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Abstract 

Objective: Given the crucial role of mitochondria in the prognosis and treatment of hepatocellular carcinoma 
(HCC), we aim to develop two independent mitochondrial scoring systems to separately predict patient 
prognosis and the likelihood of transarterial chemoembolization non-response (TACE NR). 
Methods: Mitochondria-related candidate genes were selected and analyzed using univariate Cox and LASSO 
Cox regression analyses to create a risk prognosis score (RPS). Univariate and LASSO logistic regression 
analyses were used to establish the risk diagnosis score (RDS). Alternative therapies for patients with TACE 
NR were explored using TIDE and oncoPredict algorithms. The Seurat package was used to study the 
involvement of the RDS genes in HCC differentiation. 
Results: The RPS accurately predicts the 1-5 year survival rates of patients with HCC, where higher RPS 
values were associated with poorer survival outcomes. The RDS model demonstrated a commendable 
performance in diagnosing TACE NR, as patients with a higher RDS exhibited a greater likelihood of TACE NR. 
RDS was associated with the infiltration of various immune cells, and patients with lower RDS tended to have 
higher response rates to immunotherapy and increased sensitivity to JAK1, rapamycin, and AZD2014. By 
contrast, patients with higher RDS values and a higher probability of TACE NR had more responsive to 
paclitaxel, dasatinib, and vincristine, suggesting that these drugs are potential alternative therapies. Single-cell 
sequencing studies have identified ACSM2A as a key player in HCC differentiation and a potential target for 
therapeutic intervention. 
Conclusion: The RPS and RDS are important reference points for predicting outcomes and guiding treatment 
decisions in patients with HCC. Additionally, ACSM2A shows promise as a potential therapeutic target for 
HCC. 
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Introduction 
Hepatocellular carcinoma (HCC), the most 

prevalent form of primary liver cancer, poses a 
significant global health challenge. It is the sixth most 
common cancer and the fourth leading cause of 
cancer-related deaths worldwide [1]. The incidence of 
HCC is increasing, primarily driven by chronic liver 
diseases, such as hepatitis B and hepatitis C virus 

infections, excessive alcohol consumption, and the 
increasing prevalence of non-alcoholic fatty liver 
disease. It is closely linked to metabolic syndrome and 
diabetes mellitus [2]. Despite advancements in 
medical treatment and surgical procedures, the 
prognosis of patients with HCC remains poor, largely 
due to delayed detection and the aggressive nature of 
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the disease. Transarterial chemoembolization (TACE) 
is commonly used as the primary treatment for 
patients with intermediate-stage HCC who are unsui-
table candidates for surgery or liver transplantation. 
TACE administers chemotherapy directly to the 
tumor site while obstructing the blood supply, 
thereby intensifying the localized impact of the drug 
and reducing systemic exposure [3]. Although TACE 
has demonstrated effectiveness in prolonging survival 
and managing tumor growth in numerous cases, a 
notable proportion of patients develop resistance to 
this treatment, leading to unfavorable outcomes. 
Roughly 20-30% of patients with HCC do not exhibit a 
positive response to initial TACE therapy, 
emphasizing the necessity for alternative treatment 
approaches [4]. TACE non-response (NR) in certain 
patients remains a significant obstacle, diminishing 
the overall efficacy of this therapeutic option. 

Given the poor prognosis of HCC and the varied 
responses observed in patients undergoing TACE, 
there is a pressing need for models that can predict 
patient outcomes and identify individuals who are 
unlikely to benefit from TACE. Accurately predicting 
the treatment response has the potential to greatly 
enhance clinical decision-making, enabling the 
development of more tailored and efficacious 
treatment strategies. Therefore, it is imperative to 
develop robust predictive models that can predict 
outcomes and inform therapeutic choices. Moreover, 
exploring alternative therapies for patients with 
TACE NR is crucial for improving survival rates and 
quality of life. Research into these alternatives is vital 
as it may open new avenues for therapy and provide 
hope for patients who do not benefit from standard 
approaches. 

Mitochondria are central to the pathogenesis and 
progression of HCC, influencing TACE response [5]. 
Mitochondrial dysfunction is a key characteristic of 
cancer and leads to changes in energy metabolism, 
resistance to cell death, and increased production of 
reactive oxygen species. These abnormalities support 
the survival and growth of cancer cells, and 
underscore the significance of mitochondria in cancer 
biology. Research has indicated that mutations in 
mitochondrial DNA and variations in mitochondrial 
gene expression have been linked to the development 
of HCC and poor treatment outcomes [6]. The 
intricate network of mitochondria-related pathways 
in cancer cells suggests that these pathways may serve 
as potential targets for therapeutic strategies [7]. The 
modulation of mitochondrial function may improve 
the efficacy of TACE by increasing the sensitivity of 
HCC cells to treatment, potentially leading to better 
patient outcomes. 

Considering the critical role of mitochondria in 

HCC, we utilized machine learning algorithms to 
identify mitochondria-related genes and developed 
two distinct gene expression scores. These scores aim 
to predict the prognosis of patients with HCC and 
identify those who may not respond well to TACE. 
Furthermore, machine learning algorithms have been 
used to investigate alternative therapies for 
TACE-resistant patients, with the goal of enhancing 
personalized treatment approaches and clinical 
outcomes. The integration of machine learning in this 
context marks a significant advancement, offering the 
potential to unveil intricate patterns and relationships 
that may not be discernible using traditional 
analytical methods. The establishment of these scores 
not only helps in predicting prognosis and treatment 
response, but also offers insights into the underlying 
mechanisms of treatment response, guiding future 
research and therapeutic innovations. 

Materials and Methods 
Data collection 

Sequencing data for HCC were obtained from 
the TCGA (LIHC), ICGC (LIRI-JP), and GEO 
databases (GSE104580 and GSE242889). 
Immunotherapy sequencing data were obtained from 
the GSE78220 dataset. Immune checkpoint genes have 
been identified previously [8]. Mutation data specific 
to HCC were extracted from the TCGA database, 
while human mitochondrial genes were sourced from 
MitoCarta 3.0. The specific criteria for patient 
inclusion in our study were as follows: Our study 
exclusively included patients with HCC and excluded 
those with other liver cancer subtypes. Additionally, 
individuals with a survival time of less than 30 days 
were excluded from our analysis because of the 
potential skewing effect of severe conditions or 
complicating factors on the model predictions. 

