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Abstract 

Background: It has long been controversial whether surgery should be performed for de novo 
metastatic breast cancer (dnMBC). The choice and timing of the primary tumor resection for dnMBC 
patients need to be individualized, but there was no tool to assist clinicians in decision-making.  
Methods: A 1:1:2 propensity score matching (PSM) was applied to examine the prognosis of dnMBC 
patients who underwent neoadjuvant systemic therapy followed by surgery (NS), surgery followed by 
chemotherapy (SC), and chemotherapy without surgery (CW). Then, two deep feed-forward neural 
network models were constructed to conduct personalized treatment recommendations.  
Results: The PSM-adjusted data showed that not all the dnMBC patients could benefit from surgery, and 
the advantages of NS and SC were different among various subgroups. Patients with stage T1-2, and 
pathological grade II tumors can be operated on directly, whereas those with stage T3-4, pathological 
grade III/IV diseases require NS. However, patients with grade I diseases, over 80 years of age, or with 
brain metastases could not benefit from surgery, regardless of whether they received neoadjuvant 
systemic therapy. Our deep neural network models exhibited high accuracy on both the train and test 
sets, one model can assist in deciding whether surgery is requested for dnMBC patient, if the surgery is 
necessary, another model can determine whether neoadjuvant systemic therapy is needed.  
Conclusion: This study investigated the prognosis of dnMBC patients, and two artificial intelligence (AI) 
assisted surgery decision-making models were developed to assist clinicians in delivering precision 
medicine while improving the survival of dnMBC patients. 

Keywords: dnMBC, surgery, neoadjuvant systemic therapy, deep neural network 

Introduction 
De novo metastatic breast cancer (dnMBC) is 

characterized by the spread of BC beyond the breast 
and regional lymph nodes to distant sites, such as the 
bone, lung, liver, or brain, at the time of diagnosis. It is 
a relatively rare condition, affecting approximately 
6% of all BC patients [1-3]. For these patients, systemic 
therapy is typically the first choice of treatment since 

the metastatic invasion can be more lethal than the 
primary site, but their 5-year overall survival (OS) rate 
was only 25% [4]. It has long been controversial 
whether patients with dnMBC need to receive 
surgery. According to previous studies, surgical 
resection of the primary tumor may even potentially 
promote the progression of metastases, leading to the 
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deterioration of the disease [5, 6]. Consequently, only 
a few dnMBC patients who had tumor invasion in the 
chest wall, localized skin disintegration, or other 
serious complications received local surgery [7]. Over 
the past few decades, the survival rates for patients 
with dnMBC showed an upward trend owing to the 
advances in imaging technology, targeted therapy, 
and immunotherapy, therefore whether surgery or 
not is getting increasingly debatable [8-12]. Several 
randomized controlled trials (RCTs) indicated 
locoregional treatment did not appear to improve the 
OS of patients with dnMBC [13-16], while another 
clinical trial reached the opposite conclusion [17]. 
Numerous retrospective analyses of large cohorts or 
mono-centric databases have revealed that primary 
tumor surgery may serve as a therapeutic option for 
well-selected dnMBC patients [18-26]. Therefore, the 
treatment regime and timing of the primary tumor 
resection in patients with dnMBC need to be 
individualized.  

Nowadays, artificial intelligence (AI) can help 
with such problems. AI has emerged as a crucial 
discipline that offers techniques and tools to explore 
the vast, high-dimensional, and multi-modal data for 
biomedical sciences [27-30]. Traditional AI 
algorithms, however, are not robust enough to 
generate personalized treatment recommendations 
for patients. While, deep neural networks have been 
applied in survival prediction and treatment 
recommendation for cancer patients due to their 
powerful fitting ability [31-33]. Therefore, two deep 
neural network models were built in this study, one 
can help us accurately identify dnMBC patients who 
might benefit from surgery, while the other can help 
decide the superior sequence of surgery and 
chemotherapy. 

Using the data from the Surveillance 
Epidemiology and End Results (SEER) database, this 
study examined and compared the prognoses of 
dnMBC patients who underwent neoadjuvant 
systemic therapy followed by surgery (NS), surgery 
followed by chemotherapy (SC), and chemotherapy 
without surgery (CW). Two AI-assisted surgery 
decision-making models were created to help 
clinicians deliver precision medicine and improve the 
survival of dnMBC patients.  

Materials and Methods  
Data source and study design 

The workflow demonstrating the design of the 
present study is detailed in Figure 1. Our data were 
collected from the openly accessible SEER database 
[SEER 17 Regs study data, (changes 2010-2019); 
version 8.4.0] because it started to collect data about 

