed 
genes between clusters. The screening criteria were 
|log2FC| ≥ 1 and an adjusted p-value < 0.05. 

2.3 Establishment and evaluation of UbRGs 
prognostic signature  

We used the "Survival" R package to conduct a 
one-way Cox regression analysis on the TCGA-BRCA 
dataset to identify possible prognostic genes 
associated with ubiquitination. Cox regression 
analysis with LASSO penalties was performed to 
identify potential signature genes[18]. Finally, 
multifactor Cox regression analysis was employed to 
determine the regression coefficients for each gene. 
According to the predictive model, the ubiquitin 
correlation index for each BC patient was determined 
using the following formula:  

�𝛽𝛽
𝑛𝑛

𝑖𝑖=1

𝑖𝑖 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖) 

n stands for the number of genes in the 
predictive model, β represents the regression 
coefficient, and Expgene(i) denotes the expression 
level of each gene. To explore the importance of each 
essential gene, we examined the expression level of 
those genes in the TCGA-BRCA database. The KM 
analyzed the relationship between each gene and 
breast cancer prognosis. We divided the samples into 
low-risk and high-risk groups based on median risk 
scores. KM analyses of high-risk and low-risk groups 
of BC patients were performed in the TCGA-BRCA 
and GEO datasets for OS to assess the reliability of the 
prognostic impact of ubiquitin-associated signatures 
on breast cancer patients. The association between 
risk scores and survival status is presented in a 
visualization through bar charts. This study examined 
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the OS of two groups of breast cancer patients with 
different estrogen receptor (ER) status, AJCC stages, T 
status, and N status. This was done to show that 
ubiquitin-related signatures affect the OS of BC 
patients in different subgroups. We also applied 
GSEA analysis to evaluate the clinical value of these 
subtypes. 

2.4 Signaling pathways and cellular processes 
are affected by ubiquitin-related signatures  

We analyzed differential genes in the two 
groups. We found differences in immune cell 
infiltration and immune function using the 
"GSEABase" software package for single-sample gene 
set enrichment analysis (ssGSEA). The CIBERSORT 
deconvolution technique is used to quantify the 
abundance of 22 tumor immune-infiltrating cell types 
in BC samples with high and low URI[19]. The 
analysis of potential pathways associated with DEG 
was enriched through Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
analyses using the "DOSE” and "org.Hs.eg.db" R 
packages. 

2.5 Drug sensitivity analysis  
The “prophetic” R package predicted the 

difference in drug sensitivity between the two 
groups[20]. The guidelines recommend using 
tamoxifen, fulvestrant, cyclophosphamide, cisplatin, 
paclitaxel, epirubicin, gefitinib, and lapatinib to treat 
breast cancer[21]. The differences in IC50 between the 
two drugs were analyzed using the original meaning 
while ensuring clarity. 

2.6 Construction of calibration curves and 
nomograms 

Based on these results, a ubiquitination-related 
clinicopathological nomogram model was developed 
using the "replot" and "rms" R packages. These 
packages combine URIs with age, T-status, N-status, 
histology, AJCC stage, and subtype in the training set. 
We plotted calibration curves and DCA for breast 
cancer patients to evaluate the predictive efficacy of 
the model. 

 

 
Figure 1. The flow chart of the study. 
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2.7 Cell lines and cell culture 
MCF10A, MDA-MB-231, and CAL51 cell lines 

were purchased from the Cell Bank of the Chinese 
Academy of Sciences (Shanghai, China). A specialised 
culture medium was used for MCF10A cells (Procell, 
China); DMEM medium (Gibco, USA) was used to 
culture MCF7 and MDA-MB-231 cells; and 1640 
medium (Gibco, USA) was used to culture CAL51 
cells. 1% penicillin/streptomycin solution (Gibco) and 
10% fetal bovine serum (Gibco) were added to all 
media. All cell lines were cultured in a suitable 
incubator. 

