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Abstract 

The changes in the protein kinase C gamma gene (PRKCG) expression are associated with both coding and 
non-coding variants. No studies have specifically established the association between PRKCG 3′UTR, 5′UTR, 
donor and acceptor splice variants with post-transcriptional changes through utilizing in-silico tools. The current 
study intends to uncover this linkage. In total, 419 3′ and 5′UTR variants were retrieved. 325 of these variant 
IDs were annotated as functionally significant. 18 variants impacted the transcription factors binding and 
therefore influenced the post-transcriptional regulatory activity while 7 variants affected regulatory 
mechanisms through histone modifications. 2 rsIDs (rs373228, rs446795) potentially impacted the interactions 
with RNA binding proteins. In addition to that, PRKCG showed high expression in brain cells and had variable 
expression in TCGA tumors, respectively. Furthermore, 5 3′ UTR variants were identified to be targeted by 
miRNAs. In total, 5 of these miRNAs (hsa-miR-663a, hsa-miR-324-5p, hsa-miR-646, hsa-miR-1205 and 
hsa-miR-4270) that targeted 3′UTRs (rs57483118, rs181418157 and rs60891969) showed differential 
expressions in distinct cancer types. The presence of 3′UTR variants likely altered the secondary structure of 
mRNA. The 7 rsIDs at 3′ UTR site caused the loss of function of authentic splice site at 10 positions was noted; 
at 1 position, gain of function was observed while at 2 positions no effect was identified. Moreover, the loss of 
donor and acceptor splice site was evident. Our results highlight the importance of non-coding regions that 
might boost our research capacity to predict and construct targeted therapeutic approaches. 
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Introduction 
The human genome contains about ten million 

SNPs (Single Nucleotide Polymorphisms) located in 
the non-coding and coding region of genes. Within 
the human genome, SNPs are the most abundant type 
of polymorphism identified. Genetic polymorphisms 
are regarded as the alternative forms of two or more 
alleles that result in distinct phenotypes. Moreover, 
SNPs occur approximately every 1000 base pairs on 
average across the genome [1]. SNPs are categorized 

as functional and neutral. SNPs that confer disease 
onset through affecting phenotype are functional 
SNPs while neutral SNPs bring no deleterious effect 
to the subsequent translated protein [2]. Reportedly, 
the frequency of SNPs in non-coding regions 
compared to coding regions is higher [3, 4]. Through 
GWAS (Genome Wide Association Studies), it has 
been determined that non-coding regions constitute 
about 88% of SNPs linked with phenotype associated 
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alterations, among which 45% occur in intronic while 
43% reside in intergenic regions [5]. 

To add to this, the majority of the functional 
SNPs lie in the consensus sequences that separate 
exon and intron boundaries [6]. SNPs in these 
conserved regions form splice junctions and generate 
splice variants that can alter the phenotypic 
expression [6]. A polymorphism is also a mutation 
type, however, not all mutations come under the 
category of polymorphisms. The frequency of 
polymorphism is 1% or higher within a population in 
comparison to mutations that are rather rare and have 
a frequency of less than 1% [1]. Furthermore, 
mutations can give rise to polymorphisms [7]. During 
the evolutionary process, the mutation that has 
occurred at some time in the ancestral sequence may 
become polymorphism later on or get repaired or 
further mutated [8]. Under the terminology “Genetic 
variations”, common polymorphisms or rare 
mutations can be described [1]. In fact, for many 
genes, genomic variations, which affect the splicing 
process may represent up to 50% of all mutations that 
lead to gene dysfunction [9]. Therefore, elucidation of 
the relationships between genetic variants, altered 
splicing patterns, post-transcriptional processes, and 
the resultant phenotypic changes is needed to 
understand disease onset [10, 11].  

Approximately 3.7% of the variants are located 
in the UTRs (Untranslated Regions) according to 
GWAS [12]. UTRs form non-coding transcript 
segments that surround the coding portion of a 
mRNA (messenger RNA) at the 5' and 3' ends [13]. 
Interestingly, polymorphisms are reported in 3' UTRs 
while mutations dominate in the 5' UTRs [12]. UTR 
region alterations disrupt transcriptional processes, 
mRNA stability, mRNA folding and translational 
processes. As 5' UTR sites are critical for recruiting 
ribosomes, variants at these sites can perturb protein 
synthesis pathways [14]. To add to this, variants 
identified in 3' UTRs impact the interaction with 
miRNAs (microRNAs). Possibly, miRNAs are 
encoded by 4% of the genome and regulate more than 
30% of the genes [15, 16].  

The current study is centered on PRKCG, which 
belongs to the conventional class of PKCs [17]. 
Variants in PRKCG gene lead to deleterious 
outcomes. Specifically, PRKCG gene is 
well-researched in relation to brain diseases. The 
presence of PRKCG variants disrupt neuronal 
signaling and leads to neuronal dysfunction [17]. The 
role of PRKCG in osteosarcoma [18], colon cancer [19], 
gliomas [20], breast cancer [21], ovarian cancer [22] 
and hepatocellular carcinoma [23, 24] is established. 
However, not enough literature is available to 
elucidate its role in other cancer types. It acts as an 

oncogene and fosters tumor growth and facilitates 
metastasis [18]. Its non-coding variants can increase 
cancer risk, but only a few studies have been 
conducted in this regard.  

Moreover, with the increase in the number of 
genetic variants in databases, it becomes more 
challenging to determine their functional 
contributions in disease development through 
experimental approaches. Bioinformatics tools have 
eased the complexity of analyzing data based on 
variants. Before wet lab validation, in-silico findings 
can aid in narrowing down deleterious variants for 
screening of genetic diseases [25]. The pace and 
accuracy of data processing have significantly 
accelerated with the employment of these tools in 
research [26]. There is a gap in published information 
utilizing in-silico approaches to decipher the impact of 
these PRKCG variants on disease pathogenesis. We 
linked phenotypic variations associated with 
non-coding variants with gene expression, regulatory 
elements activity and chromatin accessibility due to 
disrupted transcription factors (TF) binding. 
Furthermore, we examined the linkage disequilibrium 
(LD) between the studied UTR variants as well as the 
impact of the variants on PRKCG functionality and 
structure.  

Methods 
Collection of Data 

The data related to PRKCG 3′ UTR, 5′ UTR, splice 
donor and splice acceptor variants was fetched from 
Ensembl genome browser that provides open access 
to annotated datasets [27]. Of the provided transcript 
IDs, the MANE transcript ENST00000263431.4 with 
3149 base pairs and 697 amino acids was chosen. The 
information regarding COSMIC variants was 
retrieved from COSMIC, which is a curated database 
that provides access to the clinical data related to 
cancer and somatic variants [28].  