Weighted gene co-expression network analysis 
Weighted gene co-expression network analysis 

(WGCNA) was conducted on the dataset GSE104580. 
A soft-thresholding power of 4 was selected to 
establish a scale-free network topology. Initial 
analysis identified multiple modules of co-expressed 
genes, in which the blue and brown modules show 
the strongest correlation with TACE NR. These 
modules were for further investigation. Visualization 
and quantification of the connections between the 
modules and the TACE NR trait helped identify 
potentially important biological pathways and gene 
signatures. 

Identification of differentially expressed genes 
Differential analysis was performed on the 
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TCGA-LIHC dataset using the limma package to 
identify genes that differentially expressed between 
HCC and adjacent normal tissues. Additionally, 
analysis was conducted on samples with high and 
low risk diagnosis score (RDS) to distinguish the 
genes that were differentially expressed between high 
RDS and low RDS. The criteria for differentially 
expressed genes (DEGs) included an absolute log2 
fold change greater than 1 and an adjusted p-value 
less than 0.05. 

Identification of differentially expressed 
mitochondrial-related genes 

DEGs were derived from a differential expres-
sion analysis of TCGA-LIHC, human mitochondrial 
genes were obtained from the MitoCarta 3.0, and blue 
and brown module genes correlated with TACE NR 
were identified through WGCNA analysis. The 
intersection of these sets allowed the identification of 
mitochondria-related DEGs for further refinement 
using machine learning techniques. 

Selection of screening algorithm 
To construct the RPS, we employed univariate 

Cox regression followed by LASSO Cox regression, as 
these methods are highly effective in managing 
high-dimensional genomic data. Univariate Cox 
regression allows for the initial identification of genes 
with significant prognostic impact, while LASSO Cox 
regression addresses the potential issue of 
multicollinearity by applying regularization. LASSO’s 
ability to perform variable selection ensures that only 
the most relevant prognostic genes are included, 
thereby improving interpretability and robustness in 
predicting patient outcomes in HCC. This stepwise 
approach not only refines the gene selection process 
but also prevents overfitting, enhancing the model’s 
predictive accuracy and clinical applicability. For the 
RDS, we adopted a similar approach by first using 
univariate logistic regression to identify genes 
associated with TACE NR. We then applied LASSO 
logistic regression to select the most predictive 
features while controlling for multicollinearity. The 
strength of this approach lies in its ability to maintain 
model simplicity without sacrificing accuracy, 
ensuring that the RDS model remains both 
interpretable and highly effective in clinical 
decision-making, particularly for identifying patients 
likely to exhibit resistance to TACE therapy. 

Construction of a mitochondrial 
gene-associated risk prognostic score 

Mitochondria-related DEGs were analyzed using 
univariate and LASSO Cox regression analyses to 
identify the genes associated with the risk prognosis 

score (RPS). The RPS of each patient was calculated 
using the following formula:  

𝑅𝑅𝑅𝑅𝑅𝑅 = �𝛼𝛼𝛼𝛼 ∗ 𝐸𝐸𝐸𝐸  

αi represents the coefficient of gene i in the RPS, 
and Ei represents the expression level of gene i in a 
patient. Patients were divided into high- and low- 
RPS groups based on the median RPS in the machine 
learning cohorts (training, test, and validation sets). 
The predictive ability of RPS for prognosis was 
assessed using Kaplan-Meier (KM) and receiver 
operating characteristic (ROC) curves. 

Construction of a mitochondrial 
gene-associated risk diagnosis score 

Mitochondria-related DEGs were analyzed using 
a combination of univariate and LASSO logistic 
regression to identify genes linked to the RDS, with 
TACE NR as the endpoint event. The RDS for each 
patient was calculated using the following formula: 

𝑅𝑅𝑅𝑅𝑅𝑅 = �𝛽𝛽𝛽𝛽 ∗ 𝐸𝐸𝐸𝐸 

βi represents the contribution coefficient of gene 
i in the RDS, and Ei represents the expression level of 
gene i in a patient. The patients were divided into 
high- and low- RDS groups based on the median RDS 
value in the machine learning cohorts, such as the 
training and test sets. 

Construction of nomogram 
This study analyzed the RPS and clinical 

characteristics of patients with TCGA-LIHC, such as 
age (categorized as old if > 65 years, otherwise 
young), sex, stage, T-stage, N-stage, and M-stage. 
Initially, a univariate Cox regression analysis was 
conducted to identify the characteristics that impact 
prognosis, with those having a p-value less than 0.05, 
progressing to a multivariate Cox regression analysis 
to assess their significance in the presence of multiple 
variables. This method aims to isolate independent 
prognostic features by eliminating confounding 
effects. These features were then used to develop a 
nomogram for a risk prognostic model, which was 
evaluated using area under the curve (AUC) values, 
calibration curves, C-index, and decision curves. In 
the absence of clinical data in the GSE104580 dataset, a 
risk diagnostic model was created solely from the 
RDS, followed by the construction of a nomogram. 
The diagnostic efficiency of the risk diagnosis model 
was assessed using ROC, calibration, and decision 
curves. 

Exploration of the tumor microenvironment 
In our study, we utilized the IOBR package to 
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apply six cell infiltration algorithms for investigating 
the tumor microenvironment in patients. These 
algorithms included xCell, quantiseq, EPIC, TIMER, 
MCPcounter, and CIBERSORT. 

Gene Ontology and Kyoto Encyclopedia of 
Genes and Genomes enrichment analyses 

This study utilized Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were used to explore the 
functions of DEGs between high and low RDS. An 
adjusted p-value of less than 0.05 was used as the 
screening criterion. 

Mutation analysis 
The maftools package was utilized to generate 

waterfall plots illustrating the mutation landscape in 
LIHC patients categorized by high and low RDS. 

Predicting treatment sensitivity in patients 
with hepatocellular carcinoma 

This study examined the predictive potential of 
RDS for immunotherapy and drug sensitivity. The 
TIDE algorithm was used to assess immune therapy 
response and TIDE scores in patients from the LIHC, 
LIRI-JP, and GSE104580 datasets. The oncoPredict 
package was used to calculate the half maximal 
inhibitory concentration (IC50) values for 198 
targeted/chemotherapy drugs for every patient in 
these datasets. Drug target information was obtained 
from the DrugBank database. 