2.8 Cell transfection 
The small interfering RNA of FBXL6, short 

hairpin RNA of FBXL6, Full-length cDNA of human 
PDZRN3, and their control plasmids were purchased 
from Riobo (Anhui, China). Stable down expression of 
FBXL6, overexpression of PDZRN3, and their control 
cell groups were established by lentivirus infection in 
MDA-MB-231 cells. Cells were transfected with 
siFBXL6-1 and siFBXL6-2 using the transfection 
reagent Lipofectamine®2000 (Invitrogen). Further 
experiments were performed on the transfected cells 
after 48 hours. The western blot analysis was 
performed to verify the knockdown and 
overexpression efficiency.  

2.9 Western blot analysis 
The cells were lysed with RIPA buffer (Solarbio, 

Beijing) containing one mM PMSF. The protein 
concentration was measured using the BCA Protein 
Assay Kit (Thermo Fisher Scientific). Proteins were 
separated using SDS-PAGE and transferred to a 
polyvinylidene difluoride membrane (Millipore, 
Bedford, MA, USA). The PVDF membranes were 
blocked using milk and then incubated with the 
corresponding primary antibodies overnight at 4°C. 
The next day, they were incubated with secondary 
antibodies for one hour at room temperature. The 
blots were developed using an enhanced 
chemiluminescence (ECL) reagent (Millipore). The 
antibody information used in this research is listed in 
Table S1. 

2.10 RNA isolation and quantitative real-time 
PCR analysis 

Total RNA from the cultured cells was extracted 
using the SPARKeasy Animal Tissue/Cell RNA Kit 
(SparkJade, China). A NanoDrop 3000 
spectrophotometer (Thermo Scientific, USA) was used 
to measure the concentration and purity of RNA. 
Subsequently, the RNA was reverse-transcribed into 
cDNA for further experiments. TransStart SYBR 

Green qPCR SuperMix (TransGen, China) was used to 
set up the reaction system. The QuantStudio 5 Flex 
real-time PCR system (Applied Biosystems, USA) was 
used for the quantitative qRT-PCR. GAPDH was used 
as an internal standard. All samples were run in 
triplicate. The specific sequences are listed in Table S2. 

2.12 Cell proliferation and colony-forming 
assay 

For the Cell Counting Kit-8 assay, 2000 cells per 
well were plated into a 96-well plate and cultured in 
an incubator. Then, 100 µl of CCK8 solution was 
added to each well at a fixed daily time from the 
second to the fifth day. After an additional 2 hours of 
incubation, the cells in each well were measured at 
450 nm (OD450). 

For the colony-formation assay, 500 cells were 
inoculated into 6-well plates and cultured for three 
weeks. After that, the cells were fixed with cell 
fixative for 30 min and stained with 0.2% crystal violet 
for 15 minutes. The stained cells were washed with 
PBS three times and photographed under a 
microscope to count the colonies. 

2.13 Cell invasion and migration assay 
Transwell assays were used to investigate the 

ability of cells to invade and migrate. A transwell 
filter (Corning) was placed into a 24-well plate, 
culture medium and cell suspension in 20% FBS was 
added to the upper chamber, and serum-free culture 
medium was added to the lower chamber to detect 
migration ability. An additional 100 μl of Matrigel 
was added to the upper chamber to detect invasion 
ability. The cells in the upper chamber were removed 
after being incubated at 37°C for a specific duration. 
The cells in the lower chamber were then fixed with 
4% paraformaldehyde, stained with 0.2% crystal 
violet solution, and subsequently photographed. 

For the wound healing/scratch assay, cells were 
seeded into 6-well plates. After 24 hours, three vertical 
scratches were made in each well using a 20-μl sterile 
pipette tip to create a wound for assessment of cell 
migration. They were washed twice with PBS and 
incubated in a serum-free medium. Two randomly 
selected fields of view were photographed at 0H, 24H, 
and 48H after the scratches were produced. Distances 
were measured perpendicular to the edge of the 
scratch and analyzed using Adobe Photoshop 
software. 