distant metastases in 2010. Only the initial course of 
therapy, which is defined as the therapeutic regimen 
administered at initial diagnosis instead of during 
illness progression or recurrence, is recorded by the 
SEER database. For this study, data on women with 
dnMBC were collected. Inclusion criteria: 1) BC was 
sole cancer developed in each patient; 2) all patients 
diagnosed with BC showed evidence according to the 
International Classification of Cancer Diseases Edition 
III (ICD-O-3) morphological and histopathology 
diagnosis; 3) all patients with BC progressed to stage 
IV according to the American Joint Committee on 
Cancer (AJCC) stage group, 7th editions (2010-2015), 
SEER combination stage group (2016-2017) and Extent 
of Disease (EOD) 2018 stage group (2018+) 
classification. Exclusion criteria: 1) patients diagnosed 
as BC from death certificate or at autopsy (N = 27); 2) 
patients with inadequate information on distant 
metastatic sites (N = 2,904); 3) patients with unknown 
surgical status (N = 286); 4) patients with more than 
one primary cancer (N = 7,272); 5) patients with a 
survival month of 0 (N = 1,832); 6) patients with T0 
localized disease (N = 349); 7) patients did not receive 
chemotherapy (N = 7,648); 8) patients with unknown 
information on neoadjuvant system therapy prior to 
surgery (N = 847). Depending on the type of treatment 
they received, the included patients were then 
classified into three groups: NS (neoadjuvant systemic 
therapy followed by surgery), SC (surgery followed 
by chemotherapy), and CW (chemotherapy without 
surgery). Follow-up was continued until the death of 
patients, loss to follow-up, or December 31, 2019.  

Variables 
The mode of surgery at the primary site was 

recorded in the SEER registry under the variable 
"Surg Prim Site". SEER registry variable "response to 
neoadjuvant therapy" records the information on the 
performance and response of neoadjuvant systemic 
therapy. Clinically, neoadjuvant system therapy refers 
to the preoperative systemic treatment of patients 
with resectable BC. Neoadjuvant system therapy 
described in this database refers to the systemic 
treatment (hormone/endocrine therapy, chemo-
therapy, immunotherapy, targeted therapy, or 
biological therapy) utilized to reduce the tumor size 
before it was surgically removed (including 
metastatic cases). The demographic and clinicopatho-
logy variables include race, molecular subtype, age at 
diagnosis, T stage, N stage, histological type, 
pathological grade, radiotherapy, marital status, 
median household income (inflation-adjusted), and 
distant metastases information. The molecular 
subtype include: hormone receptor-positive /human 
epidermal growth factor receptor 2-positive 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

6670 

(HR+/HER2+), hormone receptor-positive /human 
epidermal growth factor receptor 2-negative 
(HR+/HER2-), hormone receptor-negative /human 
epidermal growth factor receptor 2-positive 
(HR-/HER2+), and hormone receptor-negative 
/human epidermal growth factor receptor 2-negative 
(HR-/HER2-). The pathological grade was typed as 
grade I (well differentiated), grade II (moderately 
differentiated), and grade III/IV (poorly 
differentiated). Overall survival (OS) and breast 
cancer-specific survival (BCSS) were the main 
outcomes for our survival analysis. BCSS was 
determined by deaths attributable to BC. OS, on the 
other hand, was determined by all causes of death. 
Both OS and BCSS were determined in the SEER 
database using cancer registry data and death 
certificates. 

Statistical analysis 
Frequencies and percentages were employed to 

describe categorical variables. The χ2 test or Fisher's 
exact test was adopted to make between-group 
comparisons of the categorical data. Univariate Cox 
regression models were introduced to find out the 
connection between various demographic and 
clinicopathology variables and the survival of 
patients. Further multivariate Cox analysis was 
conducted to assess the patients’ mortality risks and 
to identify independent prognostic factors. Patients in 
NS, SC, and CW groups were matched on a 1:1:2 
propensity score matching (PSM) to examine the 
effect of surgical and neoadjuvant system therapy on 
the prognosis of patients with dnMBC. Due to the 
number of matched features and the complexity of the 
classifications, we merged the classifications with 

 

 
Figure 1. The flowchart detailing the procedure of carrying out the study and statistical analysis. SEER: the Surveillance, Epidemiology, and End Results database; dnMBC: de novo 
metastatic breast cancer; PSM: propensity score matching; Cox: concordance index; K-M: Kaplan-Meier; NS: neoadjuvant systemic therapy followed with surgery, SC: surgery 
followed with chemotherapy, CW: chemotherapy without surgery; NST: neoadjuvant systemic therapy. 
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similar prognoses according to Cox's results to ensure 
the quality of the matches. Matching parameters were: 
method = "nearest", distance = "logit", replace = 
FALSE, caliper = 0.05. Kaplan-Meier (K-M) survival 
analyses and log-rank tests were performed on the 
overall PSM-adjusted data and the data was stratified 
by molecular subtype, T stage, histological type, 
grade, and site of metastases. Multiple comparisons 
were corrected by the Benjamini & Hochberg method. 
For all statistical calculations, the R programming 
language (version 4.0.2) was utilized. Statistical 
significance was defined as a bilateral tail value < 0.05. 

Deep neural network 
In this study, two deep feed-forward neural 

network models were constructed. The models used 
the deep learning algorithm to predict individual 
survival risk, which applied deep learning concepts to 
the Cox proportional risk models by passing the 
sensitive factor risk function through a multilayer 
perceptron (and incorporating weight decay 
regularization, relu activation, batch normalization, 
dropout, adam, gradient clipping, learning rate 
adjustment strategy, and other new techniques) to 
express it in a form that is more adequate to capture 
the relationship between variables [34]. 
Supplementary Figure 1 discloses the basic 
constitution of the models. The inputs of the models 
were the baseline characteristics of the patients. The 
hidden layer contained multiple fully-connected 
layers, weight decay regularisation, dropout, learning 
rate, etc. The final layer of the model was a single 
node that was used to estimate the log-risk function of 
the Cox model. λ(t) is the probability that an 
individual will survive up to time t and pass out 
between time t and time t+ti. The predicted output of 
the model is a value representing the health risk of the 
patient.  