Processing of Retrieved Data  
The IDs corresponding to 3′ and 5′ UTRs were 

input in RegulomeDB software [29] to filter out UTR 
variants with valid functional scores from 1-6. The 
RegulomeDB software uses manual annotations, and 
computational tools along with the experimental 
datasets from ENCODE [30] to identify putative 
regulatory variants. The closer the RegulomeDB score 
is to 1, the higher is the confidence of the variant 
having a significant functional impact, meaning that 
the variant presence could affect transcription factor 
binding and therefore the downstream mechanisms of 
transcription and translation. The RegulomeDB score 
of 2 also affects binding but as the scores shifts to 3, 
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the chance variant site to affect transcription factor 
binding is less likely. Between the scores of 4-6, the 
experimental evidence of the variant affect binding is 
minimal [31]. 

Regulatory Function and Tissue Expression 
Characterization 

The variants that were identified through 
RegulomeDB were entered in rSNPbase3.1 software, 
HaploReg software, RBP-Var2 database and Gtex 
software. The rSNPbase3.1 software helped identify 
variants with proximal and distal post-transcriptional 
regulatory activity along with their possibly regulated 
genes [32]. The HaploReg software searched whether 
the 3′ and 5′ UTR variants were in linkage 
disequilibrium (LD) or not by utilizing data on 
chromatin state, regulatory changes, and conservation 
alteration [33]. The RBP-Var2 database identified 
variants that affect RNA binding pattern and 
post-transcriptional interaction through miRNAs [34]. 
The effect of variants on riboSNitches, which are 
regulatory elements present within the untranslated 
regions of mRNA and have functions comparable to 
riboswitch [35], was determined from RBP-Var2 
database. The relationship between 3′ and 5′ UTR 
variants and PRKCG gene expression across multiple 
human tissues was found out through Gtex software 
[36] while the UALCAN web resource [37] was used 
for ascertaining PRKCG expression in TCGA (The 
Cancer Genome Atlas) cancers [38, 39]. The web 
resource provides RNA-sequencing data from the 
TCGA for gene expression analysis. The brief data 
related to number of patients and normal individuals 
or clinical parameters, including the source of the 
sample is provided by UALCAN. To add to this, 
UALCAN does not use the exact cut-off value. The 
p-values that are less than 0.05 are considered 
statistically significant. Transcript Per Million (TPM) 
values that are greater than 1 indicate Median 
expression.  

Influence of Variants on miRNA Regulation 
Our study focused on analyzing 3′ UTRs that are 

majorly targeted by miRNAs. Although 5′UTRs are 
targets of miRNAs their impact is less than that of 3′ 
UTR sites [40]. Of the total 5′ and 3′ UTR variants, 3′ 
UTR variants were selected for further analysis. 
miRdSNP database [41] was explored to determine 
the miRNA targets of these 3′ UTR variants. Apart 
from miRdSNP database, information regarding 3′ 
UTR variants (that are targets of miRNAs) was 
retrieved from PolymiRTS Database 3.0 [42, 43]. The 
expression of these miRNAs in different cancers was 
discovered through miRCancer Database [44]. The 
miRNA expression upregulation and downregulation 

is influenced by epigenetic changes that lead to 
changes on the histones marks and cause DNA 
unwrapping or wrapping around histones [45]. To 
add to this, hypo and hypermethylation and the 
presence of variants in the promotor also impact 
miRNA gene expression [46, 47]. Furthermore, 
miRNAs can act as oncogenes or as tumor 
suppressors and their aberrant expression levels 
contribute to oncogenesis. Moreover, because of 3′ 
UTR variants, the interaction of mRNA with miRNA 
also gets disrupted which leads to targeted protein 
over-expression [48]. Our study tried to determine the 
effect of epigenetic alterations and variants' presence 
on PRKCG expression at the genetic level. The 
changed secondary structures because of 3′ UTR 
variants that act as miRNA target sites were analyzed 
using RNAfold. The software depicts the Minimum 
Free Energy (MFE) structure of RNA and variants' 
presence on base-pairing interactions and RNA 
stability [49, 50].  

Splice Site Identification  
Genetic variations that are caused by mutations 

come into focus every year. Moreover, a larger 
proportion affects mRNA splicing give rise to altered 
structure of proteins [10]. The ability of a particular 
sequence motif to function as a donor or acceptor 
splice site was identified using the SpliceAI software 
(https://spliceailookup.broadinstitute.org/) and 
MaxEntScan software (https://varseak.bio/). The 
scores presented by SpliceAI vary from 0-1 with 
higher scores indicating the loss of donor or acceptor 
site while scores near 0 indicate no effect of the variant 
on the splice site [51]. The MaxENTScan scores also 
provide information related to the functionality of 
donor or acceptor sites. The data regarding the loss of 
function of the authentic splice site or whether the 
base substitution does not affect the splice site was 
gained through MaxEntScan [52].  

Graphical Representation 
The results were plotted with the aid of 

Microsoft Excel [53]. Column and Bar chart graph 
format was selected for representation of data. This 
chart format is particularly useful for comparing 
results of different software. For customization of 
obtained graphs, provided features in the Toolbar 
were accessed. 

Results 
Processing and Analysis of Collected Data 

An overview of the research study is provided in 
Figure 1. In total, 414 variant IDs corresponding to 272 
3′ UTRs and 142 5′UTRs were retrieved from the 
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Ensembl genome browser (Figure 2a, Supplementary 
File S, Table S1). Moreover, 5 IDs corresponding to 3′ 
UTRs were recovered from PolymiRTS Database 3.0 
(Figure 2a, Supplementary Material, Table S2). From 
both databases, data related to genetic variants 
including, SNPs or SNVs was extracted while data 
representing indels, somatic insertion, somatic 
deletion, and somatic sequence alteration was filtered 
out. In total 419 IDs, including 414 IDs from Ensembl 
genome browser and 5 IDs from PolymiRTS were 
input into RegulomeDB software. Of the 414 IDs 
fetched from the Ensembl genome browser, 320 IDs 
have annotated scores. The annotated scores of 5 IDs 
from PolymiRTS Database 3.0 were also identified. 
The IDs corresponding to COSMIC variants were 
removed during the process. So, only variants 
provided with the valid rsIDs were included for 
further analysis. In total 325 rsIDs were obtained from 
software that had varying RegulomeDB scores from 
2a to 4 (Figure 2b, Supplementary Material, Table S3 
and S4). The RegulomeDB score of 2 indicated that the 
presence of genetic variant likely had an impact on the 
gene regulation process and influenced the binding of 
transcription factor with its target site, but as the score 
shifted to 3, the variant had less likely functional or 

regulatory role and unlikely affected binding of 
transcription factors with the transcription start site or 
DNAase hypersensitive site. Between the scores of 
4-6, the experimental evidence of the genetic variant's 
presence to affect binding was minimal. Of 325 rsIDs, 
30 rsIDs had a score of 2a, 117 rsIDs had a score of 2b, 
6 rsIDs had a score of 2c, 18 rsIDs had score of 3a 
while 154 rsIDs had a score of 4, So, collectively, 153 
rsIDs with the RegulomeDB scores between the 
ranges of 2a-2c likely affected binding with the 
transcription factors.  