2.14 Xenograft and immunohistochemistry 
assays 

 1 × 107 cells were subcutaneously inoculated in 
female NOD/SCID/IL2 receptor γ null (NSG) mice. 
The tumor's size was measured every five days, and 
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the tumor volume was calculated according to the 
formula [V = (L × W)2/2]. After thirty days, the 
animals were put down, and measurements were 
taken of the tumor's size and weight. The Animal 
Ethics Committee has authorized all animal research, 
and all researchers adhere to animal welfare rules. 

The breast cancer tissues of mice were collected 
and fixed in 4% paraformaldehyde at 4 °C overnight. 
The tissue was then embedded, and the wax block 
was cut into thin slices (4 µm) using a microtome. The 
sections were dewaxed, and the first antibody was 
incubated overnight at 4 °C by retrieving the antigen 
in sodium citrate buffer. Incubate the secondary 
antibody the next day, then conduct DAB color 
development and hematoxylin staining. Dehydrate 

the samples and finally seal the film. The microscope 
camera was used to obtain images, and each slice was 
scored using immunohistochemistry. Table S1 lists the 
antibody information utilized in this study. 

2.15 Statistical analysis 
A student’s t-test was used to assess the 

statistical significance of differences between the two 
data groups. A one-way ANOVA was used to 
determine the importance of differences between the 
study's three or more experimental groups. SPSS 
version 26.0 (IBM Corp, USA) was used for statistical 
analysis, and the GraphPad Prism software version 
7.0.0 (GraphPad Inc, US) was used for plotting. 

 

 
Figure 2. The landscape and consensus clustering of UbRGs in BRCA. (A) Bar plot of the Gene Ontology enrichment analysis of ubiquitin genes; (B) Volcano plot 
exhibiting 225 DEGs among UbRGs; (C) Consensus clustering cumulative distribution function (CDF) for k = 2–9; (D) Consensus clustering matrix for k = 2; (E) Kaplan–Meier 
analysis of overall survival for 622 patients with thyroid carcinoma from TCGA database; (F) Principal component analysis of the total RNA expression profile from TCGA 
database. 
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3. Results 
3.1 The landscape and clustering analysis of 
UbRGs in breast cancer  

The ubiquitin-proteasome system is the 
signature pathway for degrading proteins involved in 
the breast cancer process[22]. We analyzed 763 UbRGs 
from the TCGA and GEO datasets to characterize the 
role of those genes in breast cancer patients. Our 
study flow chart is illustrated in Figure 1. The GO 
enrichment analysis showed that these UbRGs 
involve biological processes related to ubiquitinating 
proteins (Figure 2A). We found that 225 UbRGs were 
differentially expressed in breast cancer, of which 145 
UbRGs were enhanced, and 70 UbRGs were 
attenuated (Figure 2B).  

We identified two subgroups through a 
consistent clustering analysis of TCGA-BRCA 
patients, examining the various degrees of UbRG 
expression. According to the cumulative distribution 
function (CDF) curve, the best clustering was 
obtained when k was 2 (Figure 2C). When the K value 
was set to 2, TCGA-BCRA database patients were 
categorized into two subtypes: cluster 1 (n = 622) and 
cluster 2 (n = 190; Figure 2D). A survival analysis 
revealed that the OS time in cluster 1 was shorter than 
in cluster 2 (p < 0.05; Figure 2E). We performed a 
principal component analysis to prove whether the 
two subtypes can be separated. The results indicated 
that the two samples were well separated from each 
other (Figure 2F). The results suggest that 
ubiquitination genes may differ among breast cancer 
patients. 

3.2 Identification of Prognostic UbRGs in 
Breast Cancer Patients 

Considering the prognostic significance of the 
different subtypes, we analyzed the key genes that 
differed in the TCGA-BRCA cohort based on the 
differential expression of UbRGs. Firstly, one-way 
Cox regression analysis showed that eight genes had 
the most significant difference in expression in breast 
cancer (P<0.001) (Figure 3A). We then performed 
Lasso-Cox regression analysis on candidate 
OS-related ubiquitin-related genes and identified the 
best UbRGs. Ultimately, based on the above eight 
genes, UbRGs signatures were established, which 
embodied USP39, PSMD14, PDZRN3, TLE3, DCAF13, 
SOCS2, SKP2, and FBXL6 (Figures 3B, C). As shown in 
Figures 3D and 3E, PCA analysis demonstrated that 
breast cancer patients could be well differentiated 
based on these eight specific genes. In addition, we 
aim to further demonstrate the different expression 
levels and independent predictive ability of each 
UbRGs in breast cancer. We used TCGA-BRCA data 