Treatment recommendation 
Different clinicopathological features and 

treatment options expose patients to varying degrees 
of death risks. To determine the specific risk ratio of 
one treatment option compared to another, the model 
employs the logarithm of the risk ratio, and this 
difference in log risk was defined as the 
recommendation function recij ( x ): 

recij 
(x)=log(λ(t;x|τ=i)/λ(t;x|τ=j))=log(λ0(t)⋅ehi(x)/λ0(t)⋅e

hj(x))=hi(x)−hj(x), 

For a patient, the treatment recommendation 
function allows the calculation of the risk value by the 
model in treatment group i (e.g. surgery) and 
treatment group j (e.g. no surgery), respectively, and 

then takes the difference. When the recommendation 
function recij ( x ) > 0, treatment i (e.g. surgery) results 
in a higher risk of death than treatment j (e.g. no 
surgery). Therefore, the patient should receive 
treatment j (no surgery). The same process is used to 
recommend neoadjuvant systemic therapy. 

Finally, the patients were classified into two 
groups based on the consistency of the therapy they 
actually received and the therapy our model 
recommended: the recommended treatment group 
and the anti-recommended treatment group. The K-M 
method was introduced for the examination of OS 
between different groups, the log-rank test was 
employed for the comparison of the survival curves, 
and Cox regression was conducted for the calculation 
of the hazard ratio (HR). 

Model construction 
First, we randomly divided the whole 

population (N=10, 135) into a train set and a test set 
according to a 7:3 ratio (Supplementary Table 1). The 
deep neural network model 1 (4 hidden layers, 100 
nodes) was constructed based on the train set to 
predict the prognosis of patients with dnMBC and 
help to construct a personalized surgical treatment 
recommendation system. The inputs to the model 
were independent prognostic factors achieved for Cox 
analysis: marital status, median household income, 
race, age, pathological grade, histological type, T 
stage, surgery, metastatic information, and molecular 
subtype. Hyperparameter tuning was performed 
using a random search, then selecting the 
best-performing model within the limit of 1000 
Epochs. To examine the predictive performance of the 
models, the Harrell C statistic was introduced to 
evaluate the discriminative power of the network in 
the train and test datasets, and then it was compared 
with traditional approaches such as Cox analysis, 
random survival forest (RSF). The 95% confidence 
interval (CI) of the C statistic was calculated using the 
bootstrap method with 1000 resamples. 

Next, we randomized the train and test sets in 
the same 7:3 ratio among patients who underwent 
surgery (NS group: N = 1,273; SC group: N = 1,257) 
(Supplementary Table 2). The deep neural network 
model 2 (3 hidden layers, 50 nodes) was developed in 
the train set to provide personalized treatment 
recommendations for neoadjuvant system therapy 
among the patients who received surgery. The 
treatment with the lower risk value in the model was 
determined as the recommended therapeutic 
procedure. Deep neural network models were built on 
Python 3.11 software and visualized using the 
"Netron" tool. 
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Results 
Clinical characteristics of patients with dnMBC 

A total of 10,135 patients with dnMBC diagnosed 
between 2010 and 2019 were assessed from the SEER 
database. There were 7,605 patients with CW, 1273 
patients with NS, and 1257 patients with SC 
(Supplementary Table 3). Characteristics that were 
statistically significant among the three groups were 
age at diagnosis, histological type, molecular subtype, 
T stage, N stage, grade, median household income 
(inflation-adjusted), race, marital status, radiotherapy, 
and distant metastases information (Supplementary 
Table 3).  

Patients with NS seemed to be younger than 
those with CW and SC (NS vs. CW vs. SC: age 60-69: 
19.87% vs. 27.48% vs. 27.05%; age 70-79: 8.33% vs. 
13.69% vs. 13.76%; age 80+: 1.10% vs. 4.51% and 
3.58%). In terms of molecular subtype, a higher 
proportion of HER2+ was found in the NS group 
(37.95%) compared with others (CW: 29.57%; 
SC:28.80%), while a lower proportion of HR+/HER2- 
subtype was found in the NS group (NS:41.79% vs. 
CW: 48.56%; SC:49.72%). In terms of stage, patients 
with NS had relatively higher T stage (T3 and T4: NS: 
60.88% vs. CW: 49.02%; SC:38.11%), while patients 
with CW had relatively early N stage (N2 and N3: 
CW: 22.47% vs. NS: 41.55%; SC:47.10%). Moreover, 
patients with NS were more inclined to receive 
radiotherapy (59.70%), compared to those with CW 
(28.49%) and SC (39.06%). As for median household 
income, it was found that patients with SC had 
relatively poorer household economic status than 
others. In terms of distant metastases, patients with 
CW had a lower proportion of single organ 
metastases (CW vs. NS vs. SC: bone only: 30.11% vs. 
42.89% and 40.65%; liver only: 6.96% vs. 11.94% and 
12.89%; lung only: 7.76% vs. 12.49% and 11.54%), 
which means they had relatively more complex 
distant metastases conditions. 