Functional Annotation of 3′ and 5′ UTR 
Variants  

The 325 annotated variant IDs retrieved from 
RegulomeDB software were entered into rSNPbase3.1 
software and 18 variant(s) of PRKCG were involved 
in binding with transcription factors and regulating 
the CACNG7 gene (Figure 2c). From HaploReg 
analysis, 7 variants of PRKCG were found to localise 
and interact with promotor and enhancer histone 
markers (Figure 2c). This elaborates that these 
variants have potential functional roles in regulating 
gene expression through histone modifications in 
different cell types and tissues. Also, these variants 

 

 
Figure 1. Overview of the research study—representation through schematic diagram. 
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were identified in the regions deemed as DNase I 
hypersensitive, indicating their involvement in 
influencing gene expression. The epigenome ID, 
histone Marks and DNAase hypersensitive region 
related to different variants have been represented as 
well. Also, from 325 inputs, 2 rsIDs (rs373228, 
rs446795) were identified using RBP-Var2 software 
(Figure 2c). Through CLIP technique, both the variant 
IDs were found in RNA regions that interact directly 
with RNA binding proteins. Of 2 rsIDs (rs373228, 
rs446795), 1 rsID (rs446795) was identified in a motif 
that was a riboSNitch, which indicated that because of 
the genetic variant, the interaction with RNA binding 
protein was potentially impacted, which was 
supported by RBP-Var2 score as well. Neither of the 
rsIDs were found to interact with miRNAs and the 
presence of these variants did not perturb interaction 
with miRNAs. According to Gtex software, PRKCG is 

expressed in multiple tissues, but its expression is 
high in brain cells according to RNA sequence reads 
number and through calculation of TPM of target 
gene in the studied samples (Figure 3a). When the 
rsIDs from PolymiRTS, rSNPbase, HaploReg and 
RBP-Var2 were put in Gtex software, no information 
related to variants was identified that needs further 
elucidation. To add to this, PRKCG expression across 
TCGA tumors indicated that it is expressed in cancers 
differently according to UALCAN software (Figure 
3b). The Red boxplot indicated the expression of 
PRKCG in tumors of primary origin, while blue 
boxplot indicates expression in the normal samples. 
The high expression is indicated by the values equal 
to or more than 3rd quartile while the values below 3rd 
quartile indicated low or medium expression of the 
PRKCG.  

 
 

 
Figure 2. A. 3’ and 5’ UTR variants retrieved from databases. B. The annotated scores obtained through RegulomeDB software. C. Regulatory function determination of 
Variant rsIDs through bioinformatics. 
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Figure 3. A. Gene expression profile of PRKCG identified in major human tissues. B. PRKCG expression in TCGA specific tumors in comparison with control. 

 

Impact of 3′-UTR Variants linkage with 
miRNA on Cancer Risk 

Two 3′ UTR variants from miRdSNP database 
and five 3′ UTR variants from PolymiRTS database 
with experimentally confirmed targeting by miRNAs 
were analyzed. Two of the variant rsIDs were found 
common in both the databases and therefore, the 
remaining five were analyzed further. The miRNAs 
targeting those variants, their expression levels in 
different cancers were determined through 
miRCancer Database. The three 3′ UTR variants were 
separated out of five rsIDs whose targeted miRNAs 
had differential expression in cancers (Figure 4). The 
miRNAs that gave no results on miRCancer Database 
and whose expression were not significantly changed 
in cancers were not included in analysis. As noted, in 
most cancers, the miRNAs expression was 
downregulated (Figure 5). To add to this, even if the 
levels of the miRNAs have been upregulated but due 
to the SNPs presence at 3′ UTR sites, miRNAs have 
not been able to bind to their potential target site that 

has contributed to PRKCG higher expression. The 
miRNAs along with SNP rsIDs connected with cancer 
have been shown in schematic representation (Figure 
6). Epigenetic aberrations that cause the wrapping or 
unwrapping of the histones or dysregulation in 
transcriptional regulatory mechanisms including 
hypo or hypermethylation and the presence of SNPs 
at the promotor regions are the primary steps that 
lead to less or higher expression of target genes 
including miRNAs. Furthermore, miRNAs including 
hsa-miR-663a, hsa-miR-324-5p, hsa-miR-646, 
hsa-miR-1205 and hsa-miR-4270 with aberrant 
expression in cancers have been displayed separately 
as downregulated or upregulated. The variants at 3′ 
UTR sites that act as miRNA target sites have been 
shown as well (Figure 6). RNAfold was used to 
analyze the variant rsIDs for altered RNA secondary 
structures by entering the miRsite sequences of target 
3′ UTR variants. The effect of variants on the folded 
structure of RNA was found out. The lower free 
energy indicates stable structure of RNA. In the 
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studied rsIDs, all the structure had negative free 
energy values, indicating towards the stability of 

structure and less potential effect of variants on RNA 
fold structure (Table 1). 

 

 
Figure 4. Schematic representation of gathering of data from miRdSNP and PolymiRTS databases followed by filtering step and the final result after miRCancer database analysis. 

 

 
Figure 5. Relation between miRNA dysregulation and PRKCG over-expression in cancer cells. 
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Figure 6. A. Splice donor and acceptor variants identified through ENSEMBL software. B. Venn diagram representing the 11 splice donor and 9 splice acceptor variants and 7 
transcript rsIDs that were analyzed. C. Alleles and nucleotide positions (before and after mutation) of the total splice donor and splice acceptor variants. 

 

Splicing Variant Analysis  
11 splice donor variants and 9 splice acceptor 

variants were identified through Ensembl genome 
browser software (Figure 6). After removing the 13 
IDs that were COSMIC variants or were repeated and 
had similar chromosome positions, the remaining 7 
variants IDs were further analyzed (Table 2). The 
MaxEntScan scores above 3.5 were interpreted to 
show that the respective sequences can function as the 
splice site. At different chromosome positions (cPos), 
the probability scores are given that shows the 
probability of authentic splice site to be functional or 
not with or without substitution. At 10 different 
chromosome positions, loss of function of authentic 
splice site because of variants was reported, at 1 
position, gain of function while at 2 positions no effect 
was indicated. The likelihood that the sequence is a 
real splice site increases with the increasing score or 
positive value and decreases with the decreasing 
score or negative value. The higher scoring sequence 
has a greater chance of being used as the splice site 
when two sequences with different scores are shown. 
“No AG” or “No GT” shows the probable loss of 
function for authentic splice site. The SpliceAI scores 
of 7 rsIDs indicated that the presence of variants led to 

the loss of splice site’s function (Table 2).  

