Supplementary material

CI: 0.880-0.961

1.0

0.2 0.4 0.6 0.8 1-Specificity (FPR)

0.0

S3

S4

cancer (OS)	total (N)	HR(95%CI)		P value
ACC	12.404	4.392 (1.798 - 10.725)		0.0012
BLCA	1.0697	1.173(0.869 - 1.582)	NH NH	0.2979
BRCA	0.75869	0.846(0.577 - 1.240)	nda -	0.3909
CESC	2.9107	1.51(0.946 - 2.411)	<mark>¦</mark> ∙-1	0.084
CHOL	0.53435	1.437(0.551 - 3.747)	H <mark>e−−−1</mark>	0.458
COAD	1.0103	1.246(0.806 - 1.925)	NG-H	0.3225
DLBC	1.2381	2.433(0.535 - 11.057)	, 	0.2497
ESCA	2.2176	1.472(0.877 - 2.471)	¦∙i	0.1436
GBM	2.1403	1.318(0.916 - 1.897)	I ₩₽-I	0.1371
HNSC	1.5717	1.207(0.903 - 1.615)		0.2043
KIRC	8.635	1.652(1.195 - 2.283)	h o i	0.0024
KIRP	6.3226	2.191(1.205 - 3.983)	-∙•i	0.0101
LAML	2.5159	0.688(0.438 - 1.080)	N	0.1042
LGG	14.992	2.017(1.429 - 2.846)		6.57e-05
LIHC	10.741	1.787 (1.259 - 2.535)	' '⊨●-	0.0012
LUAD	5.8104	1.452 (1.065 - 1.980)	 	0.0183
LUSC	3.3395	0.754 (0.560 - 1.014)		0.0662
MESO	7.8237	1.979 (1.235 - 3.173)		0.0046
OV	5.1307	1.371(1.048 - 1.794)	1 101	0.0214
PAAD	4.3366	0.615(0.382 - 0.989)		0.0448
PCPG	3.5733	4.260 (0.830 - 21.850)	l 1 ●	→ 0.0824
PRAD	2.3696	2.956(0.785 - 11.134)	₩ 	0.1092
READ	5.0098	0.383(0.169 - 0.870)	10-11 10-1	0.0218
SARC	5.6895	1.780(1.079 - 2.938)	h ori	0.0241
SKCM	4.2332	1.373(1.007 - 1.872)	e-	0.0447
STAD	2.2186	0.778(0.560 - 1.081)	n,	0.1347
TGCT	0.070648	1.306(0.183 - 9.331)		0.7901
THCA	1.6542	2.153(0.612 - 7.569)		0.232
THYM	6.8897	0.140(0.027 - 0.721)	●H	0.0188
UCEC	7.2933	1.860(1.160 - 2.982)	⊢ •	0.0099
UCS	2.2283	0.590(0.294 - 1.186)	len I	0.1387
UVM	4.0462	4.929(0.663 - 36.631)	µ 	→ 0.119
			0.0 2.5 5.0 7.5 10.0	12.5