Univariate and multivariate Cox regression 
analysis 

Our univariate analysis uncovered that therapy, 
histological type, age at diagnosis, subtype, T stage, N 
stage, grade, race, marital status, distant metastases 
information, and median household income were 
significantly associated with OS and BCSS outcomes 
(Table 1). Notably, we found that radiotherapy did 
not seem to bring prognostic benefits for dnMBC 
patients (p > 0.05). Further multivariate Cox 
regression model including all the significant factors 
from the univariate Cox analysis. The results, showed 
that compared with patients with CW, patients with 
NS (OS: HR = 0.500, 95% CI = 0.448-0.557, p < 0.001; 

BCSS: HR = 0.497, 95% CI = 0.443-0.557, p < 0.001) and 
SC (OS: HR = 0.652, 95% CI = 0.589-0.721, p < 0.001; 
BCSS: HR = 0.651, 95%CI = 0.585-0.724, p < 0.001) had 
better OS and BCSS (Table 2). We also found that 
older age, HR-/HER2- subtype, black, other 
pathological types, unmarried, ≥T3 stage, high grade, 
low household income, non-single organ, and 
combined brain metastases were significantly 
associated with worse OS and BCSS, whereas the N 
stage was not an independent prognostic factor for 
patients with dnMBC. 

Benefits of surgical treatment in dnMBC 
Patients  

Based on the results mentioned above, further 
stratified analysis was necessitated to better compare 
the difference in the prognosis among the three 
groups and identify the factors affecting surgical 
decision-making. A 1:1:2 PSM analysis was carried 
out to correct the observed imbalance since the 
baseline characteristics of the three groups varied 
significantly (Supplementary Table 3). Ultimately, 
2708 patients were analyzed, and the p values for all 
covariates were greater than 0.05, indicating that their 
baseline levels are uniform after PSM 
(Supplementary Table 4).  

According to the PSM-adjusted data, surgical 
intervention significantly improved the OS and BCSS 
of patients with dnMBC, and those with NS achieved 
the best prognosis (Figure 2A and 2B). However, the 
prognoses of dnMBC patients who received the three 
kinds of treatments varied among different 
subgroups. Stratified K-M survival analysis showed 
that, for dnMBC patients with the HR+ subtype, those 
in the NS and SC groups had better OS and BCSS 
compared with those in the CW group, while the 
survival of patients in NS and SC groups showed no 
significant differences, indicating that surgical 
intervention could significantly improve the survival 
of these patients (Figure 3A-B, E-F). While, for the 
HR- subtype, only NS could improve the survival of 
patients (Figure 3C-D, G-H). In terms of T stage, 
patients of T1-2 stage can benefit from both NS and SC 
(Figure 4A-B, E-F), but only NS could benefit the 
patients of T3-4 stage (Figure 4C-D, E-F). In addition 
to this, the results show that NS was the optimal 
therapy for patients with poorly differentiated 
pathology (grade III/IV) (Figure 5C and 5F), NS and 
SC resulted in the same prognosis for patients with 
moderately differentiated pathology (grade II) (Figure 
5B and 5E), while surgery was not necessary for 
patients with well differentiated pathology (grade I) 
(Figure 5A and 5D). For patients of ages < 80, NS 
could provide survival benefits (Figure 6A-E and 
6G-K), while SC could only improve the survival of 
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patients aged 50-69 years (Figure 6C-D and 6I-G). 
Uniquely, patients aged 80 years or older could not 
benefit from surgery (Figure 6F and 6L). Finally, we 

also found that surgery was not suitable for patients 
with brain metastases (Figure 7B and 7D). 

 