Single-cell RNA sequencing data analysis 
The Seurat package was utilized to analyze the 

HCC single-cell dataset GSE242889. Initially, 
single-cell data were filtered to exclude low-quality 
cells based on the following specific criteria: feature 
count range of 500-4200, UMI count range of 
1700-24000, mitochondrial gene percentage below 
40%, hemoglobin gene percentage below 0.1%, and 
ribosomal gene percentage below 30%. The 
subsequent steps involved removing the influence of 
the cell cycle, eliminating batch effects using the 
harmony package, and following the standard Seurat 
analysis workflow for dimensionality reduction, 
clustering, and visualization. The CellChat package 
was used to investigate interactions between different 
cell types, while the copycat package was applied to 
distinguish HCC cells from normal hepatocytes. 
Lastly, the slingshot package was utilized to analyze 
the differentiation trajectory of hepatocytes. 

Cell lines and culture 
The L02, Hep3B, and Huh7 cells were purchased 

from the Type Culture Collection of the Chinese 

Academy of Sciences (Shanghai, China). All used cell 
lines were maintained in Dulbecco's Modified Eagle 
Medium supplemented with 10% fetal bovine serum 
and 1% penicillin-streptomycin and grown in a 
humidified atmosphere containing 5% CO2 at 37 °C. 
All cell lines were authenticated using short tandem 
repeat (STR) genotyping and tested negative for 
Mycoplasma. 

Quantitative real-time PCR 
mRNA levels were analyzed by qPCR, as 

previously described [9-11]. Briefly, total RNA was 
extracted from cells using TriPure Isolation Reagent 
(Roche, Basel, Switzerland) according the 
manufacturer's guidelines. The extracted RNA was 
then reverse-transcribed into cDNA using a 
Transcriptor First Strand cDNA Synthesis Kit (Roche) 
with 2 µg of total RNA. Real-time PCR was conducted 
on a MyiQ Single Color Real-time PCR Detection 
System (Bio-Rad Laboratories, Hercules, CA, USA) 
using SYBR Green PCR Master Mix (Bio-Rad 
Laboratories). The mRNA expression levels were 
normalized to β-actin using the comparative 2-ΔΔCT 
method. Primer sequences for the specified genes are 
listed in Table 1. 

 

Table 1. Primer sequences used for real-time PCR analysis 

Gene Forward primer (5′-3′) Reverse primer (5′-3′) 
ACSM2A 
(human) 

GAGGACTTGGCAGGCTGG CCTGCTGGCTGTTTTCACTC 

MSRA 
(human) 

TCCTCCTCCACAGCCTCTTT TTGACATGATGTTTGGCCGC 

OGDHL 
(human) 

GCCCGCCCGAATGAGTC GGTTTTCCAACCAGGCGAAG 

β-actin 
(human) 

GCTTCTCCTTAATGTCACGC CCCACACTGTGCCCATCTAC 

 

Statistical analysis 
All statistical analyses were performed using R 

software (version 4.3.1). Differences between the two 
groups were analyzed using the Wilcoxon test, 
chi-square test, or Fisher's exact test. Spearman’s 
correlation analysis was used to assess correlations 
between variables. Statistical significance was set at p 
< 0.05. 

Results 
Workflow of this study 

The workflow of this study is illustrated in 
Figure 1. 

Patient data 
To prevent overfitting in our model, we 

randomly divided the patient data in a 7:3 ratio, with 
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70% allocated to the training set and the remaining 
30% to the test set. The specifics of the split patient 
data are presented in Tables 2 and 3. 

Acquisition of differentially expressed 
mitochondrial genes 

To identify candidate genes for machine learning 
screening, the genes must have met three criteria: 
association with TACE NR, differential expression in 
HCC, and mitochondrial classification. Using 
WGCNA, we explored the module genes associated 
with TACE NR. Initially, clustering of GSE104580 
patients and setting the height threshold at 130 
identified one outlier patient who was excluded 
(Figure S1A). Co-expression modules were 
constructed with the remaining 146 patients, 
revealing that the blue and brown modules were 
highly correlated with TACE NR (Figure 2A). 
Differential expression analysis of the TCGA-LIHC 
dataset identified 3483 DEGs between HCC and 
normal tissues (Figure 2B). Extracting 1136 human 
mitochondrial genes from the MitoCarta 3.0 database, 
we identified 73 differentially expressed 
mitochondrial genes as candidates for machine 
learning screening by intersecting TACE 
NR-associated genes, TCGA-LIHC DEGs, and 
mitochondrial genes (Figure 2C). 

 

Table 2. TCGA-LIHC patient data 

Covariates Type All Test Train Pvalue 
Censor Alive 217(63.82%) 69(67.65%) 148(62.18%) 0.4024 
 

Dead 123(36.18%) 33(32.35%) 90(37.82%) 
 

Stage Stage I 161(47.35%) 56(54.9%) 105(44.12%) 0.1668 
 

Stage II 77(22.65%) 21(20.59%) 56(23.53%) 
 

 
Stage III 78(22.94%) 17(16.67%) 61(25.63%) 

 
 

Stage IV 3(0.88%) 0(0%) 3(1.26%) 
 

 
Unknown 21(6.18%) 8(7.84%) 13(5.46%) 

 

Tstage T1 168(49.41%) 58(56.86%) 110(46.22%) 0.1893 
 

T2 84(24.71%) 25(24.51%) 59(24.79%) 
 

 
T3 72(21.18%) 17(16.67%) 55(23.11%) 

 
 

T4 13(3.82%) 1(0.98%) 12(5.04%) 
 

 
Unknown 3(0.88%) 1(0.98%) 2(0.84%) 

 

Nstage N0 237(69.71%) 67(65.69%) 170(71.43%) 0.2449 
 

N1 3(0.88%) 0(0%) 3(1.26%) 
 

 
Unknown 100(29.41%) 35(34.31%) 65(27.31%) 

 

Mstage M0 243(71.47%) 73(71.57%) 170(71.43%) 0.5173 
 

M1 3(0.88%) 0(0%) 3(1.26%) 
 

 
Unknown 94(27.65%) 29(28.43%) 65(27.31%) 

 

Gender Female 108(31.76%) 31(30.39%) 77(32.35%) 0.819 
 

Male 232(68.24%) 71(69.61%) 161(67.65%) 
 

Age Old 133(39.12%) 49(48.04%) 84(35.29%) 0.0658 
 

Young 205(60.29%) 52(50.98%) 153(64.29%) 
 

 
Unknown 2(0.59%) 1(0.98%) 1(0.42%) 

 

