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Abstract 

Cancer research has been significantly advanced by the integration of transcriptomic data through 
high-throughput sequencing technologies like RNA sequencing (RNA-seq). This paper reviews the 
transformative impact of transcriptomics on understanding cancer biology, focusing on the use of 
extensive datasets such as The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). 
While transcriptomic data provides crucial insights into gene expression patterns and disease 
mechanisms, the analysis is fraught with technical and biological biases. Technical biases include issues 
related to microarray, RNA-seq, and nanopore sequencing methods, while biological biases arise from 
factors like tumor heterogeneity and sample purity. Additionally, misinterpretations often occur when 
correlational data is erroneously assumed to imply causality or when bulk data is misattributed to specific 
cell types. This review emphasizes the need for researchers to understand and mitigate these biases to 
ensure accurate data interpretation and reliable clinical outcomes. By addressing these challenges, the 
paper aims to enhance the robustness of cancer research and improve the application of transcriptomic 
data in developing effective therapies and diagnostic tools. 

  

1. Introduction 
Cancer remains one of the most complex and 

challenging diseases facing medical science today, 
characterized by abnormal cell growth with the 
potential to invade or spread to other parts of the 
body. Traditional approaches to understanding and 
treating cancer have often focused on histological 
analysis and targeted molecular studies[1]. The 
advent of transcriptomic data mining has opened new 
horizons for unraveling the molecular intricacies of 
cancer at a genomic level[2]. Transcriptomics, the 
comprehensive study of RNA transcripts produced by 
the genome, provides deeper insights into cellular 
function and regulation[3], as well as therapeutic 
resistance[4]. Recent advancements in 

high-throughput sequencing technologies have 
enabled the accumulation of vast amounts of 
transcriptomic data, which, when effectively mined, 
offer profound potential to enhance our 
understanding of cancer biology. This data reveals 
crucial information about gene expression patterns 
specific to different types of cancers and their stages, 
enabling the identification of novel biomarkers and 
therapeutic targets. However, transcriptomic analysis 
alone has its limitations, as it primarily focuses on 
RNA expression and may not fully capture 
post-translational modifications or metabolic 
processes that drive cancer progression. To overcome 
these limitations, integrating multi-omics approaches, 
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such as proteomics and metabolomics, has become 
increasingly important[5, 6]. Proteomics allows for the 
examination of protein expression and modifications, 
while metabolomics provides insights into the 
biochemical changes within cancer cells[7]. By 
combining these datasets with transcriptomic 
analysis, researchers can gain a more holistic 
understanding of cancer biology, potentially leading 
to more accurate biomarker discovery and therapeutic 
targeting.  

Transcriptomics, which involves the study of 
RNA transcripts derived from DNA, is often 
considered technically easier than direct DNA 
detection for several reasons: 1) Amplification 
Simplicity: RNA, particularly mRNA, is generally 
more abundant in cells compared to specific 
sequences of DNA that might be of interest, such as 
those associated with mutations. This abundance 
allows for easier sampling and detection without the 
need for extensive amplification. In contrast, DNA 
detection often requires precise amplification of 
specific regions, which can be technically challenging 
and prone to errors. 2) Dynamic Range of Expression: 
RNA offers a dynamic range of expression levels, 
which can provide more detailed information about 
cellular processes and states than DNA. This dynamic 
information is crucial for understanding disease states 
like cancer, where gene expression can change 
dramatically and inform about the severity and 
progression of the disease. 3)Technical Tools and 
Protocols: The tools and protocols for RNA analysis, 
such as RNA-Seq, have become highly standardized 
and sensitive, allowing for a broad analysis of the 
transcriptome with relative ease. Technologies for 
detecting and quantifying RNA are robust, 
well-understood, and can simultaneously measure the 
expression levels of thousands of genes. This contrasts 
with certain DNA detection techniques, which might 
require more intricate setups to identify mutations or 
epigenetic changes. 4) Less Complexity in Analysis: 
RNA transcripts are less complex than whole 
genomes because they represent a subset of the 
genomic content that is actively expressed in cells. 
Analyzing RNA avoids many complexities associated 
with DNA analysis, such as repetitive sequences and 
structural variations, which can complicate the 
mapping and interpretation of DNA sequencing data. 
5) Temporal and Spatial Resolution: Given that 
mRNA is generally much more abundant in cells, 
transcriptomics can capture temporal and spatial 
differences in gene expression, providing insights into 
how genes are regulated over time and across 
different tissues or in response to various stimuli. This 
aspect of RNA study can be more directly and easily 
linked to phenotypic changes than DNA-based 