Table 1. Univariate Cox analysis of characteristics extracted from SEER database 

 Univariate Cox analysis 
 OS BCSS 
 HR 95%CI P Value HR 95%CI P Value 
Therapy       
CW reference   reference   
NS 0.479 0.436-0.525 *** 0.480  0.435-0.530 *** 
SC 0.634 0.583-0.689 *** 0.634 0.581-0.693 *** 
Age at diagnosis       
<40 reference   reference   
40-49 1.041  0.934-1.160 0.472 1.049 0.936-1.176 0.411 
50-59 1.320  1.195-1.457 *** 1.316 1.186-1.460 *** 
60-69 1.409  1.276-1.556 *** 1.388 1.250-1.541 *** 
70-79 1.620  1.449-1.811 *** 1.534 1.362-1.727 *** 
≥80 2.287  1.972-2.652 *** 2.180  1.861-2.553 *** 
Subtype       
HR+/HER2- reference   reference   
HR+/HER2+ 0.688 0.636-0.744 *** 0.694 0.639-0.754 *** 
HR-/HER2+ 0.973 0.888-1.065 0.547 0.976 0.887-1.075 0.624 
HR-/HER2- 2.841 2.644-3.052 *** 2.897 2.687-3.125 *** 
Race       
White reference   reference   
Black 1.414  1.319-1.515 *** 1.380  1.282-1.486 *** 
Others 0.908 0.827-0.996 * 0.882 0.799-0.974 * 
Histological type       
IDC reference   reference   
ILC 0.948 0.856-1.050 0.309 0.959 0.861-1.067 0.439 
Mixed 0.896  0.795-1.011 0.074  0.917 0.809-1.039 0.175 
Others 1.477  1.373-1.589 *** 1.434 1.326-1.551 *** 
Marital status       
Married reference   reference   
Unmarried 1.241 1.175-1.310 *** 1.199 1.132-1.270 *** 
T Stage       
T1 reference   reference   
T2 1.045 0.939-1.162 0.423 1.072 0.956-1.201 0.236 
T3 1.281 1.144-1.435 *** 1.344 1.191-1.516 *** 
T4 1.572 1.419-1.742 *** 1.620  1.451-1.807 *** 
N Stage       
N0 reference   reference   
N1 1.001 0.929-1.079 0.971 1.023 0.945-1.108 0.578 
N2 0.969  0.875-1.073 0.544 0.998 0.896-1.111 0.963 
N3 1.166 1.066-1.275 *** 1.196 1.088-1.315 *** 
Grade       
I; Well differentiated reference   reference   
II; Moderately differentiated 1.101 0.954-1.270 0.189 1.115 0.957-1.299 0.161 
III/IV; Poorly differentiated 1.684  1.465-1.936 *** 1.729 1.491-2.005 *** 
Median household income (inflation adjusted)       
<50,000 $ reference   reference   
50,000-59,999 $ 0.947 0.859-1.043 0.267 0.961 0.867-1.064 0.442 
60,000-69,999 $ 0.891 0.818-0.970 ** 0.900  0.822-0.985 * 
≥70,000 $ 0.758  0.696-0.825 *** 0.764 0.698-0.836 *** 
Radiotherapy       
None/unknown reference   reference   
Yes 0.957  0.905-1.013 0.129 0.964 0.908-1.023 0.221 
Distant metastases       
Bone only reference   reference   
Liver only 1.143 1.028-1.271 * 1.143 1.021-1.279 * 
Lung only 1.384 1.253-1.528 *** 1.377 1.239-1.531 *** 
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 Univariate Cox analysis 
 OS BCSS 
 HR 95%CI P Value HR 95%CI P Value 
Brain only 2.319 1.855-2.900 *** 2.295 1.808-2.913 *** 
Bone+Liver 1.766 1.611-1.937 *** 1.843 1.674-2.030 *** 
Bone+Lung 1.552  1.403-1.716 *** 1.536 1.380-1.710 *** 
Bone+Brain 2.217  1.833-2.681 *** 2.257 1.848-2.758 *** 
Bone+Liver+Lung 2.480  2.219-2.772 *** 2.542 2.261-2.857 *** 
Liver+Lung 1.998  1.692-2.357 *** 2.060  1.731-2.452 *** 
Brain+Other 3.162 2.830-3.533 *** 3.251 2.894-3.654 *** 
Other metastases 1.541  1.404-1.691 *** 1.524 1.380-1.680 *** 

Brain+other: cases of brain metastases combined with other metastases except for the bone+brain, e.g. brain+liver etc. Other metastases: other cases of metastases than those 
listed in the table. 

 

Table 2. Multivariate Cox analysis of characteristics extracted from SEER database 

 Multivariate Cox analysis 
 OS BCSS 
 HR 95%CI P Value HR 95%CI P Value 
Therapy       
CW    reference   
NS 0.500  0.448-0.557 *** 0.497 0.443-0.557 *** 
SC 0.652 0.589-0.721 *** 0.651 0.585-0.724 *** 
Age at diagnosis       
<40 reference   reference   
40-49 1.082  0.947-1.237 0.246  1.078  0.937-1.240 0.293 
50-59 1.278  1.131-1.444 *** 1.266  1.114-1.438 *** 
60-69 1.402  1.236-1.589 *** 1.373  1.203-1.566 *** 
70-79 1.594  1.383-1.838 *** 1.514  1.302-1.759 *** 
≥80 2.424  2.000-2.937 *** 2.291  1.867-2.813 *** 
Subtype       
HR+/HER2-    reference   
HR+/HER2+ 0.607  0.550-0.670 *** 0.601  0.542-0.667 *** 
HR-/HER2+ 0.776  0.691-0.872 *** 0.763 0.675-0.863 *** 
HR-/HER2- 2.569  2.335-2.827 *** 2.674  2.419-2.957 *** 
Race       
White reference   reference   
Black 1.286  1.175-1.409 *** 1.249  1.134-1.375 *** 
Others 0.985 0.877-1.108 0.805 0.962  0.850-1.089 0.536 
Histological type       
IDC reference   reference   
ILC 1.103  0.953-1.277 0.190  1.147 0.984-1.337 0.080  
Mixed 1.059  0.918-1.223 0.430  1.071  0.921-1.246 0.372 
Others 1.206 1.058-1.374 ** 1.231  1.074-1.411 ** 
Marital status       
Married reference   reference   
Unmarried 1.136  1.060-1.217 *** 1.122 1.043-1.206 ** 
T Stage       
T1 reference   reference   
T2 1.114 0.980-1.266 0.100  1.145  0.998-1.313 0.053 
T3 1.249 1.089-1.433 ** 1.318 1.139-1.525 *** 
T4 1.401 1.231-1.595 *** 1.459  1.270-1.675 *** 
N Stage       
N0 reference   reference   
N1 0.954 0.866-1.051 0.340  0.957 0.864-1.060 0.402 
N2 1.051  0.926-1.192 0.444 1.069  0.936-1.222 0.325  
N3 1.071 0.955-1.202 0.243 1.091 0.965-1.232 0.163 
Grade       
I; Well differentiated reference   reference   
II; Moderately differentiated 1.240  1.049-1.466 * 1.248  1.045-1.492 * 
III/IV; Poorly differentiated 1.687  1.422-2.000 *** 1.718 1.433-2.059 *** 
Median household income(inflation adjusted)       
<50,000$ reference   reference   
50,000-59,999$ 0.992  0.880-1.118 0.893  1.040  0.916-1.181 0.547 
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 Multivariate Cox analysis 
 OS BCSS 
 HR 95%CI P Value HR 95%CI P Value 
60,000-69,999$ 0.890  0.799-0.990 * 0.915 0.817-1.026 0.130  
≥70,000$ 0.779 0.699-0.868 *** 0.805 0.717-0.903 *** 
Radiotherapy       
None/unknown reference   reference   
Yes / / / / / / 
Distant metastases       
Bone only reference   reference   
Liver only 1.323 1.160-1.510 *** 1.343  1.168-1.544 *** 
Lung only 1.037 0.916-1.174 0.562 1.038 0.910-1.184 0.580  
Brain only 1.941 1.430-2.636 *** 2.086 1.524-2.855 *** 
Bone+Liver 1.757 1.559-1.981 *** 1.855 1.637-2.103 *** 
Bone+Lung 1.356  1.189-1.548 *** 1.375  1.195-1.582 *** 
Bone+Brain 2.303 1.778-2.983 *** 2.420  1.851-3.164 *** 
Bone+Liver+Lung 2.464  2.128-2.854 *** 2.559 2.193-2.987 *** 
Liver+Lung 1.628  1.320-2.008 *** 1.669  1.339-1.080 *** 
Brain+Other 2.802 2.410-3.257 *** 2.934 2.506-3.434 *** 
Other metastases 1.365 1.211-1.540 *** 1.390  1.223-1.578 *** 

