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Abstract 

Background: Nasopharyngeal carcinoma (NPC) refers to a cancerous tumor that develops in the upper and 
side walls of the nasopharyngeal cavity. Typically, individuals are often diagnosed with the disease when it has 
already progressed significantly, and those with advanced NPC tend to have an unfavorable outlook in terms of 
response rate to targeted treatments and overall clinical survival. Various molecular mechanisms, including 
Myeloid-derived suppressor cells and factors like PD-L1, have been explored to enhance the outcome of NPC. 
However, there are still challenges to be addressed in terms of identifying symptoms at an early stage, making 
precise predictions about the chances of cancer returning and spreading, and devising successful approaches for 
treatment. The activation of B cells and their corresponding pathways holds potential for developing enhanced 
immune therapeutic strategies. Nevertheless, the comprehensive understanding of the intricate association 
between B cells and NPC tumor cells remains incomplete. Hence, this study employed single-cell multi-omics 
analysis to investigate the molecular biomarkers and prognostic factors linked to B cell subpopulations in 
human NPC while examining the underlying mechanisms. 
Materials and Methods: The Gene Expression Omnibus database provided tumor and blood samples 
obtained from patients diagnosed with NPC. Subsequently, we analyzed these single-cell data. Following the 
assessment of NPC sample quality, we employed the R package 'Harmony' to mitigate batch discrepancies using 
PCA outcomes. The analysis of Gene Ontology, Gene Set Enrichment Analysis, and Kyoto Encyclopedia of 
Genes and Genomes was used to examine differentially expressed genes in B cell subpopulations of NPC 
tumors. The pseudo-temporal trajectories of B cells in NPC were studied using the Monocle and Slingshot 
software tools. In addition, the CellChat package was utilized to predict the incidence of intercellular 
communication between different subpopulations of B cells and cancerous cells. Furthermore, we utilized 
univariate Cox regression, LASSO, and multivariate Cox regression analysis to construct prognostic models. 
The immune cell infiltration was evaluated in tumor tissues using ESTIMATE, CIBERSORT, and xCell. 
Furthermore, the infercnv was employed to assess the extent of copy number variation in NPC cells. To 
forecast the potential reaction of particular tumor samples to chemotherapy, the R package called 'pRRophetic' 
was utilized. 
Results: Single-cell RNA sequencing effectively identified various cell subgroups in NPC, including T/NK cells, 
B cells, plasma cells, myeloid cells, mast cells, and malignant cells. A comprehensive examination of the B cell 
subgroups revealed their division into 13 distinct groups, each with unique characteristics and functions. 
Enrichment analysis indicated that C4 CD86+ Memory B cells may play a role in inhibiting viral invasion and 
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activity. Through trajectory analysis, we mapped the differentiation pathways of B cells and found that C4 
CD86+ Memory B cells represent the final stage of this differentiation process. Furthermore, signal 
communication analysis revealed that C4 CD86+ Memory B cells have the potential to initiate interactions with 
malignant cells via the CD99-CD99, SEMA4-PLXNB2, and notably the CD46-JAG1 signaling pathways. To 
construct the CD86+ Memory B score, we employed univariate Cox regression analysis, LASSO regression 
analysis, and multivariate Cox regression analysis to screen 14 genes based on the top 100 marker genes of C4 
CD86+ Memory B cells.  
Conclusion: The results indicate that the C4 CD86+ Memory B cells may have a suppressive impact on viral 
activity in NPC. However, patients with a higher subgroup of CD86+Memory B scores exhibited a worse 
prognosis. This could be attributed to the crucial involvement of C4 CD86+ Memory B cells in the proliferation 
and differentiation of tumor cells, which occurs through the CD46-JAG1 signaling pathway. The discoveries 
provide significant insights into the fundamental mechanisms of developing NPC. Moreover, these factors 
greatly influence the prognosis of individuals suffering from this specific type of cancer and offer crucial 
perspectives for the advancement of future treatment approaches. 

Keywords: Molecular biomarkers, Cellular signaling network, Memory B cells, Immunotherapy, Nasopharyngeal carcinoma, 
Single-cell RNA sequencing 

Introduction 
Nasopharyngeal carcinoma (NPC), a type of 

cancerous epithelial tumor, is found in the upper part 
and side of the nasopharyngeal cavity. It is more 
common in East and Southeast Asia (1-4). This type of 
cancer makes up around 30% of malignant tumors 
and 70-80% of head and neck tumors. Men are 
affected by it at a rate two to three times higher than 
women. Statistics indicate that in 2020, there were an 
estimated 133,354 new cases of NPC and 80,008 
deaths worldwide. This considerable toll not only 
highlights the severity of the disease but also 
emphasizes the urgent need for effective prevention, 
early detection, and treatment strategies to mitigate its 
impact on global health and well-being (5,6). Apart 
from the presence of Epstein-Barr virus (EBV), recent 
studies have highlighted human papilloma virus 
(HPV) infection, alcohol consumption, smoking, and 
the intake of salt-preserved foods as notable risk 
factors (2). Presently, the prediction and selection of 
treatment alternatives for individuals diagnose with 
NPC primarily rely on the Tumor-lymph 
node-metastasis (TNM) staging system established by 
the Union for International Cancer Control and the 
American Joint Committee on Cancer (UICC/AJCC), 
8th edition (7-10). However, due to the inherent 
heterogeneity of NPC tumor cells, NPC patients have 
significantly different survival outcomes at the same 
stage (11-13). More than 90% of patients diagnosed 
with NPC in its early stages can survive for 5 years, 
whereas the survival rate drops to 60% for patients in 
advanced stages (14). Typically, due to the concealed 
anatomical position of NPC and the absence of early 
signs or distinct clinical symptoms, the diagnosis of 
the illness is often postponed until it reaches 
advanced stages, with or without the spread to the 
cervical lymph nodes (15). Hence, a pressing 
requirement exists for a molecular biomarker that is 

both highly sensitive and specific, enabling early 
detection of the illness, forecasting outcomes, and 
anticipating the likelihood of relapse and spread (16). 

Researchers and clinicians have extensively 
studied several processes associated with improved 
outcomes in NPC. They have employed advanced 
techniques such as genomics, transcriptomics, 
proteomics, and metabolomics, which have yielded 
numerous useful discoveries (17). Targets for 
immunotherapy in NPC include upregulated MDSC, 
PD-L1 overexpression, and various co-stimulatory 
factors linked to T-cell exhaustion and dysfunction. 
These factors encompass CTLA-4, LAG-3, TIGIT, 
TIM3, and CD276, which hinder the immune response 
and can be potential targets for immunotherapy (18). 
These studies have provided some ideas for the 
treatment of NPC. Nevertheless, until now, the 
emphasis of cancer immunotherapy has primarily 
been on T-cells, neglecting thorough investigation of 
other immune subgroups. This limited approach has 
hindered advancements in early detection, prognosis, 
and forecasting of NPC's recurrence and metastasis. 
Consequently, the current overall clinical survival rate 
for patients remains unsatisfactory. B lymphocytes are 
regarded as the primary cells responsible for humoral 
immunity. They enhance T cell reactions and hinder 
tumor advancement by both producing 
immunoglobulins and directly eliminating malignant 
cells. The properties play a significant role in the 
immune response against tumors within the tumor 
microenvironment (TME). Despite the advent of 
immune checkpoint inhibitors, not all individuals 
experience therapeutic benefits from these treatments, 
which specifically target immune responses 
associated with T-cells. The activation of the immune 
response through humoral immunity and the 
formation of tertiary lymphoid structure (TLS) are key 
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functions of B cells and B cell-related pathways, 
including the CCL19, -21/CCR7 axis, and 
CXCL13/CXCR5 axis. play a key role in TME. 
However, they have some pro-tumorigenic effects in 
TME (19). Hence, it is imperative to acquire a more 
comprehensive comprehension of B cells and the 
pathways associated with them to devise efficient 
strategies for cancer management. Based on 
preclinical data, activation of B cells and B 
cell-associated pathways may open new opportunities 
for more effective immunotherapies, but we should be 
aware that they also have some pro-tumorigenic 
effects in TME. Enhanced comprehension regarding 
the control of B cells and pathways associated with B 
cells may open possibilities for novel approaches in 
the treatment of cancer (20). Hence, we employed 
single-cell RNA sequencing (scRNA-seq) data from 
Gene Expression Omnibus database (GEO) and bulk 
RNA sequencing (bulk RNA-seq) data from the 
Cancer Genome Atlas (TCGA) to investigate NPC, 
with a particular emphasis on examining molecular 
biomarkers and prognostic factors linked to B cell 
subpopulations, as well as exploring potential 
mechanisms. The research we conduct will establish a 
scientific foundation for enhanced NPC prevention, 
diagnosis, and treatment. Additionally, it is 
anticipated to expedite the advancement of 
personalized therapy, ultimately enhancing patients' 
prognosis and quality of life. Furthermore, our limited 
knowledge about the microenvironment of NPC 
consistently obstructs the improvement of therapeutic 
interventions. Hence, it is imperative to gain a deeper 
understanding of the composition of 
immune-infiltrating cells in NPC.  

In general, numerous subgroups of tumors that 
infiltrate is being more and more acknowledged as 
potential indicators and targets for the early detection, 
prediction of future outcomes, and restoration of 
impaired immune system. Currently, multi-omics 
sequencing technologies have been widely applied in 
cancer research (21). Nevertheless, the past ten years 
have witnessed a dearth of comprehensive single-cell 
analysis methods, resulting in insufficient research on 
NPC. Our objective in this study was to offer a 
thorough and all-encompassing perspective on the 
diversity of tumors in NPC.  