studies, which typically provide a static and broad 
view of genetic potential without context. 6) 
Cost-Effectiveness: Generally, RNA sequencing 
technologies have become more cost-effective than 
some forms of DNA sequencing, especially when 
considering the level of detailed information they can 
provide regarding the active biological processes 
within a cell or tissue. 

 A number of open transcriptomic data are now 
available for cancer studies, such as The Cancer 
Genome Atlas (TCGA)[8] and Genotype-Tissue 
Expression (GTEx)[9, 10], two of the most commonly 
used databases for data mining. The TCGA and GTEx 
projects are two significant research initiatives that 
have provided the scientific community with 
extensive genomic and transcriptomic data. These 
datasets are foundational for understanding cancer 
biology and normal tissue function, respectively. 
TCGA is a landmark cancer genomics program, which 
molecularly characterized over 20,000 primary 
cancers and matched normal samples spanning 33 
cancer types. This project was launched jointly by the 
National Cancer Institute (NCI) and the National 
Human Genome Research Institute (NHGRI). GTEx, 
on the other hand, was established to create a 
reference database and tissue bank to study the 
relationship between genetic variation and gene 
expression in various non-diseased human tissues. 
Together, TCGA and GTEx provide complementary 
datasets where TCGA focuses on cancerous tissues 
and GTEx on normal tissues across many of the same 
tissue types. Researchers can use these datasets to: 1) 
Compare normal and cancerous tissues: 
Understanding differences in gene expression and 
genetic mutations between normal and tumor tissues 
can help pinpoint cancer-specific therapeutic targets. 
2) Enhance biomarker discovery: By comparing 
genetic expressions across healthy and diseased 
tissues, scientists can identify specific markers 
responsible for disease. 3) Improve our understanding 
of disease mechanisms: Analyzing how genes are 
regulated differently in healthy versus diseased states 
offers insights into the pathways and mechanisms 
underlying various conditions, including cancers. 

In recent years, there has been a marked increase 
in academic studies focused on mining open data, 
leading to diverse approaches in their structure and 
methodology. Early research often concentrated on 
investigating single genes in specific cancer 
types[11-15], offering relatively focused insights. 
However, with the advent of advanced data mining 
techniques, researchers can now process much larger 
datasets with greater efficiency. This has paved the 
way for pan-cancer studies of single genes[16, 17], 
representing a significant expansion in scope. 
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Similarly, there have been studies examining sets of 
genes, such as those within a gene family[18] or 
biological pathway[19-21], for a single cancer type, 
often incorporating survival models. These studies, 
while broader, are still not the most complex 
examples of multi-dimensional research. When 
considering cancer types as one dimension and genes 
as another, the study of a single gene in a single cancer 
type can be viewed as zero-dimensional. In contrast, 
research on single genes across multiple cancer types 
(pan-cancer studies) or gene sets within a single 
cancer type are one-dimensional approaches. There 
are also examples of two-dimensional studies, such as 
research involving gene sets across multiple cancer 
types (pan-cancer gene set studies)[22-29]. Looking 
ahead, it is anticipated that data mining will enable 
even more complex, multi-dimensional studies, such 
as those involving pan-cancer gene sets analyzed over 
timelines[30] or within single-cell[31]/spatial 
contexts[32, 33]. 