Brain+other: cases of brain metastases combined with other metastases except for the bone+brain, e.g. brain+liver etc. Other metastases: other cases of metastases than those 
listed in the table. 

 

 
Figure 2. PSM-adjusted OS and BCSS of patients with dnMBC. Kaplan-Meier (K-M) survival analysis: A. OS of patients with dnMBC; B. BCSS of patients with dnMBC; PSM: 
Propensity score matching; BH: Multiple comparisons were corrected by the Benjamini & Hochberg method; NS: neoadjuvant systemic therapy followed with surgery; SC: 
surgery followed with chemotherapy; CW: chemotherapy without surgery; dnMBC: de novo metastatic breast cancer. 
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Figure 3. PSM-adjusted OS and BCSS of patients with dnMBC (Stratified by molecular subtype). Kaplan-Meier (K-M) survival analysis: OS of dnMBC patients with (A) 
HR+/HER2- subtype, (B) HR+/HER2+ subtype, (C) HR-/HER2+ subtype, (D) HR-/HER2- subtype; and BCSS of dnMBC patients with (E) HR+/HER2- subtype, (F) HR+/HER2+ 
subtype, (G) HR-/HER2+ subtype, (H) HR-/HER2- subtype. OS: overall survival; BCSS: breast cancer-specific survival; dnMBC: de novo metastatic breast cancer; HR: hormone 
receptor; HER2: human epidermal growth factor receptor 2; PSM: Propensity score matching; BH: Multiple comparisons were corrected by the Benjamini & Hochberg method; 
NS: neoadjuvant systemic therapy followed with surgery; SC: surgery followed with chemotherapy; CW: chemotherapy without surgery. 
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Figure 4. PSM-adjusted OS and BCSS of patients with dnMBC (Stratified by T stage). Kaplan-Meier (K-M) survival analysis: OS of dnMBC patients with (A) T1 stage, (B) T2 stage, 
(C) T3 stage, (D) T4 stage; and BCSS of dnMBC patients with (E) T1 stage, (F) T2 stage, (G) T3 stage, (H) T4 stage. OS: overall survival; BCSS: breast cancer-specific survival; 
dnMBC: de novo metastatic breast cancer; PSM: Propensity score matching; BH: Multiple comparisons were corrected by the Benjamini & Hochberg method; NS: neoadjuvant 
systemic therapy followed with surgery; SC: surgery followed with chemotherapy; CW: chemotherapy without surgery. 

 

Establishment and evaluation of the deep 
neural network models 

The results of the stratified K-M survival 
analysis showed that not all dnMBC patients can 
benefit from surgery, moreover, the sequence of 
surgery and chemotherapy did not affect the survival 
of all patients. Therefore, the therapeutic options of 

dnMBC required individualized decision-making, 
and two deep neural network models were built to 
estimate the OS of dnMBC patients so as to provide 
recommendations for their treatment. Hyper-
parameter tuning was performed using a random 
search, then the best-performing model within the 
limit of 1000 epochs was chosen. Our deep neural 
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network models 1 and 2 are shown in Supplementary 
Figure 2A and 2B, separately. The C statistics of the 
train and test datasets were calculated, and compared 
nomogram, random survival forest (RSF), distant 
metastases, and subtype with our model (Table 3). 
Overall, our recommendation models for surgery 
(train set: C statistic=0.811, 95%CI 0.802-0.833; test set: 
C statistic=0.793, 95%CI 0.781-0.809) and neoadjuvant 
system therapy (train set: C statistic=0.776, 95%CI 
0.754-0.790; test set: C statistic=0.759, 95%CI 
0.743-0.782), maintained high accuracy on both the 

train and test sets. The deep neural network models 
generated significantly better predictions than others, 
such as nomogram (train set: C statistic=0.708, 95%CI 
0.694-0.717; test set: C statistic=0.702, 95%CI 
0.684-0.722), RSF (train set: C statistic=0.724, 95%CI 
0.705-0.739; test set: C statistic=0.694, 95%CI 
0.678-0.714), subtype (train set: C statistic=0.612, 
95%CI 0.595-0.629; test set: C statistic=0.606, 95%CI 
0.684-0.722), and distant metastases (train set: C 
statistic=0.615, 95%CI 0.595-0.634; test set: C 
statistic=0.608, 95%CI 0.594-0.619). 