Materials and Methods 
Data of single-cell RNA and processing 

The single-cell RNA sequencing (scRNA-seq) 
data for NPC and peripheral blood lymphocyte 
samples (n=10) were obtained from GSE162025, 
accessible through the GEO database on the National 
Center for Biotechnology Information (NCBI) website 

(https://www.ncbi.nlm.nih.gov/geo/). The R 
software (version 4.2.0) and Seurat R package (version 
4.3.0) were utilized to process the 10X genomics data 
from each sample (22,23).  

Data quality control and preprocessing 
We performed quality control of the gene-cell 

data. Initially, we employed the DoubletFinder R 
package (version 2.0.3) (24) to detect and eliminate 
any duplicate cells that might have occurred due to 
cell encapsulation or cells that were not properly 
separated during sample preparation, as well as 
accidental merging of samples. In this study, we also 
excluded cells that expressed more than 25% of 
mitochondrial genes. We also excluded low-quality 
cells with fewer than 300 or more than 7500 genes 
detected, or fewer than 3 cells detected. Since we used 
data from publicly available databases, no ethical 
approval was required for this study. 

Removal of batch effects and clustering by 
scRNA-seq  

The log(x+1) method was used to calculate the 
gene expression in each cell by multiplying the 
fraction of genes by 10,000 for the natural logarithmic 
transformation (25-27). Normalization was performed 
using NormalizedData (28,29), employing log 
normalization to adjust for differences in sequencing 
depth across samples This method transforms the raw 
count data into a format that is more suitable for 
downstream analysis by taking the logarithm of the 
counts after scaling. Subsequently, the top 2,000 
highly variable genes were identified and filtered out 
using FindVariableFeatures (30), followed by the 
normalization process using the ScaleData 
normalization (31-33). These genes were then scaled 
before subjecting them to principal component 
analysis (PCA) (34,35). The R harmony R package 
(version 0.1.1) (36) was utilized to remove batch 
effects by analyzing the resulting components of PCA. 
By utilizing FindNeighbors for data coordination, we 
calculated the k closest neighbors and formed a 
shared nearest neighbor graph (37). To identify 
clusters, we utilized FindClusters to classify the data, 
followed by implementing the uniform manifold 
approximation and projection (UMAP) 
dimensionality reduction technique (38) to visually 
represent the identified clusters on a 2D map. 

Cell clustering analysis 
To detect marker genes for each cluster, we 

employed the 'FindAllMarkers' function with 
parameters Threshold = 0.25, min.pct = 0.25, and 
min.diff.pct = 0.25. We used Seurat's DotPlot and 
featureplot tools to visualize the expression patterns 
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of each marker gene in each cluster. To annotate the 
cell groups, we referred to known cellular markers 
and differentially expressed genes (DEGs) mentioned 
in the scientific literature. In addition, to explore the 
heterogeneity of B cells in NPC in more depth, we 
reclustered the cells in the B cell population. Each B 
cell subpopulation was annotated according to the 
expression of its different genes. 

Perform pathway enrichment analysis on 
DEGs using GO, KEGG, and GSEA 

To analyze the functional enrichment of DEGs, 
including Gene Ontology (GO) (39-43) terms and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways (44-46), we utilized the R software's 
'GOplot' package. During the analysis of GO, we 
assessed the enriched biological processes (47). The 
identification of crucial pathways and central genes 
was accomplished using the technique of gene set 
enrichment analysis (GSEA) (48). Enrichment analysis 
was performed to determine whether a set of a priori 
defined biological processes were enriched. Pathways 
were prioritized based on their normalized 
enrichment score, and only those with a P-value less 
than 0.05 were chosen for additional analysis. Gene 
entries for Gene Ontology Biological Process (GOBP) 
were used to perform GSEA enrichment analysis (49). 

Monocle trajectory analysis of B cell 
subpopulations 

The Monocle R package (version 2.24.0) 
algorithm (50) was utilized to analyze cellular 
subtypes of B cells obtained from NPCs, enabling the 
construction of pseudo-temporal trajectories and 
identification of gene expression alterations during 
cell transitions. Monocle presents a technique called 
monoclonal trajectory analysis, utilizing an algorithm 
to comprehend the gene expression alterations that 
every cell must experience in a sequential manner as a 
component of a dynamic biological procedure, 
enabling us to observe these conditions in each 
individual cell. Each cell can be placed in the 
trajectory analysis based on its "trajectory" of gene 
expression changes. Cells were sorted along the 
trajectories and their trajectories were visualized in a 
reduced dimensional space.  

Slingshot pseudotemporal analysis of B cell 
subpopulations 

The Slingshot package (version 2.6.0) (51,52) is 
utilized to infer cell lineages and identify approximate 
trajectory structures by applying minimum spanning 
trees to clusters through the getLineages function. 
Additionally, it estimates potential cell-level 
pseudotimes for each lineage using synchronized 

master curves fitted via the getCurves function. After 
trajectory inference, the relationship between gene 
expression levels and pseudotimes for each lineage 
was modeled using a Negative Binomial Generalized 
Additive Model (NB-GAM) via tradeSeq version 
1.2.01. This approach employs smoothed spline 
curves to illustrate average gene expression levels as a 
function of pseudotime, capturing the continuous 
variation in gene expression across pseudotime. 

We used Slingshot to perform pseudotemporal 
extrapolation of UMAP coordinate plots of B cell 
subpopulations to visualize pseudotemporal 
differentiation trajectories of B cell subpopulations 
and analyzed them in comparison to the 
pseudotemporal differentiation trajectories inferred 
by monocle2. 

Analysis of intercellular communication 
To deducing and examining intercellular 

communication, we employed the CellChat R package 
(version 1.6.1) (53-56), an open database containing 
ligands, receptors, and their interactions, utilizing the 
default settings. To analyze cellular interaction, 
expression levels were computed in relation to the 
overall read-labeled profiles of the identical group of 
coding genes in every transcriptome. The average 
expression values were calculated for each individual 
cell cluster or cell sample. 

Construction and validation of risk models 
Due to the fact that NPC is classified as a kind of 

head and neck squamous cell carcinoma (HNSCC), 
and since the TCGA database has more 
comprehensive gene expression data and clinical 
information for HNSCC patients, we utilized the data 
specifically from head and neck squamous 
carcinomas in the TCGA database. The expression 
values of genes were extracted and used to perform 
the univariate Cox regression analysis to screen for 
potential prognosis-related genes (57-59). 
Prognosis-related genes were chosen and genes with a 
p-value less than 0.05 were screened through 
univariate cox regression analysis (60,61). Prognostic 
models were then built using Least Absolute 
Shrinkage and Selection Operato (LASSO) regression 
(glmnet, version 4.1-6) with the least absolute 
shrinkage and selection operator. We constructed the 
risk score formula based on the expression of each 
included gene, weighted by its multivariable Cox 
regression analysis coefficient, using the following 
format: Risk scores of the prognostic risk score model 
(X: coefficient, Y: gene expression level) = ∑ Xi ×n

i
Yi. Subsequently, the risk score was computed for 
every individual. Using the median risk score as a 
threshold, the training cohort was categorized into a 
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low risk group (below the median risk score) and a 
high risk group (above the median risk score). The 
Kaplan-Meier formula in the R package Survival 
(version 3.3-1) was utilized to generate survival 
curves, and the log-rank test (54,62-64), was employed 
to compare the two groups. The model's predictive 
accuracy was studied using analysis of Receiver 
Operating Characteristic Curve (ROC) curves (65-67). 
The independent prognostic value of risk scores and 
other clinical characteristics were evaluated using Cox 
regression (68-70). Using the "rms" R package (version 
6.7-0), a column chart based on risk scores and clinical 
characteristics was constructed to provide a reference 
for predicting the prognosis of patients, and 
calibration plots were used to assess the chart's 
prognostic power (71,72). 

Immunoassay of TME 
The expression data (ESTIMATE R package 

(version 1.0.13)) method (73) was used to estimate the 
stromal score, immune score, ESTIMATE score and 
tumor purity in HNSCC tissues. Next, the Cell Type 
Identification for Estimating Relative Subpopulations 
of RNA Transcripts (CIBERSORT R package (version 
0.1.0)) algorithm (74) was used to analyze RNA-Seq 
data from patients to determine the relative 
proportion of 22 infiltrating immune cells. In addition, 
to quantify immune cell infiltration in each sample, 
the xCell package was used to assess the enrichment 
of immune cells in HNSCC samples. We then 
calculated the correlation between risk scores and 
immunomodulatory genes, particularly immune 
checkpoints. 

Genetic variant analysis 
To identify the copy number variation (CNV) 

load, we used the InferCNV R package (75) to 
calculate a large-scale chromosomal CNV score for 
tumor cells. This analysis entailed assessing relative 
gene expression in conjunction with chromosomal 
location data to determine the CNV status of 
chromosomes within individual cells. This 
methodology allowed for the effective differentiation 
of malignant tumor cells from normal cells. To 
perform this analysis, we prepared raw count 
matrices, annotation files, and gene/chromosome 
location files according to the data requirements 
(https://github.com/broadinstitute/inferCNV). We 
chose normal cells as a reference and performed an 
InferCNV analysis using the default parameters to 
determine whether other malignant cells exhibited 
substantial chromosomal CNV. 

DNA sequencing data was processed by a 
proprietary bioinformatics platform to identify 
multiple genomic abnormalities, including single 

nucleotide variants (SNVs), insertions/deletions, 
somatic copy number alterations (SCNAs), and 
translocations. After alignment and deduplication 
analysis, the Mutect and Vardict SNV tools were used 
to identify SNVs and insertions/deletions requiring 
allele score thresholds >0.05 and variant support 
reads >3. All SNVs and insSertions/deletions were 
called only within genomic regions to ensure capture 
accuracy. Thresholds for SCNAs were defined as 
>2-fold (gain) and 0.5-fold (loss), which were 
calculated using the CNVkit tool. Translocation 
variants were then identified by recognizing overlaps 
of at least four supporting reads, using the NovoBreak 
and Lumpy tools. Six alternative subtypes were 
summarized for each sample: C > A, C > G, C > T, T > 
A, T > C and T > G. 