Data mining papers primarily concentrate on 
several key aspects: 1) Understanding Gene 
Expression Patterns: Transcriptomic data provides 
insights into the RNA expression levels across 
different tissues, conditions, or stages of a disease. 
Mining these data helps researchers identify specific 
genes that are upregulated or downregulated under 
various circumstances, which can elucidate the 
biological pathways and mechanisms involved in 
health and disease. 2) Disease Diagnosis and 
Prognosis: By analyzing gene expression profiles from 
patient samples, scientists can develop biomarkers for 
diagnosing diseases or predicting outcomes. For 
instance, certain cancers exhibit unique expression 
signatures that can be used not only for diagnosis but 
also to predict patient response to treatments, 
enabling more personalized medicine approaches. 3) 
Drug Discovery and Repurposing: Transcriptomic 
data can reveal how genes respond to different drugs, 
providing insights into their mechanisms of action or 
potential side effects. This information is crucial for 
drug development and repurposing existing drugs to 
treat new conditions. In addition, in many previous 
studies[34, 35], transcriptomic studies provide a 
comprehensive view of the molecular changes 
associated with drug resistance, enabling researchers 
and clinicians to develop more effective strategies for 
overcoming resistance and improving cancer 
treatment outcomes. 4) Understanding Complex Gene 
Networks: Data mining allows scientists to build 
networks of gene interactions and regulatory 
mechanisms. Understanding these networks can help 
in pinpointing key regulatory genes or transcription 
factors that could be potential targets for therapeutic 

intervention, such as network pharmacological 
studies[36, 37]. 5)  Cross-Disease Analysis: Open 
transcriptomic databases often contain data from a 
variety of diseases and conditions. Researchers can 
use this data to perform cross-disease analyses, 
identifying common genes or pathways that might be 
involved in multiple diseases, such as ferroptosis[38, 
39]. This can help in understanding the shared genetic 
basis of related conditions. Notably, open databases 
also offer resources for the increasingly popular 
Mendelian randomization analysis, which is used for 
cross-disease association studies[40, 41]. 6) 
Evolutionary and Comparative Studies: Comparing 
transcriptomic data across different species can 
provide insights into the evolution of gene expression 
and regulation. Such studies help in identifying 
conserved genes and pathways, underscoring their 
fundamental biological importance. 

There are some advantages of utilizing open data 
mining. Open data promotes collaboration among 
scientists worldwide, enabling larger-scale analyses 
and validation of findings across multiple datasets. 
This collaborative environment enhances the 
reliability and reproducibility of scientific research, as 
findings can be tested and verified independently by 
other groups. Access to open transcriptomic data 
allows researchers to conduct high-level research 
without the need for expensive and time-consuming 
data generation. This is particularly beneficial for 
smaller labs or institutions with limited resources. 
Open data serves as an excellent resource for training 
the next generation of scientists. Students and 
early-career researchers can learn data analysis 
techniques and explore real-world biological data 
sets, gaining valuable experience. Data mining of 
open transcriptomic data is an essential endeavor in 
the era of big data biology. It accelerates scientific 
discovery, enhances understanding of molecular 
biology, and fosters the development of new 
therapeutic strategies. By leveraging these vast 
datasets, the scientific community can make 
significant advances in understanding and treating 
diseases, ultimately contributing to improved health 
outcomes. 

A recent review article has discussed some 
biases in data analysis with a more general 
context[42]. In this review article, we proposed a few 
critical considerations for the scientific community to 
understand the potential biases and limitations in 
data mining of open transcriptome data, as 
summarized in Figure 1. Hopefully, this paper can 
benefit the field by reminding researchers to mitigate 
these biases and limitations as much as possible. 
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Figure 1. Technical and biological biases in bulk transcriptomic data mining for cancer research. 

 

2. Technical Biases in Transcriptomic 
Data 

Microarray, RNA sequencing (RNA-seq) via 
next-generation sequencing (NGS), and nano 
sequencing are prominent methods for analyzing 
gene expression, but each comes with specific 
technical biases. Understanding these biases is crucial 
for accurate data interpretation and experimental 
design. Here, we briefly summarized some of the 
technical biases associated with each method. 