Discussion 
Gaps in knowledge continue to exist in relation 

to PRKCG involvement in different diseases. Past 
studies indicate connection of PRKCG with 
neurological and oncological disorders [19, 54, 55]. In 
a notable study, its expression was found to be 
upregulated by 54% in colon cancer patients in 
comparison to normal individuals [19]. Moreover, its 
suppression was found to reduce ability of colon 
cancer cells to migrate and metastasize to distant 
secondary sites [56]. Through studies conducted 
in-vivo, immortal epithelial cells became tumorigenic 
with the upregulation of PRKCG [57]. To add to this, 
PRKCG expression was reported in glioma cells [58]. 
In another study, PRKCG transcript was observed in 
one of four anaplastic astrocytomas [59]. In 
Triple-negative breast cancer (TNBC), aberrant 
expression of PRKCG was also noted. Moreover, 
lethality of inhibitor of HDAC6 was increased in 
TNBC because of PRKCG signaling pathway [21]. 
PRKCG expression has not been detected in 
melanocytes, which requires further investigation 
[60]. These studies indicate the importance of 
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studying coding and non-coding SNPs of PRKCG that 
mainly deregulate PRKCG signaling pathways and 
progress the cells towards cancer. Past studies 
highlight the prominent role of non-synonymous (ns) 
SNPs in carcinogenesis. These nsSNPs form the part 
of coding region of PRKCG. In a study, the pathogenic 
non-synonymous SNP rs386134171 of PRKCG was 
found to destabilize the structure of PRKCG and alter 
its function that leads to HCC [23]. In another study, 
positive association of PRKCG non-synonymous 
variant rs1331262028 with ovarian cancer was 
established [22].  

Furthermore, the presence of SNP rs454006 in 

PRKCG was linked with increased risk of 
osteosarcoma [55]. This SNP was identified in the 
non-coding region i.e. intron 3 region of PRKCG [18]. 
Previously, no study has demonstrated the role of 
non-coding variants that reside in 5′UTR, 3′UTR, 
splice donor and acceptor sites with cancer 
susceptibility. The current study has utilized in-silico 
approaches to understand the PRKCG gene and the 
effects of its non-coding variants on 
post-transcriptional and translational mechanisms. 
The regulatory roles of 5′ and 3′UTR variants were 
evaluated using RegulomeDB [29], rSNPbase [61], 
HaploReg [62], and RBP-Var2 [63]. 

 

Table 1. Variant rsIDs with their changed secondary structures identified through RNAfold 

sIDs Target site (miRsite) sequences  Free energy (kcal/mol) Frequency of MFE 
(Minimum Free 
Energy) structure 

Graphical output 
(MFE secondary structure) 

rs57483118 GaggctGCCCGCC -2.63 95.50% 

 
GggATGGTGATG -0.02 97.33 % 

 
 

rs181418157 AcgtccAGCTGCT 
 

-0.10 85.36% 

 
rs60891969 TctcCCTGCAGcc 

 
-0.01 
 

98.58% 

 
TCTCCCTGcagcc -0.01 98.58% 

 
GggATGTTGATG -0.02 97.02 % 
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Table 2. Interpretation by MaxEntScan software 

rsIDs cPos Score Score Interpretation 
(Effect on authentic splice site) 

MaxEntScan scores 
 

rs1344692203 1: 285+1 +45.59% 
(reference) 

Loss of Function 9.22 

<no GT> 
(variant) 

 

 
rs1568755566 

 
1: 822-2 

+5.96% 
(reference) 

Loss of Function 7.09 

<no AG> 
(variant) 

 

 
 

 
2: 822:1 

<no AG> 
(reference) 

Loss of Function  

-33.56% 
(variant) 

2.07 

rs1395398748 1: 909+1 
 

+20.00% 
(reference) 

No predictive effect 7.84 

+20.00% 
(variant) 

7.84 

2: 939 
 

<no GT> 
(reference) 

Loss of Function -23.68 

-89.54% 
(variant) 

3: 939+1 +82.62% 
(reference) 

Loss of Function 10.03 

<no GT> 
(variant) 

 
rs1384774676 

 
1:1282-2 

+32.08% 
(reference) 

Loss of Function 9.07 

<no AG> 
(variant) 

 

 
2:1282-1 

<no AG> 
(reference) 

 
Gain of Function 

 

+0.49% 
(variant) 

0.56 

 
rs59309543 

 
1:1576-2 

+55.16% 
(reference) 

Loss of Function 10.14 

<no AG> 
(variant) 

 

 
rs1599953647 
 
 

1:1656+1 +87.92% 
(reference) 

Loss of Function 11.08 

<no GT> 
(variant) 

 

2:1656+11 +42.96% 
(reference) 

No predictive effect 5.87 

+42.96% 
(variant) 

5.87 

 
rs1406338491 
 

 
1:1764 

<no GT> 
(reference) 

Loss of Function  

-67.95% 
(variant) 

-11 

 
2:1764+1 

+26.51% 
(reference) 

Loss of Function 4.74 

<no GT> 
(variant) 

 

 
 
The RegulomeDB software incorporates data 

from experimental techniques and from ENCODE 
project to gain knowledge regarding gene regulation 
mechanisms and variant IDs that are entered into the 
software [64]. The scoring system provided by the 
software helps in the elucidation of functional 
components including TF interaction, chromatin 
structure and histone modification. One of the 
important conclusions from the ENCODE research is 
that there is a complicated interaction between TFs 
and other genome components because of chromatin 

shape and histone modification. Different forms of 
histone modifications have been demonstrated to be 
related to active or repressed chromatin states, which 
in turn might alter the binding of TFs to the 
surrounding DNA sequences. Similarly, the spatial 
structure of DNA inside the nucleus may also 
influence gene expression, since TFs may be more or 
less accessible to their target sites depending on their 
placement within the genome. Moreover, there is an 
increasing amount of data to imply that TFs play a 
crucial role in gene regulation. For example, 
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high-throughput functional assays such as ChIP-seq 
and DNase I-hypersensitive site sequencing 
experimentally aid in discovering functional areas for 
TF binding [65].  