To calculate the TMB, we only considered SNVs 
that had an allelic fraction of 10% or higher. The TMB 
was then determined by the number of 
nonsynonymous SNVs per megabase after applying 
standard filters. These assays have been validated in 
previous studies. GENEKEEPER, a proprietary 
management tool and database, was utilized to 
oversee and annotate all genetic alterations, ensuring 
their pathogenicity and clinical significance. 

Drug sensitivity analysis 
Using the pRRophetic R package (version 0.5) 

(76), we utilized the GDSC database 
(https://www.cancerrxgene.org/), which is the most 
extensive pharmacogenomics database, to forecast the 
responsiveness of each tumor sample to treatment. 
Regression was used to obtain the estimated IC50 
values for each drug, and the accuracy of both 
regression and prediction was tested using 10-fold 
cross-validation with the GDSC training set. All 
parameters were selected as default values, including 
the "combat" to remove batch effects and the mean 
value of duplicate gene expression. 

Cell culture 
The CNE2 cell line and HNE2 cell line were 

procured from the ATCC. These cellular entities 
underwent cultivation within F12K medium, enriched 
with 10% fetal bovine serum sourced from Gibco BRL, 
USA, and supplemented with 1% streptomycin/ 
penicillin. Notably, the former was nurtured in F12K 
medium, while the latter found its growth medium in 
PRMI1640, both from Gibco BRL, USA. The 
incubation transpired under standardized conditions, 
maintaining a temperature of 37°C, a carbon dioxide 
concentration of 5%, and humidity levels at 95%. 

Cell transfection 
The reduction of JAG1 expression was 
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accomplished using a small interfering RNA (siRNA) 
construct acquired from GenePharma in Suzhou, 
China. The transfection procedure followed the 
specified protocol for Lipofectamine 3000 RNAiMAX, 
developed by Invitrogen, USA. Cells were seeded into 
6-well plates at 50% confluence and subsequently 
infected with negative control (si-NC) or knockout 
constructs (si-JAG1-1 and si-JAG1-2). Each 
transfection utilized Lipofectamine 3000 RNAiMAX 
from Invitrogen, USA. 

Cell viability assay 
Following transfection, the cellular viability of 

both CNE2 and HNE2 cells were assessed employing 
the CCK-8 assay. Cell suspensions were seeded into 
96-well plates at a density of 5×103 cells per well and 
allowed to incubate for a duration of 24 hours. 
Subsequently, 10 μL of CCK-8 Marker (A311-01, 
Vazyme) was introduced into each well, followed by 
an incubation period of 2 hours at 37°C under light 
protection. To gauge cell viability on days 1, 2, 3, and 
4 post-incubations, the absorbance at 450 nm was 
methodically gauged utilizing an enzymatic marker 
(A33978, Thermo) (77). The resultant mean optical 
density (OD) values were computed and depicted 
graphically as a line chart. 

5-Ethynyl-2’-deoxyuridine (EDU) proliferation 
assay 

The transfected CNE2 and HNE2 cells were 
seeded into 6-well plates at a density of 5×103 cells per 
well and cultured overnight. Subsequently, a 2× EdU 
working solution was prepared by combining 10 mM 
EdU with serum-free medium. This solution was 
added to the cell culture medium, and the cells were 
allowed to incubate at 37°C for a duration of 2 hours. 
Following this incubation period, the medium was 
aspirated, and the cells were gently washed with PBS. 
Subsequently, the cells were fixed with 4% 
paraformaldehyde for 30 minutes. A treatment with 
glycine (2 mg/mL) and 0.5% Triton X-100 for 15 
minutes ensued. The cells were then incubated with a 
mixture of 1 ml 1X Apollo and 1 ml 1X Hoechst 33342 
for 30 minutes at room temperature. To quantify cell 
proliferation, fluorescence microscopy was employed 
for observation and analysis. 

Wound healing 
Upon transfection, the cells were seeded into 

6-well plates and cultivated until reaching a cell 
density of 95%. Subsequently, a sterile 200 μL pipette 
tip was utilized to meticulously create a linear scratch 
across the cell layer within the culture wells. 
Following this, the wells were gently washed with 
PBS. Post-rinse, the culture medium was replaced, 

and the cell culture was allowed to proceed. 
Photographic documentation of the scratches was 
undertaken at both the 0 hours and 48 hours 
thereafter. The width of the scratches was measured 
for subsequent analysis. 

Transwell assay 
Prior to the experiment, cells experienced 24 

hours of serum deprivation in a serum-free medium. 
Subsequently, after administering matrix gel from BD 
Biosciences, USA, the cell suspension was placed in 
the upper chamber (Costar), while the bottom 
chamber was supplied with a serum-enriched 
medium. Subsequent to this arrangement, the cells 
were incubated for a period of 48 hours. Upon 
completion of the incubation period, the cells were 
carefully preserved with a 4% paraformaldehyde 
solution. Subsequently, a staining procedure was 
conducted utilizing crystal violet to assess and 
quantify the invasive properties of the cells.  

Statistical analysis 
We performed statistical analysis using R 

software and Python software to analyze the database 
data. All p-values reported in this study are 
two-tailed, with values less than 0.05 considered 
statistically significant. P-values below 0.001 were 
considered highly significant, while those below 
0.0001 were regarded as extremely significant. 

Results 
Analysis of cells in NPC 

We did scRNA-seq analysis on tumor tissues and 
matched peripheral blood mononuclear cells to learn 
more about how complicated TME is in NPC. After 
applying rigorous quality control filtering, a total of 
165,101 cells were preserved. Furthermore, in order to 
categorize sets of cells with comparable expression 
patterns, we conducted an unsupervised cluster 
analysis using Seurat software. This analysis allowed 
us to distinguish each cluster into distinct cellular 
subgroups based on the expression of highly variable 
genes and characteristic markers. These markers 
include T/NK cells, B cells, Plasma cells, Myeloid 
cells, Mast cells, and Malignant cells, which are 
commonly found in both tumor and peripheral blood 
samples. The specific flowchart of this study is shown 
in Figure 1. 

Analysis of B cell subpopulations in NPC 
Considering the abundance of B cells in NPC 

tumor samples and their anti-tumor capacity, we 
explored the heterogeneity of the entire B cell 
population. We used cluster analysis to categorize all 
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21,526 B cells into 13 subpopulations, including C0 
TCL1A+ Naive B cells, C1 NR4A1+ Memory B cells, 
C2 ITGB1+ Memory B cells, C3 AC079767.4+ Memory 
B cells, C4 CD86+ Memory B cells, C5 FKBP11+ 
Plasma cells, C6 IGKV2-30+ Memory B cells, C7 
IGHV4-31+ Naive B cells, C8 IGKV1-9+ Naive B cells, 
C9 RGS13+ Germinal center B cells, C10 
HIST2H2AA4+ Memory B cells, C11 IGKV3D-11+ 
Plasma cells and C12 IGHV3-66+ Germinal center B 
cells (Figure 2A). Differences in CNVscore, 
nCount-RNA, G2/M.Score and S.Score of B cells were 
demonstrated using UMAP plots (Figure 2B). The cell 
ratio bar graph revealed that the C0 TCL1A+ Naive B 
cells subpopulation accounted for the largest 
proportion of samples of peripheral blood origin, and 
the C1 NR4A1+ Memory B cells subpopulation 
accounted for the largest proportion of samples of 
tumor origin. Except for the C0 TCL1A+ Naive B cells 
subpopulation and C12 IGHV3-66+ Germinal center B 
cells, which accounted for a smaller proportion of 
tumor-derived samples than peripheral blood- 
derived samples, all other B cell subpopulations 
accounted for a greater proportion of tumor-derived 
samples than peripheral blood-derived samples 
(Figure 2C). Bubble plots demonstrated the 
expression of marker genes (top5) for B cell 
subpopulations (Figure 2D). 

GO-BP enrichment analysis of B cell 
subpopulations 

Enrichment analysis of different genes in the B 

cell subpopulation revealed that the C0 TCL1A+ 
Naive B cells exhibited a significant difference in the 
expression of marker genes, potentially linked to an 
adaptive immune response involving the 
rearrangement of immune receptors composed of 
immunoglobulin superfamily domains. This response 
also involves immunoglobulin-mediated immune 
response, B cell-mediated immunity, lymphocyte- 
mediated immunity, and leukocyte-mediated 
immunity. Additionally, the C4 CD86+ Memory B 
cells subpopulation may be associated with the 
positive regulation of actin filament bundle assembly, 
phosphatidylinositol 3-kinase signaling, cell 
activation, as well as the regulation of actin filament 
bundle assembly and phosphatidylinositol 3-kinase 
signaling. These biological processes are depicted in 
Figure 2E. The volcano plot demonstrates the 
differential expression of marker genes in B cell 
subpopulations (Figure 2F). 

GSEA enrichment analysis of B cell 
subpopulations 

Additional investigation into the B cell 
subpopulations indicated that most B cells originated 
from tumor samples, with only a minority originating 
from peripheral blood samples. Among the B cells 
derived from peripheral blood samples, the 
predominant subpopulation was C0 TCL1A+ Naive B 
cells, while the remaining B cell subpopulations were 
primarily derived from tumor samples (Figure 3A).  