 

 
Figure 5. PSM-adjusted OS and BCSS of patients with dnMBC (Stratified by grade). Kaplan-Meier (K-M) survival analysis: OS of dnMBC patients with (A) grade I (well 
differentiated), (B) grade II (moderately differentiated), (C) grade III/IV (poorly differentiated); BCSS of dnMBC patients with (D) grade I (well differentiated), (E) grade II 
(moderately differentiated), (F) grade III/IV (poorly differentiated). OS: overall survival; BCSS: breast cancer-specific survival; dnMBC: de novo metastatic breast cancer; PSM: 
Propensity score matching; BH: Multiple comparisons were corrected by the Benjamini & Hochberg method; NS: neoadjuvant systemic therapy followed with surgery; SC: 
surgery followed with chemotherapy; CW: chemotherapy without surgery.  
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Figure 6. PSM-adjusted OS and BCSS of patients with dnMBC (Stratified by age). Kaplan-Meier (K-M) survival analysis: OS of dnMBC patients aged (A) 40-, (B) 40-49, (C) 50-59, 
(D) 60-69, (E) 70-79, (F) 80+; BCSS of dnMBC patients aged (G) 40-, (H) 40-49, (I) 50-59, (J) 60-69, (K) 70-79, (L) 80+. OS: overall survival; BCSS: breast cancer-specific survival; 
dnMBC: de novo metastatic breast cancer; PSM: Propensity score matching; BH: Multiple comparisons were corrected by the Benjamini & Hochberg method; NS: neoadjuvant 
systemic therapy followed with surgery; SC: surgery followed with chemotherapy; CW: chemotherapy without surgery.  

 

Validation of treatment recommendation  
To further evaluate our models, K-M survival 

analyses were conducted to compare the differences 
in OS between the patients who received the 
recommended (the therapeutic regimen patients 

actually received consistent with what our model 
recommended) and anti-recommended therapies (the 
therapeutic regimen patients actually received were 
different from what our models recommended). 
Patients who received the recommended therapies 
had significantly better OS than those who received 
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anti-recommended therapies in both the train sets 
[surgery recommendation: HR=0.580, 95% CI 
0.520-0.650, p < 0.001 (Figure 8A); neoadjuvant 
recommendation: HR=0.700; 95% CI, 0.600-0.830, p < 
0.001 (Figure 9A)] and test sets [surgery 
recommendation: HR=0.780, 95% CI 0.650-0.940, p 

=0.009 (Figure 8B); neoadjuvant recommendation: 
HR=0.770; 95% CI, 0.600-0.980, p =0.031 (Figure 9B)]. 
Overall, our treatment recommendation models can 
help patients with dnMBC to avoid unnecessary 
treatments and significantly benefit their survival.  

 
 

 
Figure 7. PSM-adjusted OS and BCSS of patients with dnMBC (Stratified by brain metastases). Kaplan-Meier (K-M) survival analysis: A. OS of dnMBC patients without brain 
metastases; B. OS of dnMBC patients with brain metastases; C. BCSS of dnMBC patients without brain metastases; D. BCSS of dnMBC patients with brain metastases. OS: overall 
survival; BCSS: breast cancer-specific survival; dnMBC: de novo metastatic breast cancer; PSM: Propensity score matching; BH: Multiple comparisons were corrected by the 
Benjamini & Hochberg method; NS: neoadjuvant systemic therapy followed with surgery; SC: surgery followed with chemotherapy; CW: chemotherapy without surgery.  
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Figure 8. K-M survival analyses comparing the differences in OS between the patients who received the recommendation and anti-recommendation therapy on the train and test 
sets (deep neural network model 1). A. K-M survival analyses on train set; B. K-M survival analyses on test set; HR: hazard ratio; 95%CI: 95% confidence interval.  

 

Table 3. C-statistic of deep neural network on train and test sets  

 Train set (95%CI) Test set (95%CI) 
Nomogram 0.708 (0.694-0.717) 0.702 (0.684-0.722) 
Subtype 0.612 (0.595-0.629) 0.606 (0.597-0.621) 
Distant metastases 0.615 (0.595-0.634) 0.608 (0.594-0.619) 
RSF 0.724 (0.705-0.739) 0.694 (0.678-0.714) 
Deep neural network model 1 0.811 (0.802-0.833) 0.793 (0.781-0.809) 
Deep neural network model 2 0.776 (0.754-0.790) 0.759 (0.743-0.782) 
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Figure 9. K-M survival analyses comparing the differences in OS between the patients who received the recommendation and anti-recommendation therapy on the train and test 
sets (deep neural network model 2). A. K-M survival analyses on train set; B. K-M survival analyses on test set; HR: hazard ratio; 95%CI: 95% confidence interval; NST: 
neoadjuvant systemic therapy.  