to show the expression level box line plots (Figure 3F) 
and the overall survival Kaplan-Meier curves (Figure 
3G). We observed the expression of these genes in 
breast cancer tissues using the HPA database. The 
expression levels of UbRGs in MCF10A, MCF7, and 
MDA-MB-231cell lines were determined using 
RT-qPCR. The results of the analysis of data from the 
databases and RT-qPCR were consistent with one 
another. (Figure 4). 

3.3 Construction and Validation of UbRGs 
Relevant Prognostic Signature for Breast 
Cancer Patients 

According to the signature, the ubiquitin-related 
index (URI) of each patient was as follows: 
ubiquitin-related index (URI) = Expression of USP39 * 
0.304120 + Expression of PSMD14 * 0.312790 − 
Expression of PDZRN3 * 0.373859 − Expression of 
TLE3 * 0.396868 + Expression of DCAF13* 0.197475 − 
Expression of SOCS2 * 0.130334 + Expression of SKP2* 
0.004816 + Expression of FBXL6* 0.198389. In 
addition, we identified the risk score as an 
independent prognostic biomarker for breast cancer 
patients. The Age (P < 0.001, HR = 1.039, 95% 
CI = 1.015 - 1.064), Subtype (P = 0.003, HR = 1.379, 95% 
CI = 1.115 - 1.705), Stage (P < 0.001, HR = 2.504, 95% 
CI = 1.749 - 3.586), and Risk Score (P < 0.001, 
HR = 2.909, 95% CI = 2.053 - 4.123) were significantly 
correlated with the overall survival (Figure 5A). As 
shown in Figure 5B, Multifactor Cox regression 
analysis showed that the Age (P < 0.001, HR = 1.044, 
95% CI = 1.019 - 1.071), Stage (P < 0.001, HR = 2.531, 
95% CI = 1.729 - 3.705), and Risk Score (P < 0.001, 
HR = 2.512, 95% CI = 1.738 - 3.631) were identified as 
the independent prognostic factors in patients with 
breast cancer. URI values were calculated for each 
sample, and based on the mean value of URI, we 
categorized BC patients into high and low URI 
groups. We performed a K-M analysis to assess the 
predictive prognostic feasibility of URI. We found 
poorer OS in the high URI group than in the low URI 
group in the training set (Figure 5C) and the same 
result in the validation set (Figure 5D). As expected, 
the percentage of deaths among patients in the 
low-risk group in the TCGA database was lower than 
in the high-risk group (Figure 5E). In the GEO 
database, the percentage of deaths was also found to 
be different between groups. (Figure 5F). We also 
determined whether the risk score can predict clinical 
prognosis in breast cancer stratified by ER status 
(Figures 6A, B), stage (Figures 6C, D), tumor size 
(Figures 6E, F), and lymph node status (Figures 6G, 
H). We found that the risk score could predict 
outcomes better in the low stage than in the high stage 
(Figures 6C, D). 
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Figure 3. Construction of ubiquitin-related signature in TCGA-BRCA cohort. (A) Statistically significant (p < 0.01) UbRGs of the predictive model based on univariate 
Cox proportion hazards regression; (B) LASSO plot of 8 genes with ubiquitination LASSO model; (C) Partial likelihood deviance for the Lasso regression; (D) Principal 
component analysis of all the genes in the TGGA-BRCA cohort; (E) Principal component analysis of the gene-expression profiles in the TGGA-BRCA cohort; (F) The expression 
level of 8 UbRGs contained in the signature; (G) Kaplan–Meier (K-M) analyses of OS based on the expression level of 8 UbRGs. * p < 0.05; *** p < 0.001; ns means no 
significance. 
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Figure 4. The expression level of UbRGs. (A) Analysis of the protein expression level of USP39, PSMID14, PDZRN3, DCF13, SKP2, and SOCS2 in breast cancer by the 
Human Protein Atlas (HPA) database; (B) The expression of USP39, PSMID14, PDZRN3, TLE3, DCF13, SKP2, SOCS2, and FBXL6 in indicated cells determined by RT-qPCR. * 
p < 0.05; ** p < 0.001; *** p < 0.001; **** p < 0.0001; ns means no significance. 