Microarray[43, 44]: 1) Cross-Hybridization: 
Similar sequences can hybridize to the wrong probes, 
leading to false signal detection or signal interference. 
2) Background Noise: Non-specific binding of labeled 
cDNA to the array surface can cause elevated 
background signals that may obscure true gene 
expression levels. 3) Limited Dynamic Range: The 
fluorescence signal is often compressed both at the 
low and high ends, limiting the ability to detect very 
low or very high expression levels accurately. 4) Fixed 
Content: Microarrays contain a predetermined set of 
probes, which limits the ability to detect novel 
transcripts or variants not included in the array. 

RNA Sequencing (NGS)[45-47]: 1) PCR 
Amplification Bias: Amplification steps in library 
preparation can preferentially enrich for certain 
sequences, skewing the representation of RNA 
species. 2) Sequence Composition Bias: GC-rich or 
AT-rich regions can be underrepresented due to 

biases in fragmentation and sequencing. 3) Read 
Depth and Coverage: The depth of sequencing and 
the uniformity of coverage can affect the detection of 
lowly expressed genes and the quantification 
accuracy across the transcriptome. 4) Alignment and 
Mapping Errors: Misalignment of short reads, 
especially in regions with high sequence similarity or 
structural variants, can lead to incorrect transcript 
assembly or gene expression estimation.   

Nano Sequencing (Nanopore)[48-50]: 1) Read 
Length and Quality: While capable of producing long 
reads, nanopore sequencing can suffer from higher 
error rates compared to short-read sequencing 
technologies, particularly in homopolymeric regions. 
2) Throughput Variation: The throughput of nanopore 
devices can vary, influencing the consistency of data 
across runs. 3) Adapter Ligation and Bias: The process 
of adapter ligation necessary for sequencing can 
introduce biases, affecting the sequencing of certain 
types of RNA or regions. 4) Direct RNA Sequencing: 
Direct RNA sequencing skips the reverse 
transcription step, which can introduce its own biases, 
but this approach may also omit certain RNA 
modifications unless specifically accounted for. 

Each of these biases necessitates specific 
strategies for data processing and analysis. Common 
bioinformatics tools, such as limma for microarray 
data or DESeq2 and edgeR for RNA-seq[51], include 
robust normalization procedures to adjust for 
sequencing depth, batch effects, and amplification 
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biases. Additionally, batch effects, which are common 
across platforms, can obscure true biological signals, 
especially when analyzing heterogeneous cancer 
samples. Tools like Combat (part of the sva package) 
and removeBatchEffect (in limma) are commonly 
used to correct batch effects, ensuring that the 
observed variations are biologically meaningful and 
not artifacts of the experimental setup. Awareness of 
these biases and the proper application of 
bioinformatics tools are essential for ensuring the 
reliability and reproducibility of studies using these 
technologies. 

3. Biological Biases 
In the experiment, there are also biases from 

biology factors: 1) Tumor Heterogeneity: Cancer is 
characterized by high intratumoral heterogeneity, 
with subpopulations of cells exhibiting distinct 
transcriptomic profiles. Bulk RNA-seq, which 
averages signals across all cells in a sample, may fail 
to capture this diversity, leading to biased 
interpretations of the tumor’s molecular landscape. 
We will discuss this in the result interpretation section 
in more detail. 2) Sample Purity: The presence of 
non-cancerous cells, such as immune or stromal cells, 
in a tumor sample can confound RNA-seq results. 
These contaminating cells contribute their own 
transcriptomes, which can obscure the signals from 
cancer cells, particularly in studies aimed at 
identifying tumor-specific expression patterns. We 
will discuss this in the result interpretation section in 
more detail as well. 3) Allelic Imbalance: In cancer, 
there is often an imbalance in the expression of alleles 
due to copy number variations, loss of heterozygosity, 
or epigenetic modifications. RNA-seq analysis may 
not adequately account for this imbalance, leading to 
misinterpretation of gene expression data and 
overlooking critical oncogenic drivers. 