 
 

Discussion  
Whether patients with dnMBC need surgery has 

long been controversial. On the one hand, surgery 
combined with modern systemic therapies for 
primary tumors appears to be the perfect companions 
for eradicating the primary focus, lowering recurrence 
and metastasis rates[35], and achieving long-term 
survival. On the other hand, the systemic 
administration of highly effective drugs may reduce 
the benefits of primary tumor resection and, in some 

cases, make it unnecessary. What appears a lot more 
challenging and intractable is the timing of surgery, 
which procedure can generate more benefit when the 
dnMBC patients need surgery, NS or SC? Several 
published clinical trials held contradictory views on 
this. For example, in the ECOG-ACRIN 2108 trial [15], 
the surgery was performed following a period of 
systemic therapy, whereas in the MF07-01 [17, 36] and 
ABCSG-28 POSYTIVE trials [16], the surgery was 
performed directly after diagnosis. They also reached 
different conclusions, for the MF07-01 study reported 
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the survival benefit gained from surgery, while the 
other two did not. 

This study took a thorough investigation of the 
SEER database and provided an in-depth view of 
these controversial issues. The PSM-adjusted results 
showed that dnMBC patients with NS and SC had a 
better prognosis than patients with CW, which was 
basically in line with what Lane et al stated [37]. 
Further stratified survival analysis indicated that not 
all the dnMBC patients could benefit from surgery, 
and the advantages of NS and SC were different in 
some cases. For dnMBC patients with the HR+ 
subtype, both NS and SC could provide survival 
benefits, however, only NS could significantly benefit 
the patients with the HR- subtype. Patients with stage 
T1-2, and pathological grade II can be operated on 
directly, whereas for those with stage T3-4, 
pathological grade III/IV, preoperative neoadjuvant 
system therapy was indispensable. Patients with 
grade I, over 80 years of age, or with brain metastases 
could not benefit from surgery, regardless of whether 
they received neoadjuvant system therapy. These 
novel findings enlightened that clinical RCTs can 
hardly draw similar conclusions due to their 
constraints of sample size and design protocol, and 
previously published retrospective studies have not 
yet progressed to this point. Possible explanations for 
patients who are not suitable for surgical treatment 
include the fact that the elderly population is more 
likely to experience physical and disease deterioration 
after surgery, thus diminishing the survival benefits 
gained by surgery. In those patients with brain 
metastases, the occurrence of impaired consciousness, 
increased intracranial pressure, and brain herniation 
make it more important to deal with the metastases 
immediately rather than the primary site. 

The above results may provide some treatment 
alternatives, but the clinical situation is extensively 
complicated, for example, should an 80-year-old 
dnMBC patient with HR+ subtype and stage T3-4 
receive surgery or even preoperatively neoadjuvant 
system therapy? Such questions require more 
complex and prospective tools to calculate the 
survival risk for patients receiving various treatment 
options. Therefore, we created two models by the 
deep feed-forward neural network to predict the 
prognosis of dnMBC patients and conduct 
personalized treatment recommendations. One model 
can help us decide whether the dnMBC patients need 
surgery, if the surgery is necessary, another model can 
tell us whether they need neoadjuvant system 
therapy. Our models significantly outperform 
traditional nomogram and RSF in terms of survival 
prediction, as well as other clinical assessment metrics 
such as subtype, metastatic status. Previous studies 

have reported a series of linear models to predict 
survival in patients with dnMBC [38, 39]. However, 
these models are constrained in the risk factors they 
can incorporate, and traditional linear models often 
lack sophistication and therefore the discrimination 
ability of their models is insufficient. Li et al. 
constructed a similar deep learning model 
(DeepMPM) to predict the survival of patients with 
malignant pleural mesothelioma, with a C-index of 
0.7076 (95% CI: 0.7067-0.7086) in the test set [31]. 
Wang et al. also constructed a deep learning survival 
prediction model, with a C-index of 0.731 in the test 
set [32]. Overall, our model performed better. 

Another prominent advantage of our models is 
their ability to assess the individual risk of mortality 
for patients receiving different treatments, allowing 
us to provide patients with individualized treatment 
and enable precision medicine. Our results showed 
that OS was significantly higher in patients who 
received the recommended therapies than those who 
received anti-recommended therapies, demonstrating 
the prognostic benefit of making treatment decisions 
based on the recommendation of our models. 
Notably, although some studies have employed deep 
learning models to solve some clinical problems, the 
majority of them focused on diagnostic applications 
[40], image interpretation [41-44], or biomarker 
analysis [45, 46], neglecting the advantages of deep 
learning in making personalized treatment 
recommendations. Our study takes advantage of 
these cutting-edge deep learning techniques and 
provides an effective tool for the clinical practice of 
dnMBC.  

Despite the encouraging findings we achieved, 
there were some potential limitations. Firstly, the 
results of retrospective studies are subject to bias, the 
selection bias was the most prominent one. Secondly, 
the SEER database that we used to collect our 
population data has some inevitable limitations, such 
as the incomplete collection of treatment information. 
Finally, the deep neural network models are 
computationally intensive. Given that deep learning 
networks operate much like black boxes, their 
prediction process may be difficult to explain.  
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Supplementary figures and tables.  
https://www.jcancer.org/v15p6668s1.pdf 
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