 

3.4 Integrated assessment of URI and clinical 
parameters in patients with breast cancer 

There have been many identified prognostic 
factors associated with cancer, including age, subtype, 
histology, AJCC stage, and TNM status. We further 
examined the relationship between URI and various 

clinical characteristics. As illustrated in Figure 7A, the 
risk score was significantly associated with T status, 
AJCC stage, subtype, and histology. Patients with 
high-risk scores exhibit adverse clinical features 
(Figures 7B-G). 
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Figure 5. Evaluation and validation of the utility of URI. (A) The univariate Cox regression analysis in TCGA-BRCA cohort. (B) The multivariate Cox regression analysis 
in the GSE158309 cohort. (C) K-M analyses of OS between high- and low-URI groups in TCGA-BRCA cohort. (D) K-M analyses of OS between high- and low-URI groups in 
GSE158309 cohort. (E-F) The survival status distribution of the expression of the 8 UbRGs in patients in the training and testing sets. 

 

3.5 The tumor microenvironment and drug 
sensitivity in patients with UbRGs relevant 
prognostic signature 

We investigated whether there is a correlation 
between tumor microenvironment (TME) and URI 
using the R package. The high-risk group had high 
infiltration of regulatory T cells (Tregs), M0 
macrophages, follicular helper T cells, active CD4 

memory T cells, and M1 macrophages, while the 
high-risk group had high naive B cells, resting CD4 
memory T cells, M2 macrophages, and resting mast 
cells (Figure 8A). Next, we examined differences in 
the expression patterns of immune-related genes in 
low-risk and high-risk patients (Figure 8B). Most 
immune-related cells were expressed at low levels in 
the high-risk group. 
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Figure 6. Kaplan–Meier analysis of overall survival in patients with thyroid carcinoma stratified by ER status (A, B), stage (C, D), T status (E, F), and N status (G, H). 

 
Figure 7. Correlation analysis between the clinical features and risk score of patients with BRCA in the TCGA cohort. (A) Correlation analysis between the 
risk signature and clinical characteristics in TCGA-BRCA cohort; (B-G) The comparison of risk scores between samples with different clinical characteristics, including histology 
(B), subtype (C), immune subtype(D), stage (E), T status (F), and N status (G). *** p < 0.001. 
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Figure 8. Immune landscape and immune cells abundance between the high- and low-URI groups. (A)The analysis of differences in immune cell infiltration 
between the two groups with ssGSEA; (B) The analysis of differences in immune functions between the two groups with ssGSEA. * p < 0.05; ** p < 0.001; *** p < 0.001. 

 
To determine the difference in drug sensitivity 

between low-risk and high-risk categories, we 
correlated breast cancer patients' ubiquitination 
gene-related risk score with the IC50 values of 
chemotherapy, endocrine therapy, and targeted 
therapy. The IC50 values of epirubicin were 
significantly higher in the high-risk group, while the 
IC50 values of the other drugs were lower in this 
group (Figure 9). 

