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Abstract 

Background: Age is a critical risk factor for cancer, as its incidence and mortality increase with age. However, 
there is limited understanding of the molecular changes aging induces in tumors. 
Methods: We explored demographic differences between young and old cancer patients and identified age 
sixty and above as pivotal in cancer prognosis. Subsequently, we developed an aging-related prognostic model 
based on genes to assess senescence's impact on aging-associated cancer. Grounded in the coefficients and 
expression levels of these identified signature genes, a risk score was computed, enabling the classification of 
collected samples into aging-related high-risk and low-risk cohorts. 
Results: Our study revealed increased genomic instability and somatic mutations in tumors from older 
individuals. We also found alterations in carcinogenic signaling pathways, particularly immune responses, 
inflammatory pathways, and cell cycle arrest in susceptible populations. Single-cell RNA sequencing showed 
heightened frequencies of exhausted T cells, myeloid cells, and B cells in high-risk cohorts. 
Conclusion: MTHFD2 emerged as a crucial molecular switch regulating senescence in cancer. Its deletion 
promoted tumor growth by inducing cell senescence and stimulating the senescence-associated secretory 
phenotype (SASP) in senescent tumor cells. This highlights the need for tailored methodologies in effective 
cancer management. 
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Background 
Aging, a complex and inevitable biological 

process, involves the gradual deterioration of 
physiological functions and increased vulnerability to 
aging-related diseases. In human biology, aging 
encompasses an intricate interplay of genetic and 
environmental factors[1], leading to myriad changes 
across biological, psychological, and social 
dimensions. The mechanisms underlying aging are 
diverse, with theories ranging from programmed 
genetic sequences to cellular damage accumulation[2], 
including DNA damage, mitochondrial dysfunction, 
and the impact of free radicals. Telomere shortening 
and epigenetic changes further contribute to this 

complex process[3]. Aging is the most significant risk 
factor for cancer, associated with an exponential 
increase in both incidence and mortality rates among 
various cancer types[4]. Nevertheless, the intricate 
correlation between aging and the molecular 
determinant of cancer remains to be fully 
characterized. 

The intricate relationship between the aging 
process and cancer signifies a pivotal domain within 
gerontology and oncology[1,3,4]. The underlying 
mechanisms underlying aging and cancer involve a 
complex interplay of genetic, cellular, and environ-
mental factors. Mechanistically, aging is associated 
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with a range of cellular and molecular changes that 
contribute to increased cancer susceptibility[4]. These 
changes, including genomic instability, telomere 
shortening, epigenetic alterations, and a dysfunctional 
microenvironment, may contribute to 
carcinogenesis[3–5]. Consequently, we hypothesized 
that, owing to the variances in selective pressures 
stemming from changes in tissue environments with 
age, tumors originating from individuals at different 
life stages may exhibit distinct molecular landscapes. 
Consequently, certain molecular alterations may be 
more or less prevalent in older or younger patients[4]. 

Aging influences cellular metabolism, and 
modifications in metabolic pathways play a 
significant role in the genesis of cancer[4,6]. For 
instance, a decrease in one-carbon metabolism 
becomes apparent in the aging process, and the 
perturbation of this metabolic pathway precipitates 
tumor proliferation and immune subversion. 
One-carbon metabolism, an integral biochemical 
network within cellular physiology, oversees the 
conveyance and utilization of one-carbon entities for a 
myriad of cellular processes[7]. This elaborate cascade 
encompasses a succession of interconnected 
biochemical reactions indispensable for the biogenesis 
of nucleotides, amino acids, and other molecules that 
are imperative for cellular functionality[8,9]. 
Methylenetetrahydrofolate dehydrogenase 2 
(MTHFD2), a pivotal enzyme in cellular biochemistry, 
plays a pivotal role in one-carbon reactions[10]. 
Positioned at the nexus of one-carbon metabolism, 
this enzyme catalyzes the conversion of 
5,10-methylenetetrahydrofolate to 5,10-methenylte-
trahydrofolate, a pivotal juncture in the synthesis of 
purines and thymidylate, indispensable components 
of DNA[11]. MTHFD2 has been the subject of 
exhaustive scrutiny within the domain of cancer 
research because of its linkage to the metabolic 
adaptation of tumors. Elevated expression of 
MTHFD2 is recurrently noted in diverse cancer 
manifestations due to its overexpression concomitant 
with heightened cellular proliferation, invasive 
tendencies, and resistance to chemotherapy[12]. 
Although the age-related implications of MTHFD2 
alterations in the genesis and prognosis of cancer 
remain to be fully clarified, MTHFD2 has emerged as 
a promising target for therapeutic interventions[13]. 