C	F
S	J

	total (N) HR(95%CI)	5%CI)	P value
· · · · ·	12.019 4.583 (1.781 - 11.789)	81 - 11	0.0016
ie-i	3.325 1.409(0.968 - 2.049)	68 - 2.0	0.0731
	6.6033 0.479(0.260 - 0.883)	50 - 0.8	0.0182
 ⊷-i	4.1214 1.742(1.025 - 2.961)	25 - 2.9	0.0401
	1.0345 0.531(0.167 - 1.691)	67 - 1.0	0.2843
н	0.4026 0.847(0.505 - 1.420))5 - 1.4	0.5291
÷	1.533 3.625(0.502 - 26.172)	2 - 26	→ 0.2016
1	4.0695 1.870(1.870)	1.870)	0.0506
, Me+i	2.5454 1.375(0.923 - 2.049)	23 - 2.0	0.1174
10 -1	2.4489 1.344(0.934 - 1.935)	34 - 1.9	0.1114
He-H	6.8205 1.673 (1.143 - 2.449)	43 - 2.	0.008
· · · · · · · · · · · · · · · · · · ·	4.4022 2.751(0.954 - 7.929)	54 - 7.9	0.0611
•	0 0)	0
He-H	13.26 1.998 (1.392 - 2.869)	92 - 2.	2e-04
	13.226 2.308(1.481 - 3.599)	31 - 3.	2e-04
}e⊣	5.7631 1.582 (1.080 - 2.319)	80 - 2.	0.0186
<mark>¦e</mark> ⊣	1.5012 1.337 (0.832 - 2.147)	32 - 2.	0.2298
	6.84 2.257(1.220 - 4.176)	20 - 4.	0.0095
ei i	3.7955 1.341(1.003 - 1.794))3 - 1.	0.0479
	4.4591 0.607(0.381 - 0.965)	31 - 0.9	0.035
├ •	3.9284 5.257(0.956 - 28.923)	6 - 28	→ 0.0564
⊢ <mark>, ●</mark>	0.91184 2.508 (0.411 - 15.293)	1 - 15	→ 0.3189
He H	0.70189 0.618(0.194 - 1.972)	94 - 1.9	0.4165
	3.2878 1.606(0.941 - 2.740)	41 - 2.	0.0826
ei .	3.8325 1.378 (0.992 - 1.916)	92 - 1.	0.0562
¦ ₩●──I	2.2198 1.499(0.860 - 2.615)	60 - 2.0	0.1536
· · ·	0.73838 2.759(0.250 - 30.450)	0 - 30.	0.4074
•	0 0)	0
	2.0921 0.198(0.023 - 1.684)	23 - 1.0	0.1382
↓ ● 1	5.098 1.785(1.087 - 2.930)	37 - 2.9	0.022
H H	1.6878 0.619(0.298 - 1.283)	98 - 1.2	0.1967
	3.4957 2.453(0.997 - 6.033)	97 - 6.0	0.0507

Figure S6 S6

cancer (PFI)	total (N)	HR(95%CI)		P value
ACC	19.087	4.701(2.189 - 10.093)	↓ → → → →	7.19e-05
BLCA	6.4558	1.488(1.089 - 2.033)	10-1	0.0127
BRCA	3.687	0.71(0.503 - 1.000)	•	0.0499
CESC	9.5098	2.087(1.314 - 3.314)	, He-H	0.0018
CHOL	0.32361	0.737(0.265 - 2.052)	₩	0.5597
COAD	0.91526	1.201(0.822 - 1.756)	μ.	0.3444
DLBC	3.87	3.831(1.019 - 14.397)		0.0468
ESCA	1.7119	1.355(0.855 - 2.149)	10 -1	0.1962
GBM	1.3983	0.814(0.578 - 1.146)		0.2391
HNSC	4.4371	1.384(1.028 - 1.864)	lei	0.032
KICH	8.9719	6.584(1.738 - 24.939)	¦	→ 0.0055
KIRC	1.2575	1.208 (0.871 - 1.677)	h	0.2572
KIRP	3.946	1.717(1.014 - 2.909)	HHH	0.0444
LAML	0	0	•	0
LGG	5.2554	1.403 (1.056 - 1.865)	lei	0.0196
LIHC	22.557	2.033(1.518 - 2.721)	нен	1.9e-06
LUAD	5.4879	1.392 (1.050 - 1.846)	ы	0.0214
LUSC	2.3329	1.289 (0.930 - 1.786)	P	0.1272
MESO	3.1304	1.650(0.961 - 2.833)	¦ ₩	0.0693
OV	1.8388	1.192 (0.927 - 1.533)		0.1708
PAAD	8.6155	0.554(0.374 - 0.822)		0.0033
PCPG	4.9044	2.627(1.135 - 6.081)	┝ ━━━━┥	0.0241
PRAD	8.0505	1.810(1.207 - 2.716)	he-t	0.0041
READ	2.2422	1.872(0.779 - 4.502)	¦ ↓ → → ↓	0.1612
SARC	1.2555	1.235(0.859 - 1.775)	P H	0.2551
SKCM	4.8027	1.319(1.024 - 1.699)		0.0318
STAD	1.7935	1.317 (0.872 - 1.988)	Mo-1	0.1904
TGCT	1.299	1.439 (0.768 - 2.696)	H o -1	0.2561
THCA	2.741	0.633(0.371 - 1.082)	•	0.0945
THYM	2.4697	0.492(0.205 - 1.179)	■ <mark>/</mark>	0.1116
UCEC	2.9634	1.369(0.962 - 1.949)		0.0812
UCS	1.0479	0.709(0.367 - 1.371)	юн	0.3066
UVM	8.8997	5.566(1.318 - 23.498)	· ·	→ 0.0195
			0 5 10	15

Н

I

Figure legends

FigureS1.