3.6 Development and evaluation of 
ubiquitin-correlated clinicopathologic 
nomogram 

Based on the results above, a clinicopathologic 

nomogram was constructed, which included risk 
score, age, AJCC stage, histology type, and T/N stage, 
to predict the probability of OS of 1, 3, and 5 years in 
BC patients from the TCGA cohort (Figure 10A). ROC 
analysis showed the sensitivity and specificity of the 
ubiquitin-associated nomogram risk score to predict 
1-, 3-, and 5-year survival (Figure 10C). We plotted 
calibration plots to confirm the column charts' 
predictive efficacy. We found that the ubiquitination 
gene-related column charts could better predict the 
prognosis of breast cancer patients (Figure 10D). DCA 
analysis also showed ubiquitin-related features were 
more sensitive and specific than clinicopathologic 
features (Figure 10E). 
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Figure 9. Drug response of subgroups. Prediction of the drug sensitivity (IC50) of (A) tamoxifen, (B) fulvestrant, (C) cyclophosphamide, (D) cisplatin, (E) paclitaxel, (F) 
epirubicin, (G) gefitinib, and (H) lapatinib. p < 0.05 is considered statistically significant.  

 

3.7 Downregulation of FBXL6 inhibited 
proliferation and promoted metastasis in 
breast cancer cells 

We found that FBXL6 was highly expressed in 
breast cancer tissues and negatively correlated with 
prognosis (Figures 3F-3G). Next, we analyzed the 
differential enrichment of biological signaling 
pathways between the FBXL6 expression groups 
using GSEA. The results showed that patients with 
high FBXL6 expression had a significant enrichment 
score in the cell cycle (NES = 1.90, NOM p = 0.004) 
(Figure 11A). We then downregulated the expression 
of FBXL6 in breast cancer cells by constructing a 
siRNA specific to FBXL6 and performed cellular 
function studies. The western blot was performed to 
verify the downregulation of FBXL6 expression 
(Figure 11F). The downregulation of FBXL6 inhibited 
proliferation and migration in breast cancer cells 
(Figures 11B–E). Furthermore, western blot analysis 
showed decreased cell cycle protein D1 expression 
and increased expression of p53, P21, cyclin B1, and 
cyclin D1 (Figure 11F). This suggests that the 
downregulation of FBXL6 inhibits cell cycle 
progression. Next, we performed functional 
experiments by reducing FBXL6 expression in CAL51 
cells and obtained the same results (Figure S3). As 
expected, FBXL6 depletion inhibited cell proliferation 
and migration in CAL51 cells by blocking cell cycle 
transitions. Moreover, the MDA-MB-231 shFBXL6 
cells and MDA-MB-231 shControl cells were 
implanted into the fat pad of NSG mice, and tumor 
growth was recorded at regular intervals. Down 

expression of FBXL6 in MDA-MB-231 cells 
significantly inhibited tumor growth in vivo (Figure 
11G). IHC staining revealed that Ki-67 expression was 
down-regulated in tumors from MDA-MB-231 
shFBXL6 mice compared to MDA-MB-231 shControl 
mice (Figure 11H). 

3.8 PDZRN3 inhibited breast cancer cell 
growth, migration, and invasion 

Our results show that the expression of PDZRN3 
in breast cancer is low, and its expression is related to 
the prognosis of patients (Figures 3F and 3G). The 
GSEA analysis revealed that the WNT signaling 
pathway had a significant enrichment score (NES = 
1.688, NOM p = 0.007) (Figure 11A). We then verified 
this through cellular experiments. First, we 
transfected the PDZRN3 overexpression plasmid into 
the breast cancer cell line MDA-MB-231 to increase 
the expression of PDZRN3(Figure 12F). Functional 
experiments showed that the upregulation of 
PDZRN3 inhibited the proliferation and migration of 
MDA-MB-231 cells (Figures 12B-E). Finally, we used 
western blotting to validate that the insert of PDZRN3 
exhibited decreased expression of β-catenin and 
vimentin (Figure 12F). We also performed functional 
experiments by upregulating PDZRN3 expression in 
CAL51 cells and obtained the same results (Figure S4). 
In vivo, the 231-Control and 231-PDZRN3 cells were 
injected subcutaneously. The results showed that 
over-expression of PDZRN3 significantly inhibited 
tumor growth (Figure 12G). IHC staining revealed 
that tumors from 231-PDZRN3 mice express a lower 
level of (Figure 12H). 
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Figure 10. Construction and assessment of nomogram. (A)The prediction of nomogram in the TCGA-train dataset; (B-C) The multifactor AUC for 3-year survival; (D) 
Calibration curve to evaluate the consistency of predicted and actual OS; (E) Decision curve analysis (DCA) to assess the clinical decision-making benefits of the nomogram. 