 

Table 3. GSE104580 patient data 

Covariates Type All Test Train Pvalue 
TACE Non-response 66(44.9%) 22(48.89%) 44(43.14%) 0.641 
 

Response 81(55.1%) 23(51.11%) 58(56.86%) 
 

 
 
 

 
Figure 1. The flowchart graph of this study. 
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Figure 2. Construction of RPS and RDS. (A) Relationship between gene modules and TACE NR. (B) Volcano plot of DEGs between HCC and normal tissues. (C) Venn diagram 
of the intersection among DEGs in HCC and normal tissues, mitochondrial genes, and TACE NR-associated module genes. (D) Univariate Cox regression analysis identified 21 
genes associated with HCC prognosis. (E) LASSO Cox regression analysis ultimately selected 10 genes for constructing RPS. (F) Contribution coefficients of RPS-related genes 
in RPS. (G) Univariate logistic regression analysis identified 51 genes associated with TACE NR. (H) LASSO logistic regression analysis ultimately selected 3 genes for constructing 
RDS. (I) Contribution coefficients of RDS-related genes in RDS. 

 

Construction of a risk prognosis score using 
prognosis-associated differentially expressed 
mitochondrial genes 

Initially, a univariate Cox regression analysis 
was conducted on 73 mitochondria-related DEGs 
from the TCGA-trained HCC data, highlighting 21 
genes with a significant prognostic influence (p < 0.05) 
(Figure 2D). To refine the model features and address 
multicollinearity, LASSO Cox regression analysis was 
performed on these 21 genes (Figure 2E), which 
resulted in the identification of 10 genes closely linked 
to prognosis (Figure 2F). The RPS for each patient was 
calculated based on the contribution coefficients of the 
ten prognostic genes and their respective expression 
levels. The formula is as follows: RPS = (POLQ * 0.233) 
+ (TOMM40L * 0.175) + (DHRS1 * -0.002) + (AASS * 
-0.003) + (LDHD * -0.011) + (GCDH * -0.012) + 
(GRHPR * -0.017) + (ALAS1 * -0.040) + (OGDHL * 
-0.046) + (HMGCS2 * -0.127). To enhance clarity, the 
RPS values were normalized to the range of 0-1. 

Construction of a risk diagnosis score using 
diagnosis-associated differentially expressed 
mitochondrial genes 

Utilizing the TACE treatment response data 
from the GSE104580-train, we performed univariate 
logistic regression analysis on 73 
mitochondrial-related DEGs, revealing 51 genes that 
were significantly associated with the diagnosis of 
TACE NR (p < 0.05) (Figure 2G). After further refining 
the model, LASSO logistic regression analysis 
identified three risk diagnostic genes that were more 
closely associated with TACE NR (Figure 2H, I). 
Subsequently, the RDS for each patient was computed 
using the following formula: RDS = (OGDHL * -0.200) 
+ (MSRA * -0.271) + (ACSM2A * -0.409). The RDS was 
then normalized to a range of 0-1. 

Evaluation of the performance of the risk 
prognosis score 

The RPS was calculated for TCGA-train, 
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TCGA-test, and ICGC patients, who were then 
categorized into high- and low- RPS groups based on 
the median. In the TCGA-train cohort, KM analysis 
revealed that patients with a high RPS had a worse 
prognosis than those with a low RPS (Figure 3A). The 
ROC curve showed that RPS accurately predicted the 
1- to 5-year prognosis with AUC values above 0.7, 
indicating good model performance in the training set 
(Figure 3B). Internal validation using the test cohort 
demonstrated results consistent with the training set, 
showing good classification and accurate predictions 
for 1- to 4-year prognosis, with a slight decrease in 
accuracy in the fifth year (Figure 3C, D). Furthermore, 
external validation using the ICGC dataset also 
yielded satisfactory KM results (Figure 3E), with the 
ROC curve showing good predictive performance for 
1- to 4-year survival, but suboptimal performance in 
the fifth year with an AUC less than 0.5 (Figure 3F). 

Construction and evaluation of the risk 
prognostic model 

To enhance the predictive power and clinical 
relevance of the RPS, clinical indicators that 
independently affect prognosis were incorporated 
into a comprehensive risk prognostic model. 
Univariate Cox regression analysis of RPS and 
relevant clinical indicators among all TCGA patients 
revealed statistically significant differences in the 
prognosis of RPS, Stage, T-stage, and M-stage (Figure 
3G). Subsequently, multivariate Cox regression 
analysis incorporating these four factors identified 
RPS and M-stage as independent prognostic 
indicators (Figure 3H). Using the RPS and M-stage, 
we constructed a risk prognostic model and generated 
a nomogram (Figure 3I). Evaluation of the risk 
prognostic model demonstrated superior 
performance in terms of AUC values for 1-5 year 
compared with individual prognostic indicators. Our 
findings underscore the superior predictive ability of 
the RPS over traditional clinical staging indicators 
(Figure 3J). Furthermore, we compared our model 
with those developed by other researchers. The 
comparison of AUC values at 1, 3, and 5 years 
demonstrated superior performance of our model 
(Figure S2) [12-17]. Additionally, calibration curves, 
C-indices, and decision curves collectively affirmed 
the accuracy of the risk prognostic model (Figure 
3K-M). 

Construction and validation of the risk 
diagnosis model 

The absence of clinical data in GSE104580 led to 
the development of a risk diagnostic model that 
essentially functions as a RDS. The results from the 
training set indicated that this model exhibited strong 

diagnostic efficacy, with an AUC exceeding 0.8 
(Figure 4A). Similarly, the test set displayed favorable 
diagnostic outcomes, with an AUC surpassing 0.7 
(Figure 4B). A nomogram illustrating the risk 
diagnostic model was constructed (Figure 4C). Both 
calibration and decision curves confirmed the robust 
diagnostic performance of the model (Figure 4D, E). 
By categorizing the patients in the training and test 
sets into high- and low- RDS groups based on the 
median RDS, we investigated the effectiveness of RDS 
in diagnosing TACE NR. In the training set, patients 
with a low RDS exhibited a significantly lower TACE 
NR rate (21.6%) than those with a high RDS (64.7%) 
(Figure 4F). Box plots further illustrated that TACE 
NR patients had a higher RDS (Figure 4G). This trend 
was consistent in the test set (Figure 4H, I). Analysis 
of TCGA-train+test dataset revealed a progressive 
increase in RDS with advancing clinical stage (Figure 
4J-L). Intriguingly, patients aged 65 and under 
displayed higher RDS levels compared to those over 
65 (Figure 4M). 