Another major area of study in the realm of gene 
regulation is the function of genetic variation in 
modifying TF binding. It has been demonstrated that 
variants in genes may lead to variations in TF binding, 
which can in turn impact gene expression and 
contribute to disease risk. In one study that was 
directed towards FGFR2, it was noted that because of 
the single nucleotide changes in the sequence of 
Intron 2 at two positions, the reported altered binding 
of transcription factors lead to increase expression of 
FGFR2 in breast cancer [66]. Thus, variants cause both 
up-and down-regulation of gene expression [67]. 
rSNPbase3.1 and HaploReg software [32] provided 
additional information on variant-related 
post-transcriptional regulatory activity in the study. 
HaploReg identified promotor and enhancer histone 
marks and DNAase hypersensitivity of variants. 
Further, the RBP-Var2 database identified variants 
that affects post-transcriptional mechanisms by 
altering RNA binding patterns [34].  

The relationship between 3′ and 5′ UTR variants 
and gene expression across multiple human tissues 
was determined utilizing Gtex software [68]. With the 
help of Gtex software [69], we ascertained the PRKCG 
and the variants expression in human tissues. 
Through UALCAN [37], gene expression was 
identified in TCGA cancers. In addition to 5′UTR and 
3′UTR variants, our study focused on splice donor 
and acceptor sites. These sites are positioned at the 
intersections of exons and introns in a pre-mRNA 
molecule. The splice donor site is positioned at the 5' 
end of an intron and is identified by the splicing 
machinery that recognizes the splice donor site 
through attaching with the GU conserved nucleotide 
sequence in humans. On the other hand, the splice 
acceptor site is identified near the 3' end of an intron 
and is also recognized by the same splicing machinery 
through the AG conserved sequence of nucleotides. 
The splicing mechanisms splice out the introns for the 
functional protein generation [70]. Notably, variants 
at these junctions can perturb the splicing 
mechanisms that lead to altered protein sequence and 
structures, contributing to disease pathology [70]. 

Moreover, splice site consensus sequences 
present at exon-intron junctions are phylogenetically 
conserved. Understanding splicing mechanisms 
requires the recognition of splice site motifs [71]. Nine 
splice acceptor variations and eleven splice donor 
variations were studied to see if they had a significant 
impact on splice sites. The entropy model-based 
software, MaxEntScan, was used to estimate whether 

a specific sequence motif would act as a donor or 
acceptor splice site. The variations on splice sites 
could lead to formation of a new splice site or deletion 
of the authentic one that can vary withMaxENT 
scores. For example, a normal splice site might have a 
MaxENTscore of 7.84 while the mutated splice site has 
a MaxENT score of 10.42 [72]. Along with 
MaxENTScan, the scores of SpliceAI [73] also 
provided thorough and detailed information 
regarding the functionality of spice sites. 

Further, in this study, we have taken into 
consideration the involvement of miRNAs in causing 
perturbed gene expression due to alteration in 
miRNA target sites on the mRNA. miRNAs are 
intriguing molecular players for gene regulation and 
are associated with numerous human disorders. 
Importantly, variants found in the target sequences of 
these miRNAs lead to dysregulated gene expression 
which may cause disease advancement [58]. 
Moreover, gene expressions that encode miRNAs get 
repressed or down regulated, one reason of which is 
the presence of variants in the promoter. The resultant 
gene, in this case miRNA, is not expressed that leads 
to increased expression of the targeted gene [36, 59]. 
Furthermore, miRNAs can act as oncogenes or as 
tumor suppressors and their aberrant expression 
levels contribute to oncogenesis [37].  

Moreover, because of 3'UTR variants, the 
interaction of mRNA with miRNA gets disrupted that 
also causes the expression of targeted protein to 
increase that finally leads to higher cancer risk when 
biochemical pathways are disrupted [37, 60, 61]. 
Moreover, the miRNA expression upregulation and 
downregulation get influenced by epigenetic changes 
that lead to changes on the histone’s marks and cause 
DNA unwrapping or wrapping around histones [34]. 
To add to this, hypo and hypermethylation and the 
presence of variants in the promotor also impact 
expression of genes that encode miRNAs [35, 36].  

In the current study, we analyze genetic variants 
in the miRNA sites. Not only are the variants in the 
target sites of miRNA functionally important but also 
the variants that originate in the miRNAs. In a 
previous study, miR-146a polymorphism, rs2910164, 
including a G>C nucleotide variation on the seed 
region of miR146a-3p caused the conversion of G:U 
pair to a C:U. This mismatch resulted in changing the 
selectivity of mature miR-146a binding to its targets 
that contributed to higher production of miR-146a in 
cancers [74].  

Our study presently focused on studying 3′UTRs 
in relation to interaction with miRNAs. Although 
miRNAs may target 5′UTRs, their impact when 
compared to 3′UTR regions is limited [40]. In one 
study, variant rsIDs including rs12516, rs3092995 and 
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rs8176318 that were noted in 3′UTR of BRCA1 affected 
the interaction with the miR-103 seed sequence that 
caused the breast cancer risk to increase in the study 
group of African American women [75]. miRdSNP 
and PolymiRTS databases [76] were explored for 
identification of miRNAs that target 3′UTR sites. For 
the miRNAs that were found in the study to bind with 
variants at 3′UTR, their expression levels were 
assessed in different cancers through the miRCancer 
Database [44]. Moreover, when the conserved or 
non-conserved site is disrupted, it impacts miRNA 
targeting. Genetic variants significantly affect miRNA 
target sites, which is determined through scores [42]. 
In our study, we used RNAfold [77] to determine the 
altered secondary structure of 3′UTR variants whose 
binding with miRNAs gets disrupted because of 
genetic variants.  

This study has covered in-silico analysis to 
explore the potential mechanisms affected at 
molecular level because of non-coding variants. The 
in-silico approach provided a cost and time-efficient 
means of screening a vast array of non-coding 
variants for further experimental validation. The wet 
lab experiments that are lacking in the current study 
would be part of future studies. Moreover, for the 
outcomes of the current study to have significant 
clinical implications and applications, this study 
would be conducted in a larger cohort. Our future 
explorations involve the validation of obtained 
in-silico results through in-vitro and in-vivo methods. 
Further investigations would take into consideration 
the use of surgically resected cancer tissue and cancer 
cell line for reliable results. The non-coding variants 
can interfere with the transcription factors binding 
and affect normal function of gene regulatory 
elements. Moreover, the presence of SNPs in the 
enhancer and silencer that form the part of 
non-coding genomic regions [78], also affect the 
regulatory mechanisms that lead to cancer [79]. This 
study would be utilized to study non-coding SNPs, 
specifically in relation to enhancer and silencer 
elements. Notably, the 3'UTR, 5' UTRs and splice sites 
would be studied through deep sequencing 
technology. Past studies have indicated different 
molecular pathways of PRKCG with reference to 
cancer [19, 23]. This study would be utilized to unveil 
the role of non-coding SNPs in impacting PRKCG 
signalling pathways. A past study compares the 
expression of non-phosphorylated and 
Thr514-phosphorylated form of PRKCG in colon 
cancer cells [80]. So, PTMs can alter the expression of 
PRKCG in cancer cells. Our further investigations 
would include the identification of PTMs of PRKCG 
that could affect transcription and translation 
processes.  