 
Figure 1. Graphical Abstract. The flowchart of this study was shown in the figure. 
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Figure 2. Single-cell analysis in NPC. (A) Based on the UMAP plot analyzed, a total of 165,101 individual cells were categorized into six distinct cell types. The pie plots 
visually depicted the distribution of cell cycle phases (G1, S, and G2/M) for each cell type, showcasing the proportions within each phase (top left). UMAP colored according to 
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cell tissue source (peripheral blood or tumor) (top right). UMAP plot of 21,526 B cells, classifying B cells into 13 major B cell types and pie plots of the sample origin for each cell 
type (bottom left and bottom right). Each dot represents a cell, colored according to cell types. (B) UMAP plots showing CNVscore, ncount_RNA, G2/M.Score, and S.Score for 
each B cell. Each dot represented a cell, and the color depth from blue to red represents low to high scores. (C) Bar graphs showed the proportion of each of the various B cell 
subpopulations in different sample sources. (D) Bubble graph showed the expression of top 5 marker genes of various B cell subpopulations. (E) Heatmap showed the differential 
genes of the 13 cell subpopulations and their corresponding GO-BP enrichment analysis results, yielding the active biological processes in which each B cell respective is located. 
(F) Volcano plots demonstrated the differential genes of each B cell type.  

 
It can be seen from the bar chart that the 

proportion of C5 FKBP11+ Plasma cells 
subpopulations in G1 phase is higher than that in 
other cell cycles, and the proportion of C4 CD86+ 
Memory B cells subpopulations in G1 phase is lower 
than that in other cell cycles. However, such a result 
may be affected by the total number of cells. We 
observed the proportion of different cell cycles in 
different B cell subpopulations, and found that the G1 
phase (74.30%) of C5 FKBP11+ Plasma cells 
subpopulations was indeed higher than the G2/M 
phase (14.60%) and S phase (11.10%). The S phase 
(38.00%) of C4 CD86+ Memory B cells was higher 
than that of G1 phase (31.00%) and G2/M phase 
(30.70%)(Figure 3B).The proportion of B cells of each 
cell cycle was higher in the tumor sample-derived B 
cells than in the peripheral blood sample-derived 
ones, which might be the reason why the number of 
tumor-derived B cells was significantly more than the 
number of peripheral blood sample-derived B cells 
(Figure 3C).The bar graph of the proportions of B cells 
with different cell cycles in the different sample 
sources showed that the proportion of B cells in G2/M 
phase was higher in the tumor-source than in the 
peripheral blood-source, while the proportion of B 
cells in G1 phase was lower in the tumor-source than 
in the peripheral blood-source (Figure 3D). Among 
the cell cycle ratios of all B cell subpopulations, it was 
clear that the cell S phase of C5 FKBP11+ Plasma cells 
and C11 IGKV3D-11+ Plasma cells subpopulations 
was shorter than average (Figure 3E). UMAP plots 
demonstrated the expression of top5 marker genes of 
each B cell subpopulation (Figure 3F). The GSEA 
analysis examined the distinct genes of the C4 CD86+ 
Memory B cells subpopulation and revealed their 
significant involvement in inhibiting viral processes, 
controlling viral genome replication, promoting 
secretion, enhancing secretion by cells, and 
preventing viral entry into host cells. Figure 3G 
indicates that C4 CD86+ Memory B cells have the 
potential to hinder viral invasion and activity by 
negatively regulating the viral life cycle and Epithelial 
to mesenchymal transition, two of the seven biological 
pathways that exhibited noteworthy enrichment 
outcomes.  

Monocle trajectory analysis of B cell 
subpopulations 

To depict the temporal dynamics of B cells 
during NPC formation, individual cells were 

reordered into a pseudotemporal timeline using the 
Monocle toolkit, which clearly showed that C0 
TCL1A+ Naive B cells, C1 NR4A1+ Memory B cells, 
C2 ITGB1+ Memory B cells, C3 AC079767.4+ Memory 
B cells and C4 CD86+ Memory B cells subpopulations 
developed uniformly on the pseudotimeline, while 
other B cell subpopulations had different trends on 
the pseudotimeline (Figure 4A). We observed that 
most cells at the beginning of the pseudotimeline 
were State1 by derivation, with State2 and State3 
appearing along the progression of the proposed 
timeline (Figures 4B-D). We probed the proportion of 
each of the different B cell clusters in the different 
states, respectively, and found that State2 had a much 
smaller proportion of C1 NR4A1+ Memory B cells 
than State1 and State3, while State2 had a much larger 
proportion of C0 TCL1A+ Naive B cells than State1 
and State3 (Figure 4E). The UMAP plot demonstrated 
the proposed temporal status of all B cells (Figure 4F). 
In order to investigate the variations in the quantity of 
each B cell subpopulation over time, we initially 
examined the presence of marker genes within the B 
cell subpopulations (Figure 4G). Subsequently, we 
analyzed the expression of distinct marker genes 
throughout the suggested temporal alterations 
(Figure 4H). As we saw previously in the figure, in the 
early stage of NPC development, most cells were C1 
NR4A1+ Memory B cells, while in the later stage of 
development, there appeared mostly C11 
IGKV3D-11+ Plasma cells and C12 IGHV3-66+ 
Germinal center B cells, etc. (Figures 4I, J). The 
inferred cellular development trajectories, as 
determined by Slingshot, exhibited a general 
concordance with the findings from Monocle (Figure 
4F, K). Notably, during the early stages of 
differentiation, B cells in the G1 phase predominated, 
while throughout the course of disease progression, 
there was a gradual augmentation in the population 
of B cells in the S phase and G2/M phase. 

Intercellular communication between 
malignant cells and B cell subpopulations 

Based on the net counts of interaction plots and 
interaction weight plots of B cell subpopulations with 
malignant cells, it was found that both in terms of net 
counts of interactions and interaction weights/ 
strengths, malignant cells exhibited stronger 
interactions with individual B cell subpopulations 
compared to interactions between individual B cell 
subpopulations (Figure 5A).  
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Figure 3. GSEA enrichment analysis of B cell subpopulations. (A) UMAP plots of 21,526 B cells, classifying B cells into 13 major B cell types and coloring them according 
to their cell types and origin from peripheral blood or tumor. The pie plots visually depicted the distribution of cell cycle phases (G1, S, and G2/M) for each cell type and sample 
sources. (B) Bar graphs showed the proportion of various B cell subpopulations in each of the different cell phases. (C) Bar graph showed the proportion of B cells from different 
cell phases in different sample. (D-E) Bar graph showed the proportion of B cells of different cell phases origin in different samples (D) and cell types (E). (F)UMAP plots 
demonstrated the expression of marker genes in the subpopulations of B cells. (G) GSEA analyzed of C4 CD86+ Memory B cells.  
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Figure 4. Trajectory analysis of B cell subclusters. (A) The temporal trajectory of 13 B-cell subclusters was inferred, with each point representing a cell colored according 
to its cluster label. The developmental trajectories of different cell subpopulations are shown. (B) Plot of the proposed temporal trajectory analyzed of the B cell subpopulations. 
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Each point represented an individual cell, showed the pseudo-temporal scores of each cell from white to dark green, indicated the early and late states, respectively. (C) Monocle 
inferred that there were three states in the process of B cell development. (D) The distribution of B cell subpopulations in the developmental trajectory inferred by Monocle. (E) 
Bar graph showed the proportion of each of the different B cell clusters in each of the different states, respectively. (F) UMAP plots showed the pseudotemporal scores of each 
B cell from white to dark green, indicated early and late states, respectively. (G) Expression of marker genes in the 13 B cell subpopulations. (H) Changed in pseudotemporal 
scores of each marker gene. (I-J) A ridge diagram subplot of the number of cells of the 13 B cell subpopulations identified throughout pseudotemporal time using Monocle. (K) 
The differentiation state of B cellsubpopulations was inferred by Slingshot (top), and the distribution of differentiation trajectory in different phases of B cells was plotted 
(bottom). Solid lines represented the trajectory of differentiation, and arrowed represent the direction of differentiation.  

 
Specifically, cellular communication signaling in 

malignant cells, C5 FKBP11+ Plasma cells and C11 
IGKV3D-11+ Plasma cells subpopulations was mainly 
driven by pattern2, which includes signaling 
pathways such as COLLAGEN, CDH and CXCL. In 
contrast, cell communication signaling in other B cell 
subpopulations was mainly driven by pattern1, which 
included signaling pathways such as CD99, SEMA4 
and VCAM (Figure 5B). In Figure 5C, it was observed 
that the malignant cell-associated pathway had a 
considerably higher Outgoing interaction strength 
compared to B cells, while its Incoming interaction 
strength was lower than most B cells. According to the 
CellChat analysis, various cells can function as 
primary communication centers in various signaling 
pathways. In this research, cancerous cells were 
identified as the main hubs for cellular interactions, 
receiving numerous incoming signals like VCAM, 
JAM, CD46, EGF, MPZ, and CDH, and transmitting 
outgoing signals such as MK, APP, and CCL. Cell-cell 
interaction centers with afferent signals such as MK, 
APP and CCL. In contrast, B cells displayed 
intercellular interaction centers with numerous 
incoming signals like MIF and CD22, along with 
outgoing signals like CD99 (Figure 5D). CellChat 
identified several important ligand-receptor pairs 
such as CD99-CD99, LGALS9-CD44, LGALS9-CD45, 
and TNF-TNFRSF1B, which are the most important 
ligand-receptor pairs for the interaction of malignant 
cells acting on B cells are the most important signaling 
pathways. On the other hand, ligand-receptor pairs 
such as VCAM1-(ITGA4+ITGB7), TNF-TNFRSF1A, 
LGALS9-CD44, CD46-JAG1, CD99-CD99, SEMA4A- 
PLXNB2, SEMA4D-PLXNB2, and VCAM1-(ITGA4+ 
ITGB1) were determined to be the B cells acting on 
malignant cells as the most important signaling 
pathways. This information contributes to the 
understanding of the communication process from 
malignant cells to B cells and from B cells to malignant 
cells (Figure 5E). In general, the signaling pathway of 
cancerous cells exhibited greater strength in the 
efferent signaling pattern aspect, while the B cell 
signaling pathway exhibited greater strength in the 
afferent signaling pattern (Figure 5F). With the 
exception of C7 IGHV4-31+ Naive B cells, cells of all B 
cell subpopulations could act on malignant cells 
(Figure 5G). And malignant cells could act on all B cell 
subpopulations (Figure 5H). 