Differences in tumor microenvironment 
infiltration among patients with different 
transarterial chemoembolization responses 

The TACE responsive (R) group consistently 
exhibited higher levels of CD8+ T and NK cells across 
various analysis algorithms, such as CIBERSORT, 
MCPcounter, xCell, EPIC, quantiseq, and TIMER, 
indicating the robust presence of these cytotoxic 
immune cells. Moreover, M1 macrophages, known for 
their pro-inflammatory and anti-tumor properties [18, 
19], were significantly more abundant in the R group, 
whereas dendritic cells, which are essential for 
antigen presentation and immune response initiation 
[20], also showed increased infiltration levels. B cells 
were more prevalent in the R group, reflecting an 
enhanced humoral immune response. In contrast, the 
NR group displayed lower levels of these key 
immune cells, suggesting a less active immune 
microenvironment (Figure 5A). Further analysis 
revealed a negative correlation between RDS and T 
cells as well as NK cells, indicating that a higher RDS 
is linked to lower infiltration levels of these cytotoxic 
cells. Monocytes and M1 macrophages also showed a 
negative correlation with RDS, whereas M0 
macrophages and activated mast cells exhibited a 
positive correlation, indicating that an increase in RDS 
leads to a shift towards a more immunosuppressive 
and inflammatory tumor microenvironment. 
Interestingly, RDS was strongly negatively correlated 
with hepatocyte count, suggesting a significant 
decrease in their number as RDS increased (Figure 
5B). 
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Figure 3. Evaluation of RPS and construction of a risk prognosis model. (A) KM survival curves for overall survival (OS) of high- and low- RPS groups. (B) ROC curve predicting 
1-5 year OS of patients with HCC using RPS. (C-F) Test cohort TCGA-test and external validation cohort ICGC. (G) Univariate Cox regression analysis for the clinicopathologic 
characteristics and RPS. (H) Multivariate Cox regression analysis for the clinicopathologic characteristics and RPS. (I) The nomogram of the risk prognosis model. (J) Comparison 
of 1-5 year AUC values among different models. (K) Calibration plots showing the probability of 1-5 year OS. (L) Comparison of C-index values among different models. (M) 
Comparison of decision curves between different models. 

 
Functional enrichment analysis of differentially 
expressed genes in high and low risk diagnosis 
score 

Differential expression analysis conducted on 
the high- and low- RDS groups revealed 362 DEGs 
(Figure S3A). Subsequently, enrichment analysis was 
performed to investigate functional differences 
between the two groups. GO and KEGG enrichment 
analyses revealed significant variations in the 
metabolic and detoxification processes. Notably, the 
tumor-related functions encompassed small-molecule 
catabolic processes, cellular responses to xenobiotic 
stimuli, oxidoreductase activity, and heme binding 

(Figure S3B). The enriched pathways included 
complement and coagulation cascades, PPAR 
signaling, cytochrome P450-mediated drug 
metabolism, and fatty acid degradation (Figure S3C). 

Mutational landscape between the high and 
low risk diagnostic score 

This study presents a mutation waterfall plot 
comparing high and low RDS, as shown in Figure 
S4A, B. These findings indicate that in both the 
TCGA-train and test datasets, CTNNB1 had the 
highest mutation rate in low- RDS samples, whereas 
TP53 was more prevalent in high- RDS samples. 
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Figure 4. Evaluation of RDS and construction of a risk diagnosis model. (A) The ROC curve of the training cohort reveals that RDS excels in diagnosing TACE NR, (B) with 
similarly commendable performance in the test cohort. (C) The nomogram of the risk diagnosis model. (D) Calibration curve of the risk diagnostic model. (E) Decision curve of 
the risk diagnostic model. (F-I) The training cohort results indicate that the high RDS group exhibits a higher probability of TACE NR, and patients in the NR group have elevated 
RDS. The test cohort displays a consistent trend. (J-M) Distribution differences of RDS in clinicopathologic characteristics. 

 

Application value of the risk diagnosis score in 
immunotherapy 

Immunotherapy for HCC has shown significant 
promise in leveraging the patient's immune system to 
target and eliminate cancer cells, ultimately 
improving the prognosis [21]. This study assessed the 
utility of the RDS in immunotherapy. The TIDE 
algorithm consistently revealed that individuals with 
a low RDS had a higher response rate to 

immunotherapy across multiple datasets (TCGA, 
GSE104580, and ICGC), whereas those who did not 
respond well to immunotherapy had higher RDS 
levels. Additionally, RDS positively correlated with 
TIDE scores (Figure 6A-O). Validation using the 
external dataset GSE78220 further confirmed that a 
low RDS was correlated with a better response rate, 
whereas unresponsive patients had higher RDS levels 
(Figure 6P, Q). Correlation analyses indicated a 
negative relationship between RDS and various 
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immune checkpoints (Figure 6R). Notably, this study 
also observed that the immunophenoscore (IPS) was 
higher in patients with a low RDS than in those with a 
high RDS, both in the absence of immune checkpoint 
inhibitors and when inhibitors targeting CTLA4, PD1, 
PDL1, and PDL2 were used (Figure 6S). Collectively, 
these findings suggest that individuals with a low 
RDS tend to exhibit more favorable responses to 
immunotherapy than those with a high RDS. 

Effective therapeutic drugs for the high and 
low risk diagnosis score 

To identify alternative therapies for a high RDS 
and explore additional treatment options for a low 
RDS, machine learning algorithms were used to 
predict the IC50 values of 198 targeted/chemotherapy 
drugs in patients from the TCGA, GSE104580, and 
ICGC cohorts. This study focused on drugs that 
showed significant IC50 differences between high and 

 
Figure 5. Tumor microenvironment. (A) Differences in the levels of tumor microenvironment cell infiltration between TACE R and NR groups. (B) Bubble chart of the 
correlation between RDS and tumor microenvironment cell infiltration levels. 
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low RDS. A total of 33 candidate drugs were 
identified with statistically significant intersections 
across all three datasets (Figure 7A). Sensitivity to 
these drugs decreased in the high- RDS group and 
increased in those with a low RDS in a sequential 
manner (Figure 7B). From these, six drugs were 
selected as potential clinical treatments for HCC. A 
high- RDS was found to be more sensitive to 
paclitaxel, dasatinib, and vincristine, with RDS 

showing a negative correlation with the IC50 values of 
these drugs (Figure 7C-E). Conversely, JAK1, 
rapamycin, and AZD2014 were more effective in 
patients with a low RDS, with RDS showing a positive 
correlation with the IC50 values of these drugs (Figure 
7F-H). Further analysis revealed that the targets of 
these six drugs were linked to RDS genes, with 
ACSM2A showing correlation with multiple drug 
targets (Figure 7I). 