Conclusion 
This study analyzed the non-coding variants of 

the PRKCG gene, especially present within the 3'UTR, 
5' UTR, splice donor and acceptor sites. The presence 
of pathogenic non-coding SNPs affected the binding 
of transcription factors with the regulatory elements. 
Moreover, the mRNA interactions with miRNAs were 
also impacted because of 3’UTR variants. The splice 
site variants caused the loss of donor and acceptor 
sites that influenced the splicing mechanisms. The 
study also covered the effect of presence of 
non-coding variants in DNase hypersensitive regions. 
Also, the effect of change in histone modifications and 
chromatin architecture on transcription mechanisms 
was briefly studied.  

Supplementary Material 
Supplementary tables.  
https://www.jcancer.org/v15p6644s1.pdf 

Acknowledgements 
The authors extend their appreciation to the 

Researchers Supporting project number 
(RSP2024R502), King Saud University, Riyadh Saudi 
Arabia for funding this project. 

Funding 
The authors extend their appreciation to the 

Researchers Supporting project number 
(RSP2024R502), King Saud University, Riyadh Saudi 
Arabia for funding this project. The funding body has 
no role in study design. 

Author contributions 
Authors contribution is: “Conceptualization, FA, 

MS, TA, NMA and YS; methodology, MS and NMA; 
experimentation, validation YB, and KK, formal 
analysis, FA, JHT and KK; investigation, TA, SR, AA, 
KK, and SR; resources, MS, TA; data curation, SR, and 
NWA; writing—original draft preparation, TI, FA; 
writing—review and editing, JHT, YS; visualization, 
MS and NMA; supervision, MS; project 
administration, MS; and SR funding acquisition, MS. 
All authors have read and agreed to the published 
version of the manuscript. 

Availability of data and material 
Data as supplementary material is provided 

along with the manuscript. Raw data will be available 
from corresponding author on request. 

Competing Interests 
The authors have declared that no competing 

interest exists. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

6656 

References 
1. Karki R, Pandya D, Elston RC, Ferlini C. Defining “mutation” and 

“polymorphism” in the era of personal genomics. BMC medical genomics. 
2015; 8: 1-7. 

2. George Priya Doss C, Sudandiradoss C, Rajasekaran R, Choudhury P, Sinha P, 
Hota P, et al. Applications of computational algorithm tools to identify 
functional SNPs. Functional and integrative genomics. 2008; 8: 309-16. 

3. Smits BM, van Zutphen BF, Plasterk RH, Cuppen E. Genetic variation in 
coding regions between and within commonly used inbred rat strains. 
Genome Research. 2004; 14: 1285-90. 

4. Ramírez-Bello J, Jiménez-Morales M. Functional implications of single 
nucleotide polymorphisms (SNPs) in protein-coding and non-coding RNA 
genes in multifactorial diseases. Gaceta medica de Mexico. 2017; 153: 238-50. 

5. Lin H, Hargreaves KA, Li R, Reiter JL, Wang Y, Mort M, et al. RegSNPs-intron: 
a computational framework for predicting pathogenic impact of intronic 
single nucleotide variants. Genome biology. 2019; 20: 1-16. 

6. Cooper DN. Functional intronic polymorphisms: Buried treasure awaiting 
discovery within our genes. Human genomics: BioMed Central. 2010: 1-5. 

7. Ismail S, Essawi M. Genetic polymorphism studies in humans. Middle East 
Journal of Medical Genetics. 2012; 1: 57-63. 

8. Dawkins RL, Willamson JF, Lester S, Dawkins ST. Mutation versus 
polymorphism in evolution. Genomics. 2013; 101: 211-12. 

9. Buratti E, Baralle M, Baralle FE. Defective splicing, disease and therapy: 
searching for master checkpoints in exon definition. Nucleic acids research. 
2006; 34: 3494-510. 

10. Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud 
C. Human Splicing Finder: an online bioinformatics tool to predict splicing 
signals. Nucleic acids research. 2009; 37: e67-e. 

11. Mignone F, Gissi C, Liuni S, Pesole G. Untranslated regions of mRNAs. 
Genome biology. 2002; 3: 1-10. 

12. Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA 
untranslated regions. Wiley Interdisciplinary Reviews: RNA. 2018; 9: e1474. 

13. George Priya Doss C, Rajasekaran R, Arjun P, Sethumadhavan R. 
Prioritization of candidate SNPs in colon cancer using bioinformatics tools: An 
alternative approach for a cancer biologist. Interdisciplinary Sciences: 
Computational Life Sciences. 2010; 2: 320-46. 

14. Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 
5′-untranslated regions of eukaryotic mRNAs. Science. 2016; 352: 1413-6. 

15. Knox B, Wang Y, Rogers LJ, Xuan J, Yu D, Guan H, et al. A Functional SNP in 
the 3′‐UTR of TAP2 Gene Interacts with microRNA hsa‐miR‐1270 to Suppress 
the Gene Expression. Environmental and molecular mutagenesis. 2018; 59: 
134-43. 

16. Gu S, Jin L, Zhang F, Sarnow P, Kay MA. Biological basis for restriction of 
microRNA targets to the 3′ untranslated region in mammalian mRNAs. 
Nature structural and molecular biology. 2009; 16: 144-50. 

17. Pilo CA, Newton AC. Two sides of the same coin: protein kinase C γ in cancer 
and neurodegeneration. Frontiers in cell and developmental biology. 2022; 10: 
929510. 

18. Lu H, Zhu L, Lian L, Chen M, Shi D, Wang K. Genetic variations in the PRKCG 
gene and osteosarcoma risk in a Chinese population: a case-control study. 
Tumor Biology. 2015; 36: 5241-7. 

19. Dowling CM, Hayes SL, Phelan JJ, Cathcart MC, Finn SP, Mehigan B, et al. 
Expression of protein kinase C gamma promotes cell migration in colon 
cancer. Oncotarget. 2017; 8: 72096. 

20. Xiao H, Goldthwait DA, Mapstone T. The identification of four protein kinase 
C isoforms in human glioblastoma cell lines: PKC alpha, gamma, epsilon, and 
zeta. Journal of neurosurgery. 1994; 81: 734-40. 

21. Alothaim T, Charbonneau M, Tang X. HDAC6 inhibitors sensitize 
non-mesenchymal triple-negative breast cancer cells to cysteine deprivation. 
Scientific Reports. 2021; 11: 10956. 