Signaling pathways CD99 and SEMA4 in 
cellular communication 

To explore in depth, the detailed communication 
functions of individual signaling pathways and the 
coordinated functions between multiple cell 
populations and signaling pathways, we used 
CellChat to determine the roles that the three cellular 
pathways, CD99, SEMA4, and CD46, play in signaling 
between different cells. In Figure 6A, it is evident that 
the signaling pathway of cancerous cells exhibits 
limited senders and numerous receiver pathways, 
whereas the signaling pathway of C4 CD86+ Memory 
B cells displays abundant senders and a limited 
number of receiver pathways. Furthermore, our 
findings indicated that within the CD99 signaling 
pathway, malignant cells functioned as influencers in 
intercellular communication, while C4 CD86+ 
Memory B cells served as influencers, senders, and 
receivers in this communication process (Figure 6B). 
Notably, CD99 expression was present in all B cell 
subpopulations and malignant cells (Figure 6C). 
Using CellChat analysis, it was found that malignant 
cells could interact with C9 RGS13+ Germinal center B 
cells, C8 IGKV1-9+ Naive B cells, C2 ITGB1+ Memory 
B cells, C4 CD86+ Memory B cells and C1 NR4A1+ 
Memory B cells. These five B cells communicated with 
each other through the CD99-CD99 signaling 
pathway, which did not exist with other B cells 
(Figure 6D). By analyzing the centrality of the CD99 
signaling pathway in the network, we discovered that 
C4 CD86+ Memory B cells and malignant cell 
populations have the ability to facilitate 
communication among B cells and facilitate 
communication from malignant cells to B cells. The 
complexity and redundancy of the CD99 signaling 
network in NPC is indicated, as there are various cell 
populations originating from ligands that can target B 
cells of NPC (Figure 6E). Conversely, within the 
SEMA4 signaling pathway, cancerous cells can 
function as recipients of intercellular communication, 
while C4 CD86+ Memory B cells primarily serve as 
influencers and transmitters of intercellular 
communication, in addition to their roles as mediators 
and recipients (Figure 6F). Notably, although SEMA4 
was expressed in all these cells, the lower expression 
levels may imply that it has a relatively weak role in 
signaling (Figure 6G).  



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

300 

 
Figure 5. Intercellular communication interactions between malignant cells and B cell populations. (A) Plot of net counts of interactions between B cell 
subpopulations and malignant cells versus interaction weights. The thicker the indicated line, the higher the number of interactions and the stronger the weight/strength of the 
interaction between the two cell types. (B)Heatmaps of cellular communication patterns between B cell subpopulations and malignant cells, showed the correspondence 
between inferred potential patterns and cell populations, as well as signaling pathways. Shades of color indicated the contribution of cell populations or signaling pathways to each 
potential pattern. (C) The scatter plot depicted the communication network analyzed between B cells and malignant cells, the color of the dots indicated different cells and the 
size of the dots indicated the number of cells. (D) Bubble plots showed afferent versus efferent communication patterns between B cell subpopulations and malignant cells. (E) 
Bubble plots demonstrated significant ligand-receptor pairs between malignant cells and different B cells. Dot color indicates the communication probability and dot size indicates 
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the calculated p-value. Blank means that the communication probability is zero. p-value is calculated based on the one-sided substitution test. (F) Heatmaps demonstrated the 
strength of signaling interactions between B cells and malignant cells in the cellular communication network. (G) Circle diagram of B cell subpopulations acted on the malignant 
cell communication network. The thicker the indicated line, the higher the number of interactions and the stronger the weight/strength of the interaction between the two cell 
types. (H) Malignant cell acted on B cell subpopulation communication network circle diagram. The thicker the line indicated, the greater the number of interactions, and the 
stronger the interaction weight/intensity between the two cell types.  

 
Through CellChat analysis, it was discovered 

that solely C11IGKV3D-11+ Plasma cells and C5 
FKBP11+ Plasma cells had the ability to engage in 
one-way communication with malignant cells via the 
SEMA4A - PLXNB2 signaling pathway. In contrast, 
the remaining B cell populations were incapable of 
communicating with malignant cells through this 
specific signaling pathway (Figure 6H). Through 
network centrality analysis, it was discovered that C4 
CD86+ Memory B cells have the ability to facilitate 
communication among B cells. However, there was no 
evidence of any communication process between 
malignant cells (ligand) and B cells (receptor). This 
suggested that the SEMA4 signaling network in NPC 
was relatively simple and does not possess the high 
degree of redundancy of the aforementioned CD99 
signaling pathway (Figure 6I). Within the CD46 
signaling pathway, cancerous cells have the ability to 
function as both transmitters and recipients of 
intercellular communication, while C4 CD86+ 
Memory B cells primarily function as transmitters (as 
shown in Figure 6J). Notably, although CD46 was 
expressed in all these cells, the lower expression level 
may imply its relatively weak role in signaling. JAG1 
was only expressed in individual cell subpopulations 
and at low levels (Figure 6K). Through the analysis of 
CellChat, it was discovered that JAG1 could be 
expressed by only specific B cell types, namely C4 
CD86+ Memory B cells, C5 FKBP11+ Plasma cells, C9 
RGS13+ Germinal center B cells, and C11 
IGKV3D-11+ Plasma cells, using the CD46-JAG1 
signaling pathway for one-way communication with 
cancerous cells. However, other B cell subpopulations 
were unable to establish communication with 
malignant cells through this pathway (Figure 6L). 
Analysis of the CD46 signaling network's network 
centrality indicated that the communication process 
from malignant cells (ligand) to B cells (receptor) 
could be driven by C4 CD86+ Memory B cells and 
malignant cells, while no communication process 
existed among B cells (Figure 6M). 

Marker genes of C4 CD86+ memory B cells 
Since we mainly focused on the subpopulation of 

C4 CD86+ Memory B cells, we selected the top100 
differential genes of C4 CD86+ Memory B cells. For 
better clinical integration, we next identified 29 genes 
that could be used as prognostic features using 
univariate Cox regression analysis (Figure 7A). In 

order to tackle the potential multicollinearity problem 
among these genes, we utilized a LASSO regression 
analysis to select 14 out of the 29 DEGs for subsequent 
analysis (Figure 7B). Afterwards, employing 
multivariate Cox regression analysis, we developed a 
score linked to these genes, referred to as the 'CD86+ 
Memory B score'. Subsequently, we endeavored to 
forecast the patients' prognosis using this score, 
aiming to further ascertain its significance. The 
patients were categorized into a group with a high 
CD86+ Memory B score and a group with a low 
CD86+ Memory B score. Surprisingly, we discovered 
that the group with lower scores had a superior 
advantage in terms of survival when compared to the 
group with higher scores (as shown in Figure 7C). 
Additional investigation into certain genes linked to 
the prognostic outlook of patients with unveiled that 
the genes ACTB, ATP6VOE1, MTHFD2, GAPDH, and 
TPM3 were identified as risk elements, while the 
genes FCRLA, ITGB7, FCRL3, and IGFLR1 were 
recognized as protective elements (Figure 7D). In 
addition, the expression levels of genes varied among 
patients with different TNM stages. For example, the 
gene PLD4 was expressed in stage N1 > stage N2 > 
stage N0 > stage N3, while the gene GABARAPL2 was 
expressed in stage N3 > stage N2 > stage N1 > stage 
N0 (Figure 7E). 

Construction of risk scores 
Based on the aforementioned findings, we 

examined 14 genes linked to prognosis. Utilizing 
these genes, we developed risk score characteristics 
and divided patients into high-risk and low-risk 
categories, employing the median as the threshold. 
The expression levels of genes FCRL3, FCRLA, 
ZBTB32, IGFLR1, ITGB7, and PLD4 were lower in the 
high-risk group compared to the low-risk group. On 
the other hand, the expression of genes GABARAPL2, 
ATP6VOE1, ACTB, PKM, GAPDH, VOPP1, TPM3, and 
MTHFD2 were higher, which aligned with the 
previous findings (Figure 8A). To evaluate the 
sensitivity and specificity of risk scores in predicting 
the survival of patients for 1, 3, and 5 years, we 
conducted ROC curve analysis in our group and 
discovered that the risk scores demonstrated higher 
accuracy in predicting the mentioned survival 
subcategories. Specifically, the AUC for 1 year was 
0.619, for 3 years was 0.691, and for 5 years was 0.664 
(Figure 8B).  
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Figure 6. Signaling pathways Role of CD99 and SEMA4 in cellular communication. (A)The signaling pathways associated with CD99 and SEMA4 were projected 
onto a two-dimensional manifold based on cellular subpopulations. The color of the dots indicated different cells and the size of the dots indicated the number of cells. (B) 
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Heatmap showed the relative importance of each cell group based on the computed four network centrality measures of CD99 signaling network. (C) Violin plot showed the 
expressed role of the signaling pathway CD99 in B cell and malignant cell communication. (D) Network circle diagram of the role of the signaling pathway CD99 in B cell and 
malignant cell communication. (E)Hierarchical plot showed the inter-cellular communication network between malignant and B cells inferred through a typical CD99 signaling 
pathway. (F) Heatmap showed the relative importance of each cell group based on the computed four network centrality measures of SEMA4 signaling network. (G) Violin 
diagram showed the role of the signaling pathway SEMA4 in B cell and malignant cell communication processes. (H) Network circle diagram played the role of the signaling 
pathway SEMA4 in B cell and malignant cell communication processes. (I) Hierarchical diagram showed the inter-cellular communication network between malignant and B cells 
inferred through typical SEMA4 signaling pathways. (J) The heatmap displayed the centrality scores of the CD46 signaling pathway. (K) The violin plot illustrated the interactions 
between ligand-receptor pairs. (L) The circular diagram presented the intercellular communication network of the CD46-JAG1 ligand-receptor pair with macrophages as the 
recipients. (M) The hierarchical diagram depicted the communication panel network among various cell types within the CD46-JAG1 pathway. 