DBF4B expression from HPA database. (A) DBF4B expression in normal cell lines from the HPA database. (B) Plots of single-cell RNA-sequencing data from the FUCCI U-2 cell line showing the correlation between DBF4B RNA expression and cell cycle progression.

FigureS2.

Immunofluorescence staining of the subcellular localization of DBF4B in HPA database.

FigureS3.

Diagnostic value of DBF4B in pan-cancer using AUC of ROC curves response based on TCGA data

FigureS4.

Forest plot of OS associations in pan cancer.

FigureS5.

Forest plot of DSS associations in pan cancer.

FigureS6.

Forest plot of PFI associations in pan cancer.

FigureS7.

Correlations between DBF4B expression and molecular subtypes across TCGA cancers. CIN, chromosomal instability; GS, genomically stable; POLE, Polymerase ɛ; EBV, Epstein-Barr virus.C1: wound healing, C2: IFN-gamma dominant, C3: inflammatory, C4: lymphocyte depleted, C5: immunologically quiet, and C6: TGF-b dominant.

FigureS8.

Correlations between DBF4B expression and immune subtypes across TCGA cancers. CIN, chromosomal instability; GS, genomically stable; POLE, Polymerase ε; EBV, Epstein-Barr virus.C1: wound healing, C2: IFN-gamma dominant, C3: inflammatory, C4: lymphocyte depleted, C5: immunologically quiet, and C6: TGF-b dominant. **Figure S9.**

Scatter plot of correlation between DBF4B expression and immune score.

FigureS10.

Scatterplot of correlation between DBF4B expression and stromal score.

FigureS11.

Scatterplot of correlation between DBF4B expression and estimated score.

FigureS12.

The correlation of DBF4B expression with TMB.

FigureS13.

The correlation of DBF4B expression with MSI.

FigureS14.

The correlation of DBF4B expression with DNAss.

FigureS15.

The correlation between DBF4B expression and m1A, m5C, m6A regulatory genes. *: p < 0.05.

FigureS16.

Chromosomal distribution of the methylation probes associated with DBF4B.

FigureS17.

Association of GSCALite-based expression of DBF4B and related genes with drug sensitivity.

FigureS18.

Associations between DBF4B expression and the OS in different clinical subgroups of LIHC. (A) Age > 60; (B) BMI ≤ 25 ; (C) Race: Asian; (D) Gender: male; (E) Residual tumor: R0; (F) Histological type: Hepatocellular carcinoma; (G) Pathological stage: Stage III; (H) Tumor state: With tumor; (I) Pathological T stage: T3.

FigureS19.

Associations between DBF4B expression and the DSS in different clinical subgroups of LIHC. (A) Age > 60; (B) BMI \leq 25; (C) Race: Asian; (D) Gender: male; (E) Residual tumor: R0; (F) Histological type: Hepatocellular carcinoma; (G) Pathological stage: Stage III; (H) Tumor state: With tumor; (I) Pathological T stage: T3.

FigureS20.

Associations between DBF4B expression and the PFI in different clinical subgroups of LIHC. (A) Age > 60; (B) BMI \leq 25; (C) Race: Asian; (D) Gender: male; (E) Residual tumor: R0; (F) Histological type: Hepatocellular carcinoma; (G) Tumor state : With tumor; (H) Vascular invasion: Yes; (I) Albumin(g/dl): >= 3.5.

FigureS21.

Analysis of differentially expressed genes and functional enrichment of DBF4B in LIHC. (A) Volcano plot of DEGs, with up-regulated genes in red and down-regulated genes in blue. (B) GO annotates five classes of pathways positively associated with high levels of DBF4B expression. (C) GO annotates five classes of pathways negatively associated with high levels of DBF4B expression. (D) KEGG analysis of five pathways positively associated with DBF4B expression. (E) KEGG analysis of five pathways negatively associated with DBF4B expression.