22. Shahid K, Khan K, Badshah Y, Mahmood Ashraf N, Hamid A, Trembley JH, et 
al. Pathogenicity of PKCγ genetic variants—possible function as a 
non-invasive diagnostic biomarker in ovarian cancer. Genes. 2023; 14: 236. 

23. Abid F, Khan K, Badshah Y, Ashraf NM, Shabbir M, Hamid A, et al. 
Non-synonymous SNPs variants of PRKCG and its association with 
oncogenes predispose to hepatocellular carcinoma. Cancer Cell International. 
2023; 23: 123. 

24. Abid F, Iqbal T, Khan K, Badshah Y, Trembley JH, Ashraf NM, et al. Analyzing 
PKC Gamma (+ 19,506 A/G) polymorphism as a promising genetic marker for 
HCV-induced hepatocellular carcinoma. Biomarker Research. 2022; 10: 87. 

25. Lee PH, Shatkay H. An integrative scoring system for ranking SNPs by their 
potential deleterious effects. Bioinformatics. 2009; 25: 1048-55. 

26. Clifford RJ, Edmonson MN, Nguyen C, Scherpbier T, Hu Y, Buetow KH. 
Bioinformatics tools for single nucleotide polymorphism discovery and 
analysis. Annals of the New York Academy of Sciences. 2004; 1020: 101-9. 

27. Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, et al. 
Ensembl 2021. Nucleic acids research. 2021; 49: D884-D91. 

28. Forbes S, Clements J, Dawson E, Bamford S, Webb T, Dogan A, et al. COSMIC 
2005. British journal of cancer. 2006; 94: 318-22. 

29. Dong S, Boyle AP. Predicting functional variants in enhancer and promoter 
elements using RegulomeDB. Human mutation. 2019; 40: 1292-8. 

30. Diehl AG, Boyle AP. Deciphering encode. Trends in Genetics. 2016; 32: 238-49. 

31. Cheema AN, Rosenthal SL, Ilyas Kamboh M. Proficiency of data 
interpretation: identification of signaling SNPs/specific loci for coronary 
artery disease. Database. 2017; 2017: bax078. 

32. Lou J, Gong J, Ke J, Tian J, Zhang Y, Li J, et al. A functional polymorphism 
located at transcription factor binding sites, rs6695837 near LAMC1 gene, 
confers risk of colorectal cancer in Chinese populations. Carcinogenesis. 2017; 
38: 177-83. 

33. Prabhu B, Kanchamreddy S, Sharma A, Bhat S, Bhat PV, Kabekkodu SP, et al. 
Conceptualization of functional single nucleotide polymorphisms of 
polycystic ovarian syndrome genes: an in silico approach. Journal of 
Endocrinological Investigation. 2021; 44: 1783-93. 

34. Moraghebi M, Maleki R, Ahmadi M, Negahi AA, Abbasi H, Mousavi P. In 
silico analysis of polymorphisms in microRNAs deregulated in Alzheimer 
disease. Frontiers in neuroscience. 2021; 15: 631852. 

35. Solem AC, Halvorsen M, Ramos SB, Laederach A. The potential of the 
riboSNitch in personalized medicine. Wiley Interdisciplinary Reviews: RNA. 
2015; 6: 517-32. 

36. Carithers LJ, Moore HM. The genotype-tissue expression (GTEx) project. 
Biopreservation and biobanking: Mary Ann Liebert, Inc. 140 Huguenot Street, 
3rd Floor New Rochelle, NY 10801 USA; 2015. p. 307-8. 

37. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, 
Ponce-Rodriguez I, Chakravarthi BV, et al. UALCAN: a portal for facilitating 
tumor subgroup gene expression and survival analyses. Neoplasia. 2017; 19: 
649-58. 

38. Tomczak K, Czerwińska P, Wiznerowicz M. Review The Cancer Genome 
Atlas (TCGA): an immeasurable source of knowledge. Contemporary 
Oncology/Współczesna Onkologia. 2015; 2015: 68-77. 

39. Cooper LA, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ. PanCancer 
insights from The Cancer Genome Atlas: the pathologist's perspective. The 
Journal of pathology. 2018; 244: 512-24. 

40. Thomas LF, Saito T, Sætrom P. Inferring causative variants in microRNA 
target sites. Nucleic acids research. 2011; 39: e109-e. 

41. Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z. miRdSNP: a database of 
disease-associated SNPs and microRNA target sites on 3'UTRs of human 
genes. BMC genomics. 2012; 13: 1-7. 

42. Bhattacharya A, Ziebarth JD, Cui Y. PolymiRTS Database 3.0: linking 
polymorphisms in microRNAs and their target sites with human diseases and 
biological pathways. Nucleic acids research. 2014; 42: D86-D91. 

43. Panda AK, Tripathy R, Das BK. CD14 (C-159T) polymorphism is associated 
with increased susceptibility to SLE, and plasma levels of soluble CD14 is a 
novel biomarker of disease activity: A hospital-based case-control study. 
Lupus. 2021; 30: 219-27. 

44. Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA–cancer association 
database constructed by text mining on literature. Bioinformatics. 2013; 29: 
638-44. 

45. Gulyaeva LF, Kushlinskiy NE. Regulatory mechanisms of microRNA 
expression. Journal of translational medicine. 2016; 14: 143. 

46. Varghese RS, Barefoot ME, Jain S, Chen Y, Zhang Y, Alley A, et al. Integrative 
analysis of DNA methylation and microRNA expression reveals mechanisms 
of racial heterogeneity in hepatocellular carcinoma. Frontiers in genetics. 2021; 
12: 708326. 

47. Mukherjee M, Ghosh S, Goswami S. Investigating the interference of single 
nucleotide polymorphisms with miRNA mediated gene regulation in 
pancreatic ductal adenocarcinoma: An in silico approach. Gene. 2022; 819: 
146259. 

48. Rykova E, Ershov N, Damarov I, Merkulova T. SNPs in 3′ UTR miRNA Target 
Sequences Associated with Individual Drug Susceptibility. International 
Journal of Molecular Sciences. 2022; 23: 13725. 

49. Lorenz R, Wolfinger MT, Tanzer A, Hofacker IL. Predicting RNA secondary 
structures from sequence and probing data. Methods. 2016; 103: 86-98. 

50. Trotta E. On the normalization of the minimum free energy of RNAs by 
sequence length. PloS one. 2014; 9: e113380. 

51. Wagner N, Çelik MH, Hölzlwimmer FR, Mertes C, Prokisch H, Yépez VA, et 
al. Aberrant splicing prediction across human tissues. Nature Genetics. 2023; 
55: 861-70. 