 
Figure 7. Construction of a prognostic model associated with C4 CD86+ Memory B cells. (A) Forest plot of univariate cox regression analysis. (B) Through LASSO 
regression analysis, genes associated with prognosis were selected. The optimal parameter (lambda) was determined through ten-fold cross-validation, and the LASSO coefficient 
curve was determined by the optimal lambda. (C) OS curves for different scoring subgroups. (D) OS curves of risk genes. (E) Expression of the gene PLD4 versus the gene 
GABARAPL2 in different lymph node metastasis scenarios.  
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To further investigate the impact of different 
genes on prognosis, we analyzed the relationship 
between numerous genes and risk scores (Figure 8C). 
Among them, ATP6VOE1, MTHFD2, GAPDH, and 
GABARAPL2 showed significant positive correlations 
with risk scores, with correlation coefficients of 0.53, 
0.46, 0.38, and 0.37, respectively. On the other hand, 
PLD4, ITGB7, FCRLA, and FCRL3 exhibited significant 
negative correlations with risk scores, with correlation 
coefficients of -0.34, -0.37, -0.38, and -0.43, respectively 
(Figure 8D). In Figure 8E, the high-risk group 
exhibited elevated expression levels of ATP6V0E1, 
MTHFD2, GAPDH, and GABARAPL2 genes compared 
to the low-risk group. The risk score was negatively 
correlated with overall survival (OS), and the 
expression of these four genes (ATP6V0E1, MTHFD2, 
GAPDH, GABARAPL2) was also negatively correlated 
with OS (Figure 8F), which suggested that the high 
expression of these risk genes might be detrimental to 
the clinical survival of patients. To verify whether 
these risk genes might interact with each other to 
cause errors, we investigated the two-by-two 
correlation between them and found that the 
two-by-two correlation between these risk genes was 
not strong (Figure 8G), which indicated that the genes 
ATP6V0E1, MTHFD2, GAPDH and GABARAPL2 were 
risk genes with more independent effects on the 
prognosis of patients. Afterward, we extensively 
investigated the gene expression of ATP6V0E1, 
MTHFD2, GAPDH, and GABARAPL2 in the high-risk 
group, low-risk group, high-age group, low-age 
group, different ethnicity group, and different TNM 
stage group. Our findings revealed that the 
expression levels of ATP6V0E1, MTHFD2, GAPDH, 
and GABARAPL2 were comparatively increased in the 
high-risk group compared to the low-risk group 
(Figure 8H). 

Nomogram construction and validation 
In Figure 9A, the high-risk group exhibited a 

greater percentage of patients with mortality status, 
Stage IV, M1, N3, and T4 in comparison to the 
low-risk group. Subsequently, we created a 
Nomogram survival forecast model for the OS of 
individuals with HNSCC using autonomous 
prognostic factors to anticipate the prognosis of 
patients with HNSCC (Figure 9B). The model 
underwent validation and demonstrated good 
performance in predicting the OS C index (Figure 9C). 
To evaluate the accuracy of risk scores in predicting 
survival at 1-, 3-, and 5-year intervals in patients, we 
conducted ROC curve analyses in the three cohorts. 
The results showed a high predictive accuracy, with 
AUC (1 year) = 0.70, AUC (3 years) = 0.73, and AUC (5 
years) = 0.62 (Figure 9D). Additionally, calibration 

curves were plotted to demonstrate the agreement 
between predicted and observed values for 1-year and 
3-year OS in both the training and validation cohorts 
(Figure 9E), which showed good agreement. 

Tumor microenvironment analysis 
The analysis of CIBERSORT and xCell revealed 

the immune infiltration in the tumor samples. With 
the stacked bar diagram, we could observe a 
difference in the Estimated Proportion of immune 
cells between the high-risk and low-risk groups 
(Figure 9F). Using ESTIMATE to calculate the stromal 
score, immune score and estimate score of the 
high-risk and low-risk groups, it was found that the 
immune score and estimate score of the low-risk 
group were significantly higher than those of the 
high-risk group, which indicated that the level of 
immune cell infiltration in tumor samples of the 
low-risk group was higher, and this might be 
correlate with its good prognosis (Figure 9G). In 
addition, TumorPurity was lower in the low-risk 
group than in the high-risk group (Figure 9H). The 
heatmap showed that the infiltration levels of 
multiple immune cells in tumor samples in the 
low-risk group were significantly higher than those in 
the high-risk group (Figure 9I). B cells naive, B cells 
memorys and plasma cells which were immune cells 
were negatively correlated with risk score (Figure 9J). 
T cells CD8, Plasma cells, B cell naive, Tregs, Mast 
cells resting, T cells CD4 memory activated and 
neutrophils had lower Estimated Proportion in the 
high-risk group than in the low-risk group, while 
immune cells such as Macrophages M0 and 
Macrophages M2 had higher Estimated Proportion in 
the high-risk group than in the low risk group (Figure 
9K).By looking at the heatmap of the correlation 
between the risk genes and the infiltration of 22 
immune cells, we found that the expression of many 
genes correlated with the infiltration of immune cells 
(Figure 9L). In order to explore whether genes affect 
disease prognosis and B cells are related, we studied 
the correlation between genes and B cells (Figure 9M). 
Due to the close association between the gene 
ATP6V0E1 and prognosis, we investigated the 
correlation of this gene with naive B cells, memory B 
cells, plasma cells, as well as its correlation with 
StromalScore, ImmuneScore, and tumor purity. 
(Figure 9N-O). 

Identification of DEGs and their enrichment 
analysis results 

Gene enrichment analysis employs predefined 
sets of genes and gene ranks to identify significant 
biological changes or patterns of gene co-expression, 
and thus to assess functional associations with the set 
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of target genes in the experimental set. In the 
comparison between high and low-risk groups, a 
volcano plot of characterized differential genes was 
demonstrated (Figure 10A). The heatmap, in turn, 
presented the expression of DEGs in the high-risk and 
low-risk groups (Figure 10B). The results of the GO 
analysis showed that DEGs were enriched in several 
biological processes, including immunoglobulin 
complex, immunoglobulin complex circulating, 
external side of plasma membrane, immunoglobulin 
production, and production of molecular mediator of 
immune response (Figure 10C). In contrast, the chord 
diagram of GO enrichment analysis demonstrated the 
relationship between DEGs and the top 10 most 
abundant GO pathways (Figure 10D). In addition, 
KEGG analysis showed that DEGs were enriched in 
multiple pathways, including Primary 
immunodeficiency, Hematopoietic cell lineage, B cell 
receptor signaling pathway, alpha- Linolenic acid 
metabolism, and Linoleic acid metabolism. The top 
20-enriched KEGG pathways are shown in Figure 
10E. The signaling pathways associated with the 
differential genes were evaluated by GSEA analysis. 
The top 20 signaling pathways showed results 
indicating that high expression of these DEGs was 
mainly associated with Mitochondrial Translation, 
Nucleosome Assembly, Embryonic Digit Morpho-
genesis, Collagen Fibril Organization, the Snrna 
Processing, Polyketide Metabolic Process, Protein 
Hydroxylation, Paraxial Mesoderm Development, 
Regulation of Gonadotropin Secretion. Response to 
other pathways related to, in contrast, B Cell Receptor 
Signaling Pathway, Complement Activation, 
Immunoglobulin Production, Humoral Immune 
Response Mediated By Circulating Immunoglobulin, 
Membrane Invagination, Antigen Receptor Mediated 
Signaling Pathway, Phagocytosis Recognition Positive 
Regulation Of B Cell Activation, Production Of 
Molecula Or Mediator Of Immune Response, 
Regulation Of B Cell Activation, and other signaling 
pathways were only enriched for low differential gene 
expression (Figure 10F). The waterfall plot 
demonstrated the mutation of the top 30 high 
mutation frequency genes in 510 samples, with 
Missense Mutation being the predominant mutation 
type (Figure 10G). In addition, waterfall plot was also 
used to demonstrate the mutation status of 14 risk 
genes, and it was found that only 29 out of 510 
patients were mutated, among which the highest 
mutation rates were found in FCRL3, ACTB, FCRLA, 
ZBTB32, PKM and MTHFD2, and the major mutation 
type was Missense Mutation. (Figure 10H).  