In this study, we conducted a systematic 
examination of aging-related disparities in genomic 
instability, somatic copy number alterations (SCNAs), 
somatic mutations, pathway modifications, and gene 
expression across various cancer types[5,14,15]. We 
investigated age-correlated indicators in cancers to 
precisely prognosticate outcomes[16,17]. Moreover, 
MTHFD2 plays a pivotal role as a prognostic factor in 

cancer, and MTHFD2 loss accelerates aging-like 
alterations to promote tumor growth[18–20]. 
Ultimately, our research elucidates the significant 
impact of MTHFD2 as a prognostic determinant in 
cancer, where MTHFD2 deficiency expedites 
senescence-like alterations to foster tumor growth. 

Results 
Aging-linked gene signatures forecast cancer 
prognosis 

A meticulous analysis was conducted using the 
clinical data of 1255 patients to study the impact of 
patient age on various clinicopathological 
characteristics and prognoses. The findings suggest 
that surpassing the age of 60 is a consequential 
determinant of prognosis in cancer patients (Table 1). 
The investigation highlights a significant difference in 
outcomes among different age groups, specifically 
emphasizing the heightened vulnerability of 
individuals aged 60 and above. Within the cohort of 
989 patients under the age of 60, an overwhelming 
majority of 879 individuals showed no cancer 
recurrence following systematic treatment, 
highlighting a positive prognosis in this age group. 
Conversely, among the 266 patients aged over 60, 
there was a heightened propensity for cancer 
recurrence, with 57 individuals experiencing relapse 
despite rigorous systematic treatment. This significant 
disparity in recurrence rates highlights an age of over 
60 years as a key factor affecting cancer prognosis, 
emphasizing the need for customized interventions 
specific to age to enhance treatment effectiveness and 
reduce the increased risks linked to older age[21]. 
Following the initial analysis, a subsequent univariate 
Cox regression analysis was performed on the clinical 
data (P<0.05) (Figure 1A), revealing compelling 
insights into the relationships between age and cancer 
development and prognosis. The findings 
unequivocally identified age over 60 years as a 
significant and independent risk factor[20]. 

 

Table 1. Clinical information of breast cancer patients 

Variable Total No recurrence Recurrence P Value 
Age at diagnosis, years    P < 0.0001 
≤ 60 989 879 110  
> 60 266 209 57  
Histopathological grade    P < 0.001 
Ⅰ 56 55 1  
Ⅱ 363 307 56  
Ⅲ 176 165 11  
T stage    P = 0.42 
T1+T2 765 693 72  
T3+T4 55 48 7  
N stage    P < 0.0001 
N0 517 477 40  
N1+N2+N3 96 57 39  
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Figure 1. Aging-linked Gene Signatures Forecast Cancer Prognosis. (A)Univariate Cox regression analysis based on cross-validation and minimum partial likelihood 
deviation of clinical information. (B) Venn diagram of four aging-related gene databases. (C) Volcano plot construction using fold-change values and p-adjustment. Red dots 
represent upregulated genes; blue dots represent downregulated genes; gray dots represent non-significant genes. (D) Cox-LASSO regression algorithm identifies genes with the 
most robust prognostic significance in the aging-related gene set. (E-F) Kaplan-Meier analysis of overall survival (OS) curves for high/low-risk subgroups of patients in the training 
cohort. (G-J) Kaplan-Meier analysis of overall survival (OS) curves for high/low-risk groups of patients in the GEO training cohort. (K-N) Survival analysis of high/low-risk groups 
at different stages. 

