Fig. S1.

5 Supplementary Figure_S2: A, B: Differentially expressed gene (DEG) validation using a BioTuring Deseq2

6 analysis of data from SRP074349 (GSE81089), filtered for the adenocarcinoma histological type.

Fig. S3.

- Supplementary Figure S3: A, B: COSMIC dataset used to examine gene mutations in the context of lung adenocarcinoma (LUAD). The diagram displays various mutation 7
- types. C: Heatmap from the MethSurv platform, illustrating MTX2 DNA methylation levels in LUAD. Blue bars indicate low expression, while red bars indicate high expression, 8
- 9 with colored boxes denoting factors like ethnicity, race, age, events, UCSC CpG island relations, and UCSC RefGene groups. β-values (0–1) represent the methylation status,
- with cg14504697 showing the highest DNA methylation levels. 10

12 Supplementary Figure S4: Gene set enrichment analysis (GSEA) results of MTX2 expression in lung 13 adenocarcinoma (LUAD). A-E: GSEA identification of MTX2-related signaling pathways; these criteria included 14 a false detection rate (FDR) q value of < 0.25, a normalized enrichment score (NES) of > 1.3, and a nominal p value of > 0.05. 15

16 Supplementary Figure_S5: MetaCore enrichment pathway (GTP-XTP metabolism) analysis of genes co-

¹⁷ expressed with *MTX2*.

19

20 Supplementary Figure_S6: Associations between expression levels of the *MTX2* gene and various immune cell markers, including clusters of differentiation 8-positive (CD8⁺) 21 T cells, B cells, CD4⁺ T cells, neutrophils, macrophages, and dendritic cells. Spearman correlations were employed to quantify relationships between the *MTX2* gene and 22 immune cells, considering p < 0.05 as statistically significant.

Fig. S7.

Supplementary Figure_S7: Analysis of TISIDB, which shows relationships between the abundance of tumorinfiltrating lymphocytes (TILs) and the expression, copy number, methylation, or mutation of the *MTX2* gene.
Charoentong's study provides immune-related signatures for 28 TIL types of cancer. In each cancer type, the
relative abundance of TILs was determined using a gene set variation analysis (GSVA) based on gene expression
profiles. A: Which types of TILs might be regulated by the *MTX2* gene. B: Immature dendritic cells and CD56dim
were highly expressed.

cell_ontology_class

32 expression levels. Colors correspond to distinct cell types, as detailed in the legend. B: Gene expression heatmap

- 33 by cell type and compartment, showing the z-score normalized expression of key genes across four compartments:
- 34 endothelial, epithelial, immunological, and stromal, along with their respective cell types.
- 35
- 36
- 37

39 Supplementary Figure_S9: Expression levels of genes related to ubiquinone metabolism in lung
40 adenocarcinoma (LUAD) cells compared to normal cells.

0.0

cochos

control coolor co

Expression in shMTX2#2 Clone

43 the standard deviation (SD) of triplicate determinations (p < 0.05, * p < 0.01).

0.0

control

Expression in shMTX2#1 Clone

Fig. S10.

44

46 Table Legends:

48

47 Table S1: Statistical comparison of the patients' smoking behaviors with the *MTX2* gene.

Comparison	Statistical significance
Normal-vs-Non-smoker	<1E-12
Normal-vs-Smoker	<1E-12
Normal-vs-Reformed smoker1	1.62447832963153E-12
Normal-vs-Reformed smoker2	<1E-12
Non-smoker-vs-Smoker	2.479500E-03
Non-smoker-vs-Reformed smoker1	1.653200E-01
Non-smoker-vs-Reformed smoker2	7.414100E-02
Smoker-vs-Reformed smoker1	6.082200E-02
Smoker-vs-Reformed smoker2	1.100030E-01
Reformed smoker1-vs-Reformed	6.508600E-01
smoker2	