The CNV results for the fourteen risk genes were 
illustrated in Figure 10I. All of these 14 risk genes 
underwent copy number mutations, including ACTB, 

PLD4, GAPDH. In the TCGA cohort, ACTB had 
Missense_Mutation in four samples, PCRL3 had 
Missense_Mutation in five samples and Splice_Site in 
one sample, PCRLA had Missense_Mutation in four 
samples, the GABARAPL2 had a Missense_Mutation 
in two samples, GAPDH had a Missense_Mutation in 
two samples, ITGB7 had a Missense_Mutation in one 
sample, MTHFD2 had a Missense_ Mutation, PKM 
had Missense_Mutation in three samples, PLD4 had 
Missense_Mutation in one sample, and ZBTB32 had 
Missense_Mutation in two samples and 
Frame_Shift_Del in one sample (Figure 10J). The 
tumor mutation burden was higher in the high-risk 
group compared to the low-risk group (Figure 10K). 
To deeply explore the correlation between tumor 
mutation load and risk genes, we found that there was 
a correlation between tumor mutation load and risk 
score by correlation analysis between risk score and 
tumor mutation burden (Figure 10L). We further used 
tumor mutation load to construct a score, and next, 
we attempted to further determine the value of this 
score by predicting the prognosis of patients. We 
divided the patients into four groups, including 
High_Risk-High_TMB group, High_Risk-Low_TMB 
group, Low_Risk-High_TMB group and 
Low_Risk-Low_TMB group, and we observed that 
the Low_Risk-Low_TMB group had a significant 
survival advantage over the High_Risk-High_TMB 
group had a significant survival advantage, and this 
difference was statistically significant (Figure 10M). 
To assess the sensitivity and specificity of the TMB 
score in terms of 1-, 3-, and 5-year survival of patients, 
we performed a ROC curve analysis in our cohort, 
which showed that the predictive accuracy of the 
TMB score was relatively low (Figure 10N). In 
addition, in order to investigate the sensitivity of the 
high-risk and low-risk groups to different drugs, we 
predicted the drug sensitivity of each patient based on 
the drug sensitivity data in the GDSC database using 
the "pRRophetic" R package. The results showed that 
the drugs ABT.263, AKT.inhibitor.VIII, AZD6244 and 
BMS.708163 had higher IC50 values in tumor cells in 
the high-risk group, while the other drugs had higher 
IC50 values in tumor cells in the low-risk group 
(Figure 10O). 

In vitro experimental validation of JAG1 
According to the above findings, the SCORE of 

the C4 CD86+ Memory B cells subpopulation is a risk 
factor for the prognosis of patients. In addition, cell 
interaction analysis showed that C4 CD86+ Memory B 
cells could act on the JAG1 receptor of malignant cells 
through CD46.  
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Figure 8. Construction of Risk Score Model for C4 CD86+ Memory B cells. (A) Risk profiles of patients. (B) ROC curves depicted the sensitivity and specificity of risk 
scores in predicting 1-, 3-, and 5-year survival in the cohort. (C) Overall plot of correlation of individual genes with risk scores. (D) Eight genes that showed a significant 
correlation with the risk scores (ATP6V0E1, MTHFD2, GAPDH, GABARAPL2, PLD4, ITGB7, FCRLA, FCRL3). (E) Gene expression of these four genes (ATP6V0E1, MTHFD2, GAPDH, 
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GABARAPL2) was higher in the high-risk group as compared to the low-risk group. (F) Correlation of OS with these four genes and risk score. (G) In this cohort, the risk genes 
were significantly correlated with the risk genes (ATP6V0E1, MTHFD2, GAPDH, GABARAPL2) correlation. (H) Differential expression of risk genes (ATP6V0E1, MTHFD2, GAPDH, 
GABARAPL2) in the high- and low-risk groups, the high- and low-age groups, the different races groups, and the different TNM stages. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
0.0001. "ns" was used to say that there was no significant difference.  

 
Figure 9. Survival analysis and TME analysis. (A) Pie plots of different status, different stages and different TNM stages in high and low risk groups. (B) Nomogram showed 
the prediction of 1, 3, and 5-year of OS based on race, tumor clinical stage (T, M, and N), age, and risk score. (C) Box-and-line plots depicted the C-index of the AUC values of 
the risk scores for predicting 1-, 3-, and 5-year survival. (D) ROC curves depicted the sensitivity and specificity of the risk scores for predicting 1-, 3-, and 5-year survival. (E) 
Calibration curves for column charts predicted 1-, 3-, and 5-year OS. The OS predicted by the line plot model was plotted on the x-axis and the actual OS was plotted on the 
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y-axis. (F) Proportion of each infiltrating immune cell type in the high- and low-risk groups was shown using CIBERSOFT. (G)Stromal score, immune score, and estimate score 
were calculated for the high- and low-risk groups, respectively, using ESTIMATE. (H) TumorPurity was calculated using ESTIMATE for the high and low risk groups, respectively. 
(I) The difference in modeling genes, StromalScore, ImmuneScore, ESTIMATScore, TumorPurity, and the level of immune cell infiltration between the high- and low-risk groups. 
(J)Lollipop chart showed the correlation of immune cell versus risk score. (K) The proportions of each infiltrating immune cell type in the high and low risk groups were 
demonstrated using CIBERSOFT. (L-M) The correlation between the risk genes and the 22 immune cells. (N) Correlation of the gene ATP6V0E1 with naive B cells, memory B 
cells, and plasma cells. (O) Correlation of the gene ATP6V0E1 with Stromal Score, Immune Score, and TumorPurity. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. "ns" was 
used to say that there was no significant difference.  

 
Figure 10. Identification of DEGs and the results of enrichment analysis. (A) Volcano plot showed significantly DEGs. Each dot represents a gene. (B) Heatmap of 
DEGs. Each column in the heatmap represented a sample, and each row represented the expression level of a gene. The color scale next to the heatmap indicated from blue (low 
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expression) to red (high expression). (C) Bar graph of GO enrichment analysis of DEGs. (D) String graph of GO enrichment analysis. It showed the relationship between DEGs 
and the top 10 enriched GO pathways. (E) Graph of the results of KEGG enrichment analysis of differentially expressed pathway. (F) Results of GSEA enrichment analysis of 
DEGs. (G) Waterfall plot showing the mutation status of the top 30 high mutation frequency genes in the samples. The top bar graph shows the mutation load of the samples, 
and the histogram on the right side showed the mutation status of the genes for each mutation type. (H) Waterfall plot showed the mutation profile of 14 risk genes in the sample, 
the upper bar graph showed the mutation load of the genes, and the histogram on the right side showed the mutation type of each of the genes. (I) Bar graph showed the CNVs 
of the 14 risk genes. (J) Lollipop charts showed mutation mapping of different genes. (K) Tumor mutation was loaded of the high- and low-risk groups. (L) The correlation 
between the TMB and the risk score correlation. (M) OS curves for different tumor mutation load and risk score subgroups. (N) ROC curves depicted the sensitivity and 
specificity of the TMB score in predicted 1-, 3-, and 5-year survival in the cohort. (O) Violin plots demonstrated the sensitivity of tumor cells in the high- and low-risk groups to 
different drugs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. "ns" was used to say that there was no significant difference.  

 
Therefore, we hypothesized that C4 CD86+ 

Memory B cells might be able to promote tumor 
progression through the CD46-JAG1 pathway. We 
therefore performed in vitro functional experiments to 
confirm the effects of JAG1 on tumor cells. CCK-8 
assay indicated that tumor cell viability was 
significantly decreased in the JAG1 knockdown group 
compared with the control group (Figures 11A, B). 
Meanwhile, colony formation assay and EdU staining 
assay also showed that cell proliferation was 
significantly slowed down in both cell lines after JAG1 
knockdown (Figures 11C, D). This indicated that 
JAG1 knockdown could hinder the activity and 
proliferation of tumor cells while slowing down 
tumor growth. Next, we confirmed the effect of JAG1 
on the migration and invasion ability of tumor cells by 
scratch assay and Transwell assay. Consistent with 
the results of previous studies, knockdown of JAG1 
also inhibited the migration and invasion of both 
tumor cells, and the results were statistically 
significant (Figures 11E, F). JAG1 knockdown can 
inhibit the proliferation, invasion and migration of 
NPC cells and inhibit tumor growth. 

Discussion 
High-throughput scRNA-Seq is a revolutionary 

method for cancer research that helps to reveal the 
heterogeneity among tumors (78). So far, many 
scientists and doctors have obtained many valuable 
results related to NPC by this method, exposing the 
mechanism of NPC development and providing 
many ideas for NPC treatment and prognosis. NPC is 
characterized by a large infiltration of lymphocytes, 
which is significantly associated with tumor 
progression and the efficacy of immunotherapy (79). 
Although immune cell subsets other than T cells have 
not been extensively studied, several reports have 
concluded that B cells in the TME contribute to the 
antitumor response (80-83). In patients with NPC, B 
cells in tertiary lymphoid structures (TLS) can be 
recruited to improve survival (84). In addition, NPC 
has a strong etiologic association with EBV infection 
(85-87). The virus shuttles between B cells and 
epithelial cells as B cells are the primary host of EBV, 
which can be transmitted through oral secretions and 
colonize epithelial cells in the oropharynx (88). 
Intratumoral B cells have the capability to produce 

immunoglobulin G (IgG) antibodies, which facilitate 
the internalization of tumor antigens presented by 
dendritic cells (DCs), leading to the activation of 
tumor-reactive T cells. This mechanism is believed to 
contribute significantly to anti-tumor immunity, with 
evidence supporting the successful eradication of 
tumors in murine models (89). In the context of NPC), 
B cells that infiltrate the tumor generate specific 
antibodies that mediate their anti-tumor effects 
through interactions with DCs and T cells (90). 
Additionally, the expression of TIGIT on memory B 
cells modulates the immune response by directly 
interacting with T cells and inhibiting the 
pro-inflammatory actions of dendritic cells. This 
results in the suppression of Th1, Th2, Th17, and 
CXCR5ICOS T cell responses while enhancing the 
immunoregulatory functions of T cells (91). These 
findings highlight the significant role of B cells in the 
progression of NPC. 

B cells are key immune cells for anti-tumor 
immunity and can exert anti-tumor effects through 
antibody-dependent cytotoxicity and complement 
activation, and may also be able to promote tumor 
development and escape.  