4. Bias in the studied object  
In cancer research, scientists frequently focus on 

molecules that are highly expressed, while those that 
are less expressed tend to be neglected despite their 
possible importance. For example, a gene that shows 
high expression in tumor samples is typically 
presumed to be an oncogene, leading to investigations 
into its potential role in advancing tumor growth. 
Such genes are expected to display characteristics like 
enhanced proliferation, invasiveness, migration, and 
resistance to apoptosis. Nonetheless, perspectives on 
this topic can differ based on various considerations 
that should be taken into account when formulating a 
hypothesis. Similarly, genes that are associated with 
increased risk receive more attention than those 
associated with protection. 

The “Survivor bias” in sample collection is 
recently mentioned by Djamgoz and Levin[52]. They 
suggested that metastasis significantly impacts 
patient survival, and this can introduce sampling bias 
in tumors. For instance, tumor samples are often 
collected from less mobile, localized cells, while more 
aggressive, migrating cells may be missed if they are 
in transit or have formed secondary tumors that are 
not yet detectable or confirmed. This can lead to a 
misleading association between higher gene 
expression and better survival outcomes. 

5. Bias in Result Interpretation 
Bias in result interpretation of transcriptome 

data is a critical concern in genomics and can 
significantly impact the conclusions drawn from 
research, as well as their applications in clinical 
settings. Our recent mini-review article[42] indicated 
a few challenges and complexity in genetic expression 
studies; here, we discuss three misinterpretations 
when doing transcriptomic data mining in more 
detail: 1) the misinterpretation of correlation as 
causality, 2) the misinterpretation of essential genes as 
cancer essential genes, and 3) the misinterpretation of 
bulk data as cell-specific data. 

5.1 Misinterpretation of Correlation as 
Causality 

Correlation analysis refers to the statistical 
association between the levels of gene expression or 
other data observed in the datasets. For example, two 
genes may consistently show high expression levels in 
a particular type of cancer tissue, suggesting a 
correlation. However, causality implies that one event 
(such as the expression of a specific gene) directly 
affects the occurrence of another event (such as the 
activation of cancer-related pathways).  

Numerous studies utilize high-throughput 
methods to explore correlations between genes and 
disease phenotypes, aiming to predict the roles of 
genes in these conditions[20, 40]. While such 
correlations can identify potential biomarkers[13, 16, 
18, 19, 23, 53, 54], they do not confirm a gene's 
functional causality in a disease. This heightened 
expression of target genes might result partly (or 
entirely) from the intense expression of upstream 
functional proteins, leading to a correlation with the 
disease. However, this does not necessarily imply a 
significant role in disease progression. The biological 
network is complex; minor changes can have 
widespread effects. Nonetheless, if the causality is 
very weak and reliant on multiple coincidental 
factors, it should not be regarded as valid biological 
causality. A significant issue in interpreting RNA-seq 
results is the assumption that correlation implies 
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causality. Just because two genes are expressed 
simultaneously in a tumor does not mean that one 
gene's expression causes the other or that either 
directly drives the cancer's progression.  

Such assumptions can lead to misleading 
conclusions about gene functions and interactions. As 
an example of how disease can lead to changes in 
gene expression, studies on CD4+ T cell activation 
have shown significant alterations in gene expression 
during the activation process[55], illustrating how 
certain diseases, particularly those involving immune 
responses, can result in abnormal gene expression 
influenced by the immune microenvironment. On the 
other hand, gene expression can contribute to disease 
phenotypes through specific genes known to enhance 
these conditions. For example, TRPM7 is known to 
encourage cancer cell proliferation; research indicates 
that either eliminating this gene or inhibiting it can 
decrease the proliferation of cancer cells[17, 56, 57]. 