 

4. Discussion 
In the past decades, the incidence rate of breast 

cancer in many countries around the world has 
continued to rise. However, the 5-year survival rate 
for patients with advanced breast cancer remains low. 
Evidence from previous studies suggests that 
ubiquitin plays an integral role in the mechanism 
underlying breast cancer development[23-25]. Tumor 

classification studies based on ubiquitin correlation 
profiles emerge[26, 27]. By clarifying the role of 
ubiquitin-related genes in breast cancer heterogeneity, 
researchers can develop more effective treatment 
strategies for breast cancer. In the present study, we 
found that UbRGs are differentially expressed in 
breast cancer and that these differential genes can 
regulate cancer through various biological processes. 
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Figure 11. Downregulation of FBXL6 inhibited the proliferation and migration of MDA-MB-231 breast cancer cells. (A)Top five significantly enriched categories 
in the FBXL6-high group compared with its counterpart in TCGA; (B) The CCK-8 assay was performed to measure the proliferation capacity of MDA-MB-231 cells; (C) The 
colony formation assay and corresponding statistical analysis of MDA-MB-231 cells. The effect of FBXL6 on the migration of MDA-MB-231 cells determined by wound healing (D) 
and Transwell (E) assays; (F) Western blot analysis revealed that downregulation of FBXL6 inhibited the cell cycle progression in MDA-MB-231 cells; (G) Tumor growth of 
subcutaneous xenograft tumors comprising shFBXL6 or shCcontrol cells at the indicated times; H, FBXL6 and Ki67 protein expression levels in the xenograft tumors. ** p < 
0.001; *** p < 0.001; **** p < 0.0001. 
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Figure 12. PDZRN3 inhibited the proliferation and migration of MDA-MB-231 breast cancer cells. (A)Top ten significantly enriched categories in the 
PDZRN3-high group compared with its counterpart in TCGA; (B) The CCK-8 assay was performed to measure the proliferation capacity of MDA-MB-231 and CAL51 cells; (C) 
The colony formation assay and corresponding statistical analysis of MDA-MB-231 and CAL51 cells; The effect of PDZRN3 on the migration of MDA-MB-231 and CAL51 cells 
determined by wound healing (D) and Transwell (E) assays; (F) Western blot analysis of the role of PDZRN3 in MDA-MB-231 and CAL51 cells; (G) Tumor growth of 
subcutaneous xenograft tumors comprising PDZRN3 or control cells at the indicated times. (H) PDZRN3 and Ki67 protein expression levels in the xenograft tumors. ** p < 
0.001; *** p < 0.001; **** p < 0.0001. 

 
Univariate and multivariate Cox proportional 

hazards regression identified prognostic models in 
this study that were significantly associated with 
overall survival in cancer patients (P < 0.001). Eight 
genes were incorporated into this model, consisting of 
USP39, PSMD14, PDZRN3, TLE3, DCAF13, SOCS2, 

SKP2, and FBXL6. The UbRGs signature was 
validated in the test set (GSE158309). Of the eight 
UbRGs, USP39, PSMD14, DCAF13, SKP2, and FBXL6 
are risk factors of BC, and PDZRN3, TLE3, and SOCS2 
are protective factors of BC. We discussed these 
UBRG features. According to recent research, USP39 
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is significantly expressed in a broad spectrum of 
cancerous tumors. It has a role in several biological 
processes, including cell proliferation[28], cell cycle 
progression[29], cell migration and invasion[30], cell 
apoptosis[31], cell regulation[32], and drug 
tolerance[33]. The results of our study indicated that 
USP39 is highly expressed in breast cancer and is 
associated with a poor prognosis. In several types of 
cancer, the oncogene PSMD14 has been found to 
encode deubiquitylation enzymes that function in the 
ubiquitin pathway[34]. Our study found that PSMD14 
is highly expressed in BC tissues and acts as a risk 
factor for BC. DCAF13 is a novel substrate receptor for 
E3 ubiquitin-conjugating enzymes that regulate the 
progression of the cell cycle[35]. A previous study 
found that DCAF13 promotes the polyubiquitination 
of PERP, a protein downstream of the transcription of 
p53 and p63, thereby promoting breast cancer 
proliferation[36]. SKP2 leads to the degradation of 
tumor suppressor FOXO and CDK inhibitor P27, 
rendering these tumor suppressor genes inactive[37]. 
Our results also demonstrate that DCAF13 and SKP2 
play essential roles in breast cancer prognosis. 
E3-FBXL6 degrades ETV6 through the 
ubiquitin-proteasome system and is involved in the 
growth and differentiation of cells[38]. A recent study 
showed that FBXL6 degrades P53 through 
polyubiquitination and proteasomal degradation, 
leading to the proliferation of colorectal cancer 
cells[39]. Our research results indicate that FBXL6 is 
highly expressed in breast cancer and promotes the 
progression of breast cancer through cell cycle 
regulation in vivo. 