 

 
Figure 6. The value of RDS in immunotherapy. (A-O) The bar chart indicates that patients with low RDS are more sensitive to immunotherapy, with the immunotherapy 
response group exhibiting lower RDS. The scatter plot demonstrates a positive correlation between RDS and TIDE. The results show a consistent trend across multiple cohorts. 
(P, Q) In the GSE78220 immunotherapy cohort, it is also evident that lower RDS is associated with a higher immunotherapy response, with patients responding to 
immunotherapy exhibiting a lower RDS. (R) Heatmap of the correlation between RDS and immune checkpoints. (S) Differences in IPS between high and low RDS groups. 
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Figure 7. Exploration of potential therapeutic drugs for patients with high and low RDS. (A) A Venn diagram showing the intersection of significant drugs among the three 
cohorts. (B) The normalized IC50 values of 33 drugs between high and low RDS ratios. (C-E) High RDS is more sensitive to paclitaxel, dasatinib, and vincristine, with a negative 
correlation between RDS and their IC50 values. (F-H) Low RDS is more sensitive to JAK1, rapamycin, and AZD2014, with a positive correlation between RDS and their IC50 
values. (I) The correlation between RDS genes and drug therapeutic targets. 

 

Establishment of a hepatocellular carcinoma 
atlas using single-cell sequencing 

Single-cell sequencing can reveal differences in 
gene expression at the individual cell level, shedding 

light on the cellular heterogeneity and functions of 
rare cell populations. This motivated the further 
exploration of RDS-related genes using single-cell 
sequencing. A comprehensive single-cell atlas of HCC 
was generated by analyzing single-cell data and 
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employing classical markers to categorize cell 
populations. This atlas includes a variety of cell types 
such as B cells, classical dendritic cell types 1 and 2 
(cDC1 and cDC2), cholangiocytes, endothelial cells, 
fibroblasts, hepatocytes, macrophages, monocytes, 
neutrophils, plasma cells, and T/NK cells (Figure 8A). 
The heatmap illustrates the expression levels of 
specific markers across different cell types (Figure 8B), 
and the proportional bar chart displays the 
distribution of cells in the various samples (Figure 
8C). The tumor microenvironment is characterized by 
a dynamic interplay between tumor cells, immune 
cells, and stromal cells, which collectively influence 
tumor fate. Our findings regarding cell 
communication revealed interactions between diverse 
cell types. Notably, we observed that hepatocytes 
engaged in robust communication with macrophages 
and monocytes compared to other cell types (Figure 
8D, E). Subsequently, we analyzed the input and 
output signals of different cell types in the HCC 
tumor microenvironment. Various cells are capable of 
producing and releasing a variety of cytokines or 
ligands as signaling molecules while also responding 
to external ligands through receptors. The key signals 
facilitating communication between different cell 
types are shown (Figure 8F). Overall, ligand-receptor 
interactions among diverse cell types within the 
tumor microenvironment emphasize the importance 
of each cellular subset in tumor development. 

Identification of dynamic risk diagnostic score 
genes during the transition of hepatocyte 
states 

The expression levels of RDS genes in various 
cell types within the HCC single-cell atlas were 
determined. The findings showed that OGDHL was 
mainly expressed in hepatocytes (Figure 9A), MSRA 
was expressed in various cell types (Figure 9B), and 
ACSM2A was particularly expressed in hepatocytes 
(Figure 9C). Subsequently, hepatocytes in the HCC 
single-cell atlas were re-clustered, revealing three 
distinct subgroups (Figure 9D). Using the copycat 
package, we determined that subgroup 1 comprised 
of HCC cells, whereas subgroups 0 and 2 represented 
normal hepatocytes. Trajectory analysis using the 
slingshot package illustrated the differentiation 
processes of these cell subgroups (Figure 9E). Upon 
tracking the expression changes in RDS genes over 
pseudotime, we noticed slight variations in OGDHL 
and MSRA expression during the differentiation of 
hepatocytes into HCC cells, suggesting their potential 
involvement in this process (Figure 9F, G). 
Interestingly, ACSM2A expression decreased 
gradually with pseudotime and significantly 
decreased as the hepatocytes transitioned into HCC 

cells (Figure 9H). This implies a crucial role for 
ACSM2A in determining the fate of hepatocytes 
transitioning to HCC. The diagnostic ROC curve and 
KM plot supported the association between ACSM2A 
expression and the diagnosis and prognosis of HCC, 
further emphasizing its importance in the disease 
(Figure 9I-L). Finally, we validated the expression of 
the RDS genes at the cellular level and found that all 
three genes were downregulated in HCC cells (Figure 
9M-O). 

Discussion 
In this study, machine learning algorithms were 

used to identify key mitochondrial genes and develop 
two independent scoring systems. One of these, the 
RPS, was employed to forecast the prognosis of 
patients over 1-5 year. In the TCGA dataset, RPS 
exhibited exceptional performance in predicting the 
1-5 year prognosis of patients with HCC, with 
consistently high AUC values across all time points, 
indicating strong predictive accuracy. However, upon 
independent validation using the ICGC dataset, the 
AUC value for the fifth year fell below 0.5, indicating 
a sub-optimal outcome. Subsequent analysis 
suggested that this outcome was likely influenced by 
sample bias, as only two patients with HCC in the 
ICGC dataset survived beyond five years, leading to a 
substantial error in the fifth-year prediction. Despite 
this limitation, the RPS remains clinically valuable in 
predicting the prognosis of patients with HCC. 
Stratification of patients into high- and low- RPS 
groups based on median RPS values revealed 
significantly poorer prognoses in the high- RPS 
group, emphasizing the need for increased attention 
and intervention in these patients to enhance their 
prognosis. Furthermore, the integration of clinical 
characteristics into a risk prognosis model alongside 
the RPS improved predictive accuracy and clinical 
utility. 