In this study, based on the CellChat R package 
model, we reported the signaling ligand-receptor 
interactions between malignant cells and B cells and 
inferred the cell-cell communication network in NPC 
and the roles played by various cells and their 
significance, some interesting aspects of which are 
discussed below. Recombinant rabbit monoclonal 
antibody is a type I transmembrane glycoprotein 
encoded by the CD99 gene, which is involved in a 
variety of cellular events such as T-cell recruitment, 
cellular necrosis of thymocytes and T-lymphocytes, 
development of pre-B cells, cellular adhesion between 
lymphocytes, exudation of neutrophils, and 
wandering of monocytes. Our study found that 
malignant cells with C9 RGS13+ Germinal center B 
cells, C8 IGKV1-9+ Naive B cells, C2 ITGB1+ Memory 
B cells, C4 CD86+ Memory B cells, and C1 NR4A1+ 
Memory B cells, which are five types of B cells, all of 
which can act as major senders and receivers of the 
CD99 signaling pathway, suggesting that the CD99 
signaling pathway may play a prominent role in NPC 
growth and development. 
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Figure 11. In vitro experimental validation of JAG1. (A-B) CCK-8 assay showed a significant decrease in cell viability after JAG1 knockdown. (C) Colony formation assay 
showed that the colony number of cells in the JAG1 knockdown group was significantly lower than that in the si-NC group. (D) EdU staining assay showed that JAG1 knockdown 
hindered the proliferation of CNE2 and HNE2 cells. (E) Scratch assay showed that JAG1 knockdown significantly slowed down the migration of CNE2 and HNE2 cells. (F) 
Transwell assay showed that JAG1 knockdown significantly slowed down the invasion of CNE2 and HNE2 cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. "ns" was used 
to say that there was no significant difference. 
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SEMA4 is widely expressed in various tissues 
and organs of the human body, and through various 
signaling pathways, SEMA4 plays important 
biological functions in axon guidance in the nervous 
system, activation of T and B cells in the immune 
system and immune regulation. In recent years, a 
large number of studies have found that SEMA4 is 
highly expressed in many human tumor tissues and 
plays an important role in tumor angiogenesis as well 
as tumor invasion and metastasis, and to some extent, 
our results are also favorable to the above results. Our 
study found that malignant cells are the only target 
cells of SEMA4 signaling pathway, and the sources of 
SEMA4 ligands are only C1 NR4A1+ Memory B cells 
and C5 FKBP11+ Plasma cells, so it is speculated that 
C1 NR4A1+ Memory B cells and C5 FKBP11+ Plasma 
cells may also be able to promote the development of 
NPC through the SEMA4 signaling pathway, which 
provides a highly promising new direction for the 
treatment of cancer patients, and we can utilize 
Pepinemab, an antibody targeting SEMA4, to treat 
NPC patients, so SEMA4 is expected to be used as a 
target for NPC treatment. 

This study identified a risk scoring model based 
on a composition of 14 risk genes (FCRL3, FCRLA, 
ZBTB32, IGFLR1, ITGB7, PLD4, GABARAPL2, 
ATP6VOE1, ACTB, PKM, GAPDH, VOPP1, TPM3, 
MTHFD2), which could be used to predict the overall 
NPC patients' survival (AUC (1 year) = 0.619, AUC (3 
years) = 0.691, AUC (5 years) = 0.664). In our study, 
one of the novelties was the construction of a 
predictive model for patients, which was constructed 
by integrating a variety of different factors, such as 
age, gender, race, tumor stage, etc., and achieved 
good predictive accuracy, the area under the ROC 
curve (AUC) of our model was 0.70 at 1 year, 3 years, 
and 5 years, respectively, 0.73 and 0.62. It fills the 
research gap of genetic prognosis prediction model 
for patients. The findings are expected to provide a 
theoretical basis for the accurate prognostic 
assessment of metastatic tumor. Meanwhile, these 
findings also provide ideas about the mechanism of 
NPC development. During nasopharyngeal 
carcinogenesis, tumor-infiltrating lymphocyte B cells 
(TIL-Bs) in NPC produce IgG in response to various 
tumor antigens. This production aids in the 
internalization of dendritic cells that present these 
antigens, subsequently activating T cells against the 
tumor cells. In turn, NPC cells attempt to counteract 
the immune response. Additionally, NPC cells can 
express several proteins that are either absent or 
present in minimal amounts in normal 
nasopharyngeal tissue, which promotes the expansion 
of myeloid-derived suppressor cells (MDSCs). This 
expansion adversely impacts B cell differentiation, 

impairing both B cell maturation and humoral 
immunity in vivo during tumor progression, thereby 
facilitating the advancement of NPC (90). We can 
speculate that during nasopharyngeal carcinogenesis, 
NPC cells can promote the expression of these risk 
genes to induce MDSC amplification, which directly 
affects B cell differentiation and makes B cell 
differentiation and humoral immunity impaired in 
vivo during tumor progression, thus shifting NPC 
from a low risk to a high risk. 

Tumor-infiltrating immune cells play a crucial 
role in determining tumor progression and 
aggressiveness, serving as valuable sources of 
prognostic information for patients. In our study, 
samples from the low-risk group exhibited higher 
immune scores and lower tumor purity scores. This 
suggests that the enhanced immune response and 
greater immune cell infiltration in the low-risk group 
compared to the high-risk group may indicate a 
higher likelihood of benefiting from immunotherapy 
and achieving a better prognosis. Accurate prognostic 
models are therefore vital for guiding individualized 
treatment strategies and evaluating the efficacy of 
therapies in advanced tumor patients. A robust 
prognostic model can effectively stratify patients 
based on their risk of poor outcomes. Additionally, 
we observed that two types of immune cells—M0 
macrophages and resting memory CD4 T cells—had 
the highest estimated proportions in tumor samples. 
Conversely, CD8 T cells, plasma cells, naive B cells, 
regulatory T cells (Tregs), resting mast cells, activated 
memory CD4 T cells, and macrophages were found in 
lower estimated proportions in the high-risk group 
compared to the low-risk group. Notably, M0 
macrophages had a higher estimated proportion in 
the high-risk group, aligning with previous studies 
that demonstrated a positive correlation between poor 
prognosis in patients and heightened levels of 
dendritic cell and macrophage infiltration, alongside a 
negative correlation with B cells and CD4 T cells (90). 
For patients classified in the low-risk group, a 
combination of radiotherapy and immunotherapy 
emerges as a promising option to enhance treatment 
outcomes. By integrating detailed insights into 
immune cell composition, we can better tailor 
therapeutic approaches, ultimately improving 
prognostic accuracy and patient management in NPC 
(92).  

Through CellChat analysis, we learned that 
several B cell subpopulations in NPC can 
communicate with tumor cells via CD46-JAG1, which 
is a receptor in the notch signaling pathway that 
promotes the progression of various tumors, 
including acute lymphoblastic leukemia, gastric, 
breast and ovarian cancers, and that inhibition of this 
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pathway can inhibit the progression of many tumors 
through a variety of pathways. Inhibition of the notch 
signaling pathway through various channels can 
inhibit the progression of various tumors. It has been 
shown that JAG1 is abnormally expressed in various 
cancers, including acute lymphoblastic leukemia, 
gastric cancer, breast and ovarian cancer, which 
affects tumor progression and metastasis, and it has 
been found that 15D11, a targeting drug for JAG1, can 
enhance the sensitivity of tumor chemotherapy and 
reduce bone metastasis, with very mild side effects 
(93). To investigate the role of CD46-JAG1 signaling 
pathway in NPC, we performed in vitro functional 
experiments to confirm the effect of JAG1 on NPC 
tumor cells. The test results showed that knockdown 
of JAG1 could indeed inhibit tumor invasion as well 
as migration, and could inhibit tumor progression. 
Therefore, we speculate that targeting JAG1 may 
effectively inhibit tumor progression, thereby 
providing better prognosis for NPC patients. This 
strategy not only has the potential to enhance 
treatment outcomes but also to pave new avenues for 
future immunotherapy. We also recognize several 
limitations of our study. First, the findings of our 
predictive model were examined only in a partially 
open single-cell validation cohort. This limitation 
suggests that our experimental results may not fully 
capture the complexity of NPC, and validation in 
larger cohorts and clinical trials is essential to further 
elucidate the relevant mechanisms and prognostic 
therapeutic strategies in NPC tumor progression. 
Additionally, the efficacy of immune checkpoint 
inhibitors is often limited, which may be attributed to 
their specific effects on T-cell-related responses. The 
composition of NPC also varies considerably between 
patients, and we are currently only able to confidently 
characterize the more representative and abundant 
subtypes in the TME. Minor subpopulations within 
the NPC microenvironment may significantly 
influence clinical outcomes, and their identification 
and characterization remain crucial. Therefore, 
employing advanced single-cell sequencing 
technologies to analyze these finer subgroups within 
NPC tumor masses is necessary for a comprehensive 
understanding of their roles and impacts. 

Conclusion 
In summary, the heterogeneous TME of NPC 

was revealed by single-cell high-resolution, and 
through transcriptome analysis of 21526 B cells of 13 
subtypes, we identified essential cells and molecules 
potentially contributing to NPC tumorigenesis, 
revealing the specificity of the C4 CD86+ Memory B 
cells subpopulation in NPC. In addition, we combined 
trajectory analysis to depict the potential 

developmental trajectories of B cells in the 
subpopulation of B cells within the tumor. Then, we 
also obtained the intercellular communication 
network between B cells and malignant cells using 
CellChat. Then, we used a large-scale data to 
construct an immune-related risk model among 
different expressed genes in different patients, which 
predicted OS more accurately and was closely related 
to the level of immune infiltration of cells and the 
therapeutic efficacy of tumor chemotherapeutic 
agents. Thus, it provides insights into the mechanism 
of NPC progression, prediction of NPC prognosis and 
development of potential therapeutic strategies for 
NPC. 
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