The distinction between "tumor driver genes" 
and "oncogenes" underscores the complex and often 
misunderstood relationship between gene expression 
levels and their roles in cancer progression. The 
confusion often arises from misinterpreting 
correlation as causality, which can lead to incorrect 
assumptions about how certain genes function in 
cancer. Tumor-driver genes are specifically those that 
contribute to the transformation of normal cells into 
cancerous ones by driving key changes in cellular 
processes like the cell cycle, growth, and DNA 
replication. Their role is often directly linked to the 
initiation and early development of cancer. For 
instance, mutations in genes like KRAS, PTEN, and 
TP53 are associated with various types of 
carcinogenesis[58-60]. TP53, when mutated, loses its 
tumor-suppressing capabilities, thereby allowing cells 
to proliferate uncontrollably. On the other hand, 
oncogenes may not necessarily drive the cancer but 
can support the tumor's survival and progression. For 
example, PD-1/PD-L1, expressed on immune cells, is 
highly expressed in various types of cancers[61]. 
Tumor cells express PD-L1, which binds to PD-1 on 
immune cells, thereby inhibiting the activity of 
immune cells and aiding tumor cells in evading 
immune system attacks[61]. The expression of PD-L1 
on tumor cells undoubtedly contributes to immune 
escape and exacerbates malignant phenotypes[61]. 
Thus, while their presence exacerbates the disease, 
PD-1/PD-L1 should not be conflated with genes that 
drive the formation of tumors. 

Misinterpretation occurs when high expression 
levels of such genes in tumors are taken as evidence of 
their role in tumor promotion or initiation. This 
misunderstanding can be problematic in therapeutic 
strategies, where targeting highly expressed genes 

does not always equate to targeting the most causally 
relevant factors in cancer. Many genes may show 
elevated expression as a consequence of the tumor 
environment or as part of the body's response to 
cancer, not necessarily as a causative factor in cancer 
itself. This distinction is crucial for understanding 
cancer's multifaceted nature, where not every highly 
expressed gene in a tumor is a tumor driver, and not 
all tumor drivers consistently show high expression 
levels throughout the course of the disease. Instead, 
the dynamic evolution of cancer involves a complex 
interplay of multiple genes, where the critical roles 
may shift as the disease progresses. Thus, effective 
cancer research and treatment require a nuanced 
understanding of gene roles beyond mere expression 
levels, focusing on functional impacts and causal 
relationships within the cancerous state. 

Misinterpreting correlation as causality can lead 
to several issues in scientific research. Resources may 
be directed toward studying genes or pathways that 
are correlated with disease outcomes but are not 
causative. This misallocation can slow progress by 
focusing attention on less relevant biological 
mechanisms. Biological models built on incorrect 
assumptions about gene interactions and functions 
can lead to ineffective or suboptimal experimental 
designs, which in turn produce more confusing or 
contradictory data. Studies based on flawed 
interpretations are often difficult to replicate, 
undermining confidence in scientific findings and 
wasting resources on attempts to reproduce 
erroneous results. In clinical settings, the stakes are 
even higher, as patients' treatments and outcomes can 
be directly affected: Misinterpreting which genes are 
causally linked to disease can lead to the development 
of targeted therapies that are ineffective, which not 
only wastes development resources but also delays 
the advancement of more effective treatments. 
Incorrect assumptions about causality in gene 
expression can lead to the identification of poor 
biomarkers for disease diagnosis, prognosis, or 
treatment response monitoring, potentially leading to 
suboptimal patient management. Moreover, precision 
medicine relies heavily on accurate gene expression 
profiling to tailor treatments to individual patients. 
Errors in understanding the causal relationships 
between gene expressions and disease phenotypes 
can result in ineffective or inappropriate treatment 
plans. 

5.2 Misinterpretation of Essential Genes As 
Cancer Essential Genes 

The distinction between essential genes and 
tumor drivers highlights a nuanced aspect of cancer 
biology explored through advanced techniques like 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

40 

CRISPR screening. Essential genes are defined by 
their fundamental role in maintaining cell viability 
and adaptability. Their knockdown or knockout can 
result in the suppression of malignant phenotypes or 
even cell death, but this alone does not categorize 
them as oncogenes. This differentiation is crucial 
because, while tumor-driver genes are directly 
involved in the onset and progression of cancer, 
essential genes are vital for basic cellular functions 
across both cancerous and normal cells. 