TACE NR has become a significant challenge in 
HCC treatment. The RDS was developed to identify 
patients with TACE NR. TACE NR is typically 
defined as tumor progression after TACE treatment. 
While previous studies have focused on radiological 
characteristics or common tumor markers to predict 
TACE NR [22], our study is the first to explore the role 
of mitochondrial genes as biomarkers of TACE 
NR. By analyzing the expression levels of the three 
RDS genes, our method accurately predicted TACE 
NR probability, assisting clinicians in making 
treatment decisions and maximizing clinical benefits. 
Our results showed that the RDS performed well in 
diagnosing TACE NR, with an AUC value exceeding 
0.7. The patients were categorized into high- and low- 
RDS groups based on the median, with the high- RDS 
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group having a higher risk of TACE NR. Therefore, 
RDS not only serves as a valuable diagnostic tool for 

TACE NR but also provides essential guidance for 
treatment decisions. 

 
 

 
Figure 8. Construct a HCC atlas using single-cell sequencing data. (A) Clustering and annotation of single-cell RNA sequencing data in GSE242889. (B) The heatmap illustrates 
the expression patterns of markers across various cell types. (C) The proportional bar chart depicts the distribution of cells across different samples. (D, E) The number of 
interactions and the interaction weights/strengths between cells in the tumor microenvironment of HCC. (F) The bubble plots indicate the key outgoing and incoming signaling 
patterns of the cell, respectively. The size of the dots is proportional to the calculated contribution fraction in cellular communication, with higher contribution fractions 
representing signaling pathways that are more abundant in cellular interactions. 
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Figure 9. The role of RDS in hepatocyte differentiation. (A-C) Feature plots showing the distribution and expression levels of the RDS genes. (D) UMAP plot of hepatocyte 
reclustering. (E) Trajectory plot of hepatocyte differentiation. (F-H) Expression changes of the RDS gene during hepatocyte differentiation. (I-L) The ROC curve results indicate 
that ACSM2A is effective in diagnosing HCC, while the KM survival curve shows that patients with high ACSM2A expression have a favorable prognosis. (M-O) The mRNA levels 
of OGDHL, MSRA, and ACSM2A in L02 normal liver and Hep3B and Huh7 liver cancer cells. 

 
In practice, the RPS and RDS systems are 

well-suited for integration into clinical workflows, 
leveraging gene expression data that can be easily 
obtained through next-generation sequencing (NGS), 
a technology increasingly adopted in hospitals for 
cancer diagnostics and therapeutic decision-making. 
As NGS becomes more widely available and its costs 
continue to decrease, these models become 
increasingly feasible for routine clinical application. 
Moreover, to enhance their scalability and 
accessibility in resource-limited settings, integrating 

simpler clinical markers, such as blood-based 
biomarkers, could further broaden their utility. The 
RPS and RDS systems can be computed directly from 
existing genomic data, allowing for seamless 
incorporation into current clinical platforms. This 
enables real-time, automated scoring that provides 
actionable prognostic and therapeutic insights, 
improving precision in patient management. 
Combining NGS data with readily available, 
cost-effective biomarkers could offer a more practical 
and scalable solution, making these systems widely 
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applicable across diverse healthcare environments 
without disrupting established workflows. 

RPS-related genes contribute to disease 
progression through diverse mechanisms. POLQ, 
which promotes cell proliferation and migration in 
HCC, is associated with tumor malignancy and poor 
prognosis [23]. Similarly, TOMM40L, a component of 
the TOM complex, likely supports cancer progression 
by enhancing mitochondrial function, akin to 
TOMM20's role in promoting cell proliferation, 
migration, and invasion in cancer [24]. In addition, 
DHRS1 plays a significant role in steroid and 
xenobiotic metabolism [25]. Mutations in AASS can 
lead to impaired lysine degradation, resulting in 
hyperlysinemia and associated neurological 
symptoms [26]. LDHD is essential for catalyzing the 
oxidation of d-lactate to pyruvate, regulating d-lactate 
levels and influencing mitochondrial function and 
metabolic balance [27]. GCDH is critical for melanoma 
cell survival and proliferation through the regulation 
of metabolic and apoptotic pathways [28]. 
Conversely, lower GRHPR expression levels in 
tumors are associated with increased tumor cell 
proliferation and shorter patient survival [29]. ALAS1 
is regulated by estrogen and succinate and 
participates in the control of the proliferation and 
invasiveness of uterine endometrial cancer [30]. In 
HCC, OGDHL regulates glutamine metabolic 
pathways and lipid synthesis, significantly affecting 
tumor cell growth and the response to chemotherapy 
[31]. HMGCS2 plays a crucial role in HCC by 
modulating ketogenesis. Its downregulation 
promotes tumor growth and progression, whereas its 
overexpression inhibits these oncogenic processes 
[32]. 

The constructed RDS was based on the 
expression levels of three mitochondrial genes 
associated with the TACE NR diagnosis. These genes 
also have significant implications in disease 
progression. OGDHL regulates HCC metastasis by 
modulating HIF-1α activity and stabilization, thereby 
affecting cell invasiveness and migration [33]. MSRA, 
which is located on chromosome 8p, acts as a 
metastatic suppressor in HCC by inhibiting cell 
proliferation and invasion [34]. ACSM2A plays a vital 
role in the liver by catalyzing the activation of 
medium-chain fatty acids and its genetic variations 
may influence disease susceptibility [35]. 

Research has shown that tumor cells can survive 
in the tumor microenvironment, allowing them to 
evade immune surveillance and resist drug 
treatments [36]. This study compared the tumor 
microenvironment between TACE NR and R patients, 
identifying significant differences in immune cell 
infiltration. Group R displayed higher levels of CD8+ 

T cells, NK cells, M1 macrophages, dendritic cells, and 
B cells, suggesting a strong cytotoxic and 
proinflammatory immune response. In contrast, the 
NR group showed reduced infiltration, indicating a 
less active immune microenvironment. Correlation 
analysis revealed that a higher RDS was associated 
with lower levels of cytotoxic immune cells and was 
negatively correlated with monocytes and M1 
macrophages, indicating a less favorable immune 
environment. Additionally, RDS positively correlated 
with M0 macrophages and activated mast cells, 
suggesting increased immunosuppression and 
inflammation with a higher RDS. Notably, RDS was 
strongly and negatively correlated with hepatocytes, 
suggesting a decrease in the number of hepatocytes 
with a higher RDS. This may explain the lower TACE 
NR rate in patients with a low RDS, as a lower RDS 
could be linked to higher immune cell infiltration and 
a more effective antitumor immune response. 