Table S1

The clinical parameters of 30 patients

Pati ents	Gen der	A g e	Cance r type	CN LC	BC LC	Child pugh	AFP(n g/m1)	Vasc ular Tumo r thro mbus	M V I	Smoking history	Alcohol history	H B V	hypert ension	diab etes	Hea rt dis eas e	His tor y of sur ger y	Othe r Dise ases
1	mal e	5 4	HCC	IA	A	А	68.37	0	M O	1	1	1	0	0	0	0	0
2	fem ale	6 6	HCC	IB	В	А	59.37	0	M O	0	0	1	0	0	0	0	0
3	mal e	6 9	HCC	IB	В	А	195.3 5	1	M O	1	0	1	0	0	0	0	0
4	mal e	7 2	HCC	IB	В	А	67.89	0	M O	1	1	1	0	0	0	0	0
5	mal e	5 1	HCC	IA	А	А	197.5 9	1	M O	1	1	1	0	0	0	1	0
6	fem ale	7 0	HCC	IA	А	А	65.38	0	M O	0	0	1	0	0	0	0	0
7	mal e	4 4	HCC	IB	В	А	59.49	0	M 1	1	1	1	0	0	0	1	0
8	mal e	4 8	HCC	IA	А	А	65.36	1	M O	1	1	1	0	0	0	0	0
9	mal e	5 9	HCC	IA	А	А	59.59	0	M O	1	1	1	0	0	0	1	0
10	mal e	7 1	HCC	II B	В	А	65.34	0	M O	0	0	1	1	1	0	0	1
11	mal e	3 9	HCC	IA	А	А	46.56	0	M O	0	0	1	0	0	0	0	0

12	mal e	4 3	HCC	IA	А	А	2.63	0	M 1	1	1	1	0	0	0	0	0
13	mal e	5 7	HCC	IA	A	А	78.36	0	M O	1	1	1	0	0	0	1	0
14	fem ale	7 2	HCC	II B	В	А	123. 3 6	0	M O	1	1	1	0	0	0	0	0
15	mal e	3 5	HCC	IA	A	А	65.39	0	M O	1	0	1	0	0	0	0	0
16	fem ale	4 8	HCC	II B	В	А	477.3 2	0	M O	0	0	1	0	0	0	1	0
17	mal e	3 4	HCC	IA	A	А	68.36	0	M O	1	1	1	0	0	0	0	0
18	mal e	5 7	HCC	IA	A	А	135.3 6	0	M O	1	1	1	0	0	0	0	0
19	fem ale	7 2	HCC	IA	A	А	89.57	0	M O	0	0	1	0	0	0	0	0
20	mal e	5 3	HCC	IA	A	А	75.5	1	M O	0	0	1	0	0	0	0	0
21	fem ale	4 4	HCC	IA	A	А	2.89	0	M O	0	0	1	0	0	0	0	0
22	mal e	4 5	HCC	II B	В	А	89.45	0	M 1	0	1	1	0	0	0	1	0
23	mal e	6 0	HCC	IA	A	А	45.68	0	M O	1	1	0	1	0	0	1	0
24	fem ale	5 9	HCC	IA	A	А	84.54	0	M O	0	0	1	0	0	0	0	0
25	fem ale	6 7	HCC	II B	В	А	356.4 5	0	M O	0	0	1	0	0	0	0	0
36	mal e	4 4	HCC	IA	A	А	56.54	0	M O	1	1	1	0	0	0	0	0
37	fem ale	6 9	HCC	IA	A	А	86.65	0	M 1	0	0	1	0	0	0	0	0
38	fem ale	4 1	HCC	IA	A	А	68.98	0	M O	0	0	1	0	0	0	0	0
39	mal e	5 6	HCC	II B	В	А	59.67	0	M O	1	1	1	0	0	0	0	0
30	mal e	6 7	HCC	IA	А	А	167.6 5	0	M O	1	1	1	0	0	0	0	0