49 Table S2: Statistical comparison of the individual cancer stages with the *MTX2* gene.

Comparison	Statistical significance
Normal-vs-Stage1	1.62447832963153E-12
Normal-vs-Stage2	<1E-12
Normal-vs-Stage3	<1E-12
Normal-vs-Stage4	4.25026680517249E-12
Stage1-vs-Stage2	3.973000E-01
Stage1-vs-Stage3	5.406400E-01
Stage1-vs-Stage4	1.448800E-01
Stage2-vs-Stage3	9.079000E-01
Stage2-vs-Stage4	3.535600E-01
Stage3-vs-Stage4	3.051000E-01

Comparison	Statistical significance	52
Normal-vs-TP53-Mutant	1.62436730732907E-12	53
		54
Normal-vs-TP53-	1.62436730732907E-12	55
NonMutant		56
TP53-Mutant-vs-TP53-	7.35710004029499E-09	57
NonMutant		58

51 Table S3: Statistical comparison of the TP53 mutant status of the *MTX2* gene.

S.No.	Maps	pValue	Network Objects from
			Active Data
1	Ubiquinone metabolism	9 250E-06	NDUFB9, NDUFB4,
			DAP13, NDUFAB1
2	GTP-XTP metabolism	1 174E-02	POLR2D, RPB7.0
3	Apoptosis and survival_Regulation of apoptosis by	1 602E-02	MFF, Smac/Diablo
	mitochondrial proteins		
4	CTP/UTP metabolism	1 631E-02	POLR2D, RPB7.0
5	ATP/ITP metabolism	2 120E-02	POLR2D, RPB7.0
6	DNA damage_Inhibition of telomerase activity and	3 613E-02	La protein
	cellular senescence		
7	Development_Role of HGF in hematopoietic stem	3 791E-02	RHEB2
	cell mobilization		

59 Table S4: Pathway analysis of genes co-expressed with MTX2 from the MetaCore database (with p < 0.05 set as the cutoff value).

8	Translation_Opioid receptors in regulation of	4 144E-02	RHEB2
	translation		
9	IGF-1 receptor/EGFR cooperation in lung cancer	4 321E-02	RHEB2
10	CREB1-dependent transcription deregulation in	4 673E-02	COX VIa-1
	Huntington's Disease		
11	Abnormalities in cell cycle in small cell lung	5 198E-02	CKS1
	cancer (SCLC)		
12	Cell cycle_Role of SCF complex in cell cycle	5 198E-02	CKS1
	regulation		
13	Apoptosis and survival_nAChR in apoptosis	5 198E-02	RHEB2
	inhibition and cell cycle progression		
14	Cell cycle_Role of APC in cell cycle regulation	5 721E-02	CKS1
15	SDF-1 axis in endothelial progenitor cell	5 895E-02	RHEB2
	recruitment in healing myocardial infarction		
16	Development_CNTF receptor signaling	6 068E-02	RHEB2

17	Apoptosis and	6 068E-02	Smac/Diablo
	survival_Cytoplasmic/mitochondrial transport of		
	proapoptotic proteins Bid, Bmf and Bim		
18	Vitamin B6 metabolism	6 068E-02	Phospho2
19	Role of Apo-2L(TNFSF10) in Prostate Cancer cell	6 068E-02	Smac/Diablo
	apoptosis		
20	Cell cycle_ESR1 regulation of G1/S transition	6 241E-02	CKS1

NODE 1	NODE 2	COMBINED SCORE	
MTX2	MTX1	0.996 63	
MTX2	IMMT	0.990	
MTX2	CHCHD3	0.984	
MTX2	MTX3	0.984	
MTX2	MICOS10	0.950	
MTX2	MICOS13	0.946	
MTX2	APOO	0.939	
MTX2	TOMM6	0.708	
MTX2	TOMM20L	0.645	

Table S5: Combination scores from the protein-protein interaction (PPI) analysis using STRING.