Our study aimed to investigate the differences 
between high and low RDS and explore alternative 
therapies for TACE NR. Analysis of the mutation 
profiles indicated that CTNNB1 was the most 
commonly mutated gene in patients with a low RDS. 
Studies have highlighted that CTNNB1 mutations in 
HCC are correlated with positive clinicopathological 
characteristics and enhanced survival rates. A 
meta-analysis of 17 studies involving 1828 patients 
demonstrated that HCC patients with CTNNB1 
mutations exhibited significantly improved 1-, 3-, and 
5-year overall survival rates. Moreover, these 
mutations have been linked to better tumor 
differentiation, earlier TNM stages, lower prevalence 
of liver cirrhosis, and reduced HBV infection rates 
[37]. These findings suggest that a low RDS is 
associated with a favorable prognosis and a high 
prevalence of CTNNB1 mutations play a crucial role. 

In recent years, immunotherapy for HCC has 
seen advancements in the use of immune checkpoint 
inhibitors such as PD-1, PD-L1, and CTLA-4 
antibodies, offering new hope for treatment [38]. Our 
study found that patients with a high RDS tended to 
have lower immune response rates. The TIDE score 
evaluates immune escape and immunosuppression in 
the tumor microenvironment, and predicts immune 
checkpoint inhibitor responses. Higher TIDE scores 
were associated with poorer responses to 
immunotherapy, and there was a positive correlation 
between RDS and TIDE scores, indicating that 
patients with a high RDS tended to have higher TIDE 
scores. The IPS evaluates tumor immunogenicity and 
potential immune escape mechanisms to predict the 
efficacy of immunotherapy. A higher IPS suggests 
stronger immune activity within the tumor and a 
potentially better response to immune checkpoint 
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inhibitors. Interestingly, our study found that patients 
with a high RDS had a significantly lower IPS than 
those with a low RDS, suggesting that poor outcomes 
in patients with a high RDS may be attributed to 
tumor immunosuppression and immune escape 
mechanisms. 

Patients with a low RDS may show improved 
response rates to both TACE and immunotherapy, 
whereas patients with a high RDS may not respond 
well to either treatment. Therefore, this study 
investigated the potential applications of 198 
targeted/chemotherapeutic drugs for HCC. This 
study aimed to identify alternative drugs for patients 
with a high RDS and more effective treatment options 
for patients with a low RDS. A total of 33 valuable 
drugs were identified. Based on the variances in IC50 
values between the high- and low- RDS groups, three 
responsive drugs were chosen for each group. 
Paclitaxel, dasatinib, and vincristine are potential 
alternative therapies for patients with a high RDS, 
whereas JAK1, rapamycin, and AZD2014 are 
considered candidate drugs for treating patients with 
a low RDS. Additionally, a correlation analysis 
between drug targets and RDS genes suggested that 
ACSM2A may play a significant role in drug 
sensitivity. 

The application of single-cell sequencing in HCC 
focuses on uncovering tumor heterogeneity, 
identifying rare cell subpopulations, and analyzing 
the immune microenvironment. Single-cell RNA 
sequencing allows researchers to map the 
transcriptomic landscape of tumor cells, detect 
specific gene expression patterns, and identify 
potential therapeutic targets. These technologies 
provide valuable insights for precision medicine in 
HCC, leading to the development of more effective 
diagnostic and therapeutic approaches [39, 40]. 
Subsequently, we examined the functional 
significance of RDS genes using single-cell RNA 
sequencing datasets. By constructing single-cell 
trajectories, we elucidated the relationship between 
alterations in gene expression and cell fate. Our 
hypothesis suggests that most shifts in cell states 
correspond to specific changes in gene expression, 
shedding light on how certain genes influence cellular 
behavior and fate during tumor progression. This 
analysis deepens our understanding of the molecular 
mechanisms underlying HCC and may uncover novel 
therapeutic targets and biomarkers. Examination of 
cell trajectory and pseudotime data revealed a 
differentiation process from normal hepatocytes to 
HCC, accompanied by fluctuations in RDS gene 
expression levels. Notably, ACSM2A showed a 
consistent down regulation trend during 
differentiation, with significantly reduced expression 

in HCC. These findings imply a critical role for 
ACSM2A in HCC differentiation. ROC and KM 
curves further underscored the significance of 
ACSM2A in tumor diagnosis and prognosis. 
Validation of RDS gene expression at the cellular level 
indicated decreased expression in HCC cells, 
suggesting its potential as a key protective factor. 

This study is limited by the use of publicly 
available datasets, such as TCGA, GEO and ICGC, 
which may not fully represent the etiological diversity 
of HCC across different geographic regions. The 
datasets predominantly focus on specific etiologies, 
potentially underrepresenting variations such as 
hepatitis B or C-related HCC and non-alcoholic 
steatohepatitis related HCC. Consequently, the 
generalizability of the RPS and RDS models to more 
diverse patient populations is restricted. To address 
this, future studies should seek validation in larger, 
multi-ethnic clinical cohorts to ensure the robustness 
and broad applicability of these models across diverse 
HCC etiologies. Furthermore, the current study is 
constrained by a relatively small sample size for 
model training, which may limit the statistical power 
and predictive accuracy of the RPS and RDS. 
Increasing the sample size in future investigations 
will enhance the models’ capacity to capture the full 
spectrum of disease variability. Additionally, 
exploring supplementary biomarkers to refine the 
scoring systems, and performing experimental 
validation of the functional roles of the RPS and RDS 
genes, will be critical steps to enhance their clinical 
utility and translational potential. 

Overall, the RPS and RDS systems are crucial for 
prognostic evaluation and treatment decision-making 
in patients with HCC and have wide-ranging clinical 
applications. Therefore, it is important to pay special 
attention to patients with high RPS levels in clinical 
practice. Patients with a high RDS may benefit from 
treatments, such as paclitaxel, dasatinib, and 
vincristine, whereas patients with a low RDS can 
explore different treatment options, such as TACE, 
immunotherapy, and pharmacotherapy, to determine 
the most effective approach. The implementation of 
these systems is expected to enhance the clinical 
outcomes of patients with HCC and advance 
personalized therapy. Furthermore, this study 
highlights ACSM2A as a gene that plays a significant 
role in drug sensitivity and differentiation of 
hepatocytes into HCC, making it a potential 
therapeutic target. 
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