TLE3 is a transcriptional repressor of β-catenin 
and is vital in regulating the Wnt signaling 
pathway[40]. TLE3 also binds to FOXA1 and ER on 
ER target genes, playing a role in HR-positive breast 
cancer[41]. TLE3 is one of the critical signatures we 
use to predict the prognosis of breast cancer. PDRRN3 
is a NUMB protein X family ligand member and 
contains the Ring type ubiquitin E3 ligase[42]. Li et al. 
demonstrated that the downregulation of PDZRN3 
promotes EC cell metastasis and proliferation by 
activating the classical Wnt signaling pathway[43]. 
Our study found that PDZRN3 had Low expression in 
breast cancer and inhibited cell progression. 

Recently, numerous findings have confirmed 
that the TME plays a crucial role in the development 
and progression of cancer[44]. In addition, 
tumor-infiltrating immune cells, a critical TME 
component, also promote tumor progression[45, 46]. 
To date, the association between ubiquitin and the 
overall TME infiltration characterizations and 
heterogeneity of breast cancer has not been 
comprehensively recognized. In our study, patients in 

the low-risk group exhibited higher levels of naive B 
cells, resting memory CD4 T cells, M2 macrophages, 
and resting mast cells. The high-risk group had a high 
infiltration of activated CD4 memory T cells, M0 
Macrophages, follicular helper T cells, regulatory T 
cells (Tregs), and M1 Macrophages. In addition, 
UbRGs are associated with drug sensitivity in cancer 
therapy[27]. The patients in the high-risk group were 
more sensitive to endocrine therapeutics drugs (such 
as tamoxifen and fulvestrant) and chemotherapeutic 
drugs (such as cyclophosphamide, cisplatin, 
paclitaxel, and epirubicin). They targeted drugs such 
as Gefitinib and Lapatinib. Nevertheless, patients in 
the high-risk group exhibited higher resistance to 
epirubicin. In our study, prognostic characterization 
based on UbRGs shows excellent potential to assist in 
clinical treatment selection for BRCA patients. 

In this study, we systematically analyzed the 
mapping of UbRGs in TCGA-BRCA patients and 
constructed prognostic characterization URIs based 
on OS-related UbRGs. Nevertheless, our research still 
needs some improvement. Since most analyses used 
data from publicly available datasets and all samples 
were retrieved retrospectively, case selection bias may 
exist. In addition, more experiments are still needed to 
prove our findings. 

5. Conclusion 
In this study, we created a novel 

ubiquitin-related risk profile that effectively forecasts 
cancer prognosis. Moreover, we demonstrated 
variations in clinical parameters, immune landscapes, 
and drug sensitivities among risk groups. Then, we 
established a nomogram model that predicts the 
prognosis of breast cancer patients by combining 
eight ubiquitination-related genes with clinical 
factors. In addition, both in vitro and in vivo 
experiments have demonstrated that FBXL6 and 
PDZRN3 can influence the growth of breast cancer 
cells. Taken together, the eight-gene model may serve 
as a prognostic marker in future clinical practice. 
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