For instance, RAD51, known for its role in DNA 
repair, becomes crucial in the context of cancer, where 
its expression might be upregulated in response to the 
heightened DNA repair needs of rapidly dividing 
tumor cells. Knocking out RAD51 can effectively kill 
tumor cells by crippling their ability to repair 
DNA[62, 63], thus suppressing tumor growth. 
Although data suggested it is associated with 
tumors[16], this gene is just as vital in normal cells for 
the same DNA repair processes. The mere fact that its 
inhibition kills cancer cells does not inherently make 
RAD51 an oncogene. Instead, it remains categorized 
as an essential gene crucial for the survival and 
maintenance of both cancerous and normal cells. 

This distinction is important in therapeutic 
contexts, as targeting essential genes might offer a 
way to attack cancer cells but also poses significant 
risks of harming normal cells. Understanding the 
difference between oncogenes, which drive cancer, 
and essential genes, which are vital for normal cellular 
functions, helps in designing targeted therapies that 
minimize collateral damage to healthy tissues. 

5.3 Misinterpretation of Bulk Data as 
Cell-Specific Data 

Many studies explore the role of differentially 
expressed genes between cancer and normal tissues in 
cancer cells from bulk sample analysis[11, 12, 24, 37, 
64-66]. However, the reliance on bulk sample analysis 
to study gene expression differences between 
cancerous and normal tissues can lead to significant 
misinterpretations, particularly concerning the 
cellular specificity of gene expression. While bulk 
sequencing has been instrumental in advancing our 
understanding of cancer biology, it often captures a 
composite picture of gene expression from all cells 
present in a sample, not just tumor cells. This 
generalization can mask the cellular complexities 
within the tumor microenvironment (TME), which 
includes a diverse array of cell types, such as immune 
cells, fibroblasts, and endothelial cells, alongside the 
actual tumor cells[13, 16-20, 23, 53, 54, 67].  

Current deconvolution calculations, such as 
TIMER, EPIC, MCPCOUNTER, QUANTISEQ, 
CIBERSORT, and XCELL, are essential tools in the 

field of immunology and oncology for dissecting 
complex tissue compositions from bulk RNA 
sequencing data. Each tool employs unique 
algorithms to estimate the proportion of various cell 
types within a mixed cell population, facilitating a 
deeper understanding of the tumor 
microenvironment and immune landscape. However, 
these tools rely on pre-existing knowledge of marker 
genes for known cell types, which may not account for 
unknown cell types or variations in marker gene 
expression across different tissues. This reliance can 
lead to gaps in detection and potentially mislead 
researchers if marker gene profiles are incomplete or 
tissue-specific differences are not considered. For 
instance, genes found to be highly expressed in a bulk 
sample might primarily be expressed in B cells or T 
cells rather than in tumor cells themselves[13, 16-20, 
23, 53, 54]. This can lead researchers to erroneously 
attribute certain gene expressions to tumor cells 
when, in fact, they are predominant in other cell types 
within the TME. Similarly, differences in ion channel 
expression in glioma samples of varying severities 
could be misleading if not contextualized by cell 
type[68-70]. Lower ion channel expression in more 
severe gliomas might not reflect a direct property of 
the tumor cells but rather a reduced presence of 
neurons, which naturally exhibit higher ion channel 
expression, within these samples[68-70]. 

The advent of single-cell sequencing has greatly 
enhanced our ability to dissect these complexities by 
allowing for the examination of gene expression at the 
individual cell level. This technology reveals the 
heterogeneity of cell populations within tumors, 
providing a clearer picture of which genes are active 
in tumor cells versus other cell types[13, 16-20, 23, 53, 
54]. However, even single-cell sequencing has its 
limitations, such as biases introduced by the 
prevalence of certain cell types in samples and the 
technical challenges of capturing every cell type 
efficiently. Spatial transcriptomics enhances our 
understanding by not only identifying which cells 
express specific genes but also mapping their 
locations within the tissue. This technique reveals the 
spatial organization of cell types and their gene 
expression patterns within the tumor 
microenvironment (TME), shedding light on how 
interactions between different cell populations may 
influence disease progression and therapeutic 
responses. Both single-cell and spatial transcriptomics 
are limited in their ability to detect only highly 
expressed genes, potentially missing information on 
low-expressed genes. Increasing sequencing depth 
can provide more information, but this significantly 
raises costs. Recent advances in hybrid capture 
approaches offer a potential solution for researchers 
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focusing on low-expressed genes. However, these 
methods require pre-designed probes for hybrid 
capture before sequencing and may not be useful for 
post-sequencing data miners interested in specific 
low-expressed genes. 