52. Shamsani J, Kazakoff SH, Armean IM, McLaren W, Parsons MT, Thompson 
BA, et al. A plugin for the Ensembl Variant Effect Predictor that uses 
MaxEntScan to predict variant spliceogenicity. Bioinformatics. 2019; 35: 
2315-7. 

53. Godino L. How to structure Microsoft Excel documents for systematic 
reviews. Nurse Researcher. 2023; 31: 40-46. 

54. Tada Y, Kume K, Noguchi S, Sekiya T, Nishinaka K, Ishiguchi H, et al. 
Comparison of two families with and without ataxia harboring novel variants 
in PRKCG. Journal of Human Genetics. 2022; 67: 595-9. 

55. Zhang Y, Hu X, Wang H-K, Shen W-W, Liao T-Q, Chen P, et al. 
Single-nucleotide polymorphisms of the PRKCG gene and osteosarcoma 
susceptibility. Tumor Biology. 2014; 35: 12671-7. 

56. Satow R, Suzuki Y, Asada S, Ota S, Idogawa M, Kubota S, et al. 
Downregulation of protein kinase C gamma reduces epithelial property and 
enhances malignant phenotypes in colorectal cancer cells. Iscience. 2022; 25: 
105501. 

57. Mazzoni E, Adam A, Bal de Kier Joffe E, Aguirre-Ghiso JA. Immortalized 
mammary epithelial cells overexpressing protein kinase C γ acquire a 
malignant phenotype and become tumorigenic in vivo. Molecular cancer 
research. 2003; 1: 776-87. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

6657 

58. Mishima K, Ohno S, Shitara N, Yamaoka K, Suzuki K. Opposite effects of the 
overexpression of protein kinase Cγ and δ on the growth properties of human 
glioma cell line U251 MG. Biochemical and biophysical research 
communications. 1994; 201: 363-72. 

59. Baltuch GH, Dooley NP, Villemure J-G, Yong VW. Protein kinase C and 
growth regulation of malignant gliomas. Canadian journal of neurological 
sciences. 1995; 22: 264-71. 

60. Yamanishi D, Graham M, Buckmeier J, Meyskens Jr F. The differential 
expression of protein kinase C genes in normal human neonatal melanocytes 
and metastatic melanomas. Carcinogenesis. 1991; 12: 105-9. 

61. Guo L, Du Y, Chang S, Zhang K, Wang J. rSNPBase: a database for curated 
regulatory SNPs. Nucleic acids research. 2014; 42: D1033-D9. 

62. Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal 
variants, cell types, regulators and target genes for human complex traits and 
disease. Nucleic acids research. 2016; 44: D877-D81. 

63. Mao F, Wang L, Zhao X, Xiao L, Li X, Liu Q, et al. De novo mutations involved 
in post-transcriptional dysregulation contribute to six neuropsychiatric 
disorders. BioRxiv. 2017: 175844. 

64. Ritchie GR, Flicek P. Computational approaches to interpreting genomic 
sequence variation. Genome medicine. 2014; 6: 1-11. 

65. Slattery M, Zhou T, Yang L, Machado ACD, Gordân R, Rohs R. Absence of a 
simple code: how transcription factors read the genome. Trends in 
biochemical sciences. 2014; 39: 381-99. 

66. Liu Y, Walavalkar NM, Dozmorov MG, Rich SS, Civelek M, Guertin MJ. 
Identification of breast cancer associated variants that modulate transcription 
factor binding. PLoS genetics. 2017; 13: e1006761. 

67. Vazquez-Mena O, Medina-Martinez I, Juárez-Torres E, Barrón V, Espinosa A, 
Villegas-Sepulveda N, et al. Amplified genes may be overexpressed, 
unchanged, or downregulated in cervical cancer cell lines. PloS one. 2012; 7: 
e32667. 

68. Stanfill AG, Cao X. Enhancing research through the use of the genotype-tissue 
expression (GTEx) database. Biological research for nursing. 2021; 23: 533-40. 

69. McCall MN, Illei PB, Halushka MK. Complex sources of variation in tissue 
expression data: analysis of the GTEx lung transcriptome. The American 
Journal of Human Genetics. 2016; 99: 624-35. 

70. Anna A, Monika G. Splicing mutations in human genetic disorders: examples, 
detection, and confirmation. Journal of applied genetics. 2018; 59: 253-68. 

71. Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: 
diversification, exon definition and function. Nature Reviews Genetics. 2010; 
11: 345-55. 

72. Eng L, Coutinho G, Nahas S, Yeo G, Tanouye R, Babaei M, et al. Nonclassical 
splicing mutations in the coding and noncoding regions of the ATM Gene: 
maximum entropy estimates of splice junction strengths. Human mutation. 
2004; 23: 67-76. 

73. de Sainte Agathe J-M, Filser M, Isidor B, Besnard T, Gueguen P, Perrin A, et al. 
SpliceAI-visual: a free online tool to improve SpliceAI splicing variant 
interpretation. Human Genomics. 2023; 17: 7. 

74. Gong H-b, Zhang S-l, Wu X-j, Pu X-m, Kang X-j. Association of rs2910164 
polymorphism in MiR-146a gene with psoriasis susceptibility: A 
meta-analysis. Medicine. 2019; 98: e14401. 

75. Chhichholiya Y, Suryan AK, Suman P, Munshi A, Singh S. SNPs in miRNAs 
and target sequences: role in cancer and diabetes. Frontiers in Genetics. 2021; 
12: 793523. 

76. Ning S, Li X. Non-coding RNA resources. Non-coding RNAs in Complex 
Diseases: A Bioinformatics Perspective. 2018: 1-7. 

77. Zheng Y, Wang M, Wang S, Xu P, Deng Y, Lin S, et al. LncRNA MEG3 
rs3087918 was associated with a decreased breast cancer risk in a Chinese 
population: a case-control study. BMC cancer. 2020; 20: 1-8. 

78. Kim S, Welsh DA, Myers L, Cherry KE, Wyckoff J, Jazwinski SM. Non-coding 
genomic regions possessing enhancer and silencer potential are associated 
with healthy aging and exceptional survival. Oncotarget. 2015; 6: 3600. 

79. Iñiguez-Muñoz S, Llinàs-Arias P, Ensenyat-Mendez M, Bedoya-López AF, 
Orozco JI, Cortés J, et al. Hidden secrets of the cancer genome: unlocking the 
impact of non-coding mutations in gene regulatory elements. Cellular 
Molecular Life Sciences. 2024; 81: 274. 

80. Garczarczyk D, Szeker K, Galfi P, Csordas A, Hofmann J. Protein kinase Cγ in 
colon cancer cells: Expression, Thr514 phosphorylation and sensitivity to 
butyrate-mediated upregulation as related to the degree of differentiation. 
Chemico-biological interactions. 2010; 185: 25-32. 

 