5.4 Confounding factors in the mRNA-protein 
axis 

The recent commentary by Djamgoz and 
Levin[52] on our bioinformatics-based review 
article[71] addressing the role of voltage-gated 
sodium channels (VGSCs), particularly Nav1.5, in 
breast cancer raises important points regarding the 
potential discrepancies between transcriptomic data 
mining from TCGA and experimental results from in 
vivo and in vitro studies. Djamgoz and Levin noted 
that while TCGA analysis suggests a positive 
correlation between Nav1.5 expression and patient 
survival, indicating a protective prognostic factor, 

experimental evidence contradicts this, showing 
Nav1.5's association with cancer promotion[52]. They 
provide insightful explanations for these divergences, 
which merit careful consideration by researchers 
using bioinformatics approaches. It is crucial to 
recognize that mRNA levels may not always reflect 
protein abundance and protein function due to many 
mechanisms. Here, we expand on this discussion with 
additional considerations (Figure 2): 1) Splice 
Variants and Post-Transcriptional Modifications: The 
expression of Nav1.5 in cancer is mainly neonatal 
splice variants, which are regulated by alternative 
splicing and post-transcriptional modifications. 2) 
Protein Maturation: As an ion channel, Nav1.5 must 
undergo specific post-translational modifications to 
attain functionality. These processes include chemical 
modification of protein molecules, protein folding, 
protein-protein complex formation, etc. These 
modifications affect how the protein behaves and its 

 

 
Figure 2. The mechanisms underlying mRNA levels do not always reflect protein abundance and functionality. This figure is adapted from the recent commentary by Djamgoz 
and Levin[52]  and made using the BioRender. 
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role in cellular processes, including tumorigenesis. 3) 
Protein Trafficking and Anchoring: Nav1.5 must be 
correctly trafficked and anchored to the cellular 
membrane to function effectively. Any disruptions in 
this pathway could alter its physiological role and 
impact cancer cell behavior. 4) Protein Turnover: The 
turnover rate of the protein, including its removal 
from the membrane and subsequent degradation, is 
another layer of complexity that can influence the 
functional outcome and its relationship with cancer 
progression. 5) Protein in functional pathways: 
Eventually, looking at single gene expression is not 
recommended as protein has to function in pathways 
that involve many other gene expressions.  

6. Summary and Conclusion 
Cancer research has increasingly leveraged 

transcriptomic data thanks to advancements in 
high-throughput technologies. Transcriptomics offers 
detailed insights into gene expression and regulation, 
enhancing our understanding of cancer biology. Open 
Transcriptomics datasets have become invaluable 
resources for studying cancer. Despite these 
advancements, transcriptomic data analysis faces 
significant challenges due to technical and biological 
biases. Technical biases include issues related to 
microarray, RNA-seq, and nanopore sequencing 
technologies, while biological biases stem from factors 
like tumor heterogeneity and sample purity. 
Additionally, misinterpretations can occur when 
assuming correlations imply causality or when bulk 
data is mistaken for cell-specific data. Understanding 
these biases and their implications is crucial for 
designing robust studies and translating data into 
meaningful clinical outcomes. This review 
underscores the importance of recognizing and 
addressing biases in transcriptomic data mining to 
enhance the reliability and impact of cancer research. 
By highlighting specific technical and biological 
biases, as well as common misinterpretations, the 
paper aims to guide researchers in designing more 
accurate and informative studies. Effective mitigation 
of these biases is essential for advancing our 
understanding of cancer and developing targeted 
therapies. The insights provided should assist the 
scientific community in navigating the complexities of 
transcriptomic data and improving the translation of 
research findings into clinical applications, ultimately 
contributing to better cancer diagnosis, treatment, and 
prognosis.  
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