 
To identify aging-associated gene alterations, we 

conducted a thorough examination of public 
databases and relevant literature, compiling a 

collection of four aging-related gene databases: 
SenMayo[22], CellAge, SeneQuest[23], and the Aging 
Atlas[1] (Figure 1B). This meticulously assembled 
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collection comprises a total of 1861 genes associated 
with aging, of which 1794 genes were confirmed to be 
expressed within our designated training set. We 
identified 601 aging-related genes by differentially 
expressed gene (DEG) analysis that distinguished 
between normal and malignant tissues. The resulting 
volcano plot vividly depicted this dichotomy, 
illustrating 200 upregulated genes and 401 
downregulated genes within the tumor samples 
compared to their normal tissue counterparts (Figure 
1C). Univariate Cox regression and least absolute 
shrinkage and selection operator (LASSO) regression 
algorithms were used to identify genes with the most 
robust prognostic significance within the 
aging-related gene set (Figure 1D). Grounded in the 
coefficients and expression levels of these identified 
signature genes, a risk score was computed, enabling 
the classification of collected samples into 
aging-related high-risk and low-risk cohorts. 
Prognostic analysis revealed a stark divergence, with 
the high-risk group showing a significantly poorer 
prognosis (P < 0.0001), as illustrated in Figure 1E. The 
high-risk group had a significantly higher rate of 
death than the low-risk group. The model's predictive 
performance was evaluated using the area under the 
curve (AUC) for 1-, 3-, and 5-year overall survival 
(OS), which were 0.77, 0.67, and 0.65, respectively. To 
validate the robustness of the findings, GSE20685 and 
GSE58812 served as independent verification cohorts. 
Coherently, samples in the validation cohorts, 
stratified into high- and low-risk groups based on the 
risk scoring method derived from the training set, 
displayed a more adverse prognosis in the high-risk 
category, accompanied by a higher incidence of 
mortality (Figure 1F-G). Further exploration of 
prognostic status among patients at different stages 
ensued. The findings indicated that the 
senescence-related signature score could accurately 
predict the prognosis of patients at stages I, II, and III. 
Patients in the high-risk category exhibited a more 
unfavorable prognosis (Figure 1H-K). These findings 
provide valuable insights into the nuanced 
relationship between aging and cancer outcomes, 
prompting further exploration of senescence-tailored 
therapeutic approaches for more effective cancer 
management in older populations.  

Aging-associated mutational patterns in 
cancer 

Numerous investigations have consistently 
highlighted the pivotal role of mutational patterns in 
tumorigenesis. In this study, a comparative analysis 
was performed to examine the mutational landscape 
across distinct patient risk stratifications. Remarkably, 
significant disparities were observed in the mutation 

status of PIK3CA, TP53, and CDH1 between the low- 
and high-risk cohorts[15]. The prevalence of TP53 
mutations notably increased within the high-risk 
demographic group, hinting at its potential 
involvement in the progression of cancer influenced 
by the aging process[24] (Figure 2A). A meticulous 
examination of variant classification revealed 
differences between these two cohorts (Figure 2B). 
PIK3CA, TP53, and CDH1, which are recognized as 
somatic driver mutations and small 
insertions/deletions (indels), have previously been 
implicated in the course of cancer evolution[25,26]. 
The observed variances in frameshift deletion 
mutations, ranking second in the high-risk category 
and surpassing nonsense mutations, and conversely 
in the low-risk category, may be attributed to 
aging-associated transformations. These findings 
emphasize the need for thorough investigations to 
uncover the effects of aging on these mutational 
patterns and their potential contributions to the 
development of cancer. Such revelations hold promise 
for a more nuanced understanding of the intricate 
interplay between aging and the molecular 
foundations of cancer development. 

Tumor mutation burden (TMB), a robust 
quantitative metric for assessing mutation levels[27], 
revealed a significantly elevated TMB within the 
high-risk group (Figure 2D). Notably, a positive 
correlation emerged between the risk score and TMB 
(Figure 2E), accentuating their mutual 
interdependence[29]. Prognostic analysis further 
elucidated the clinical relevance of the TMB, revealing 
that increased TMB correlated with an unfavorable 
prognosis[30,31] (Figure 2F). To determine the 
potential synergistic impact of the TMB on prognosis, 
a pioneering stratified prognostic analysis 
amalgamating the two parameters was 
conducted[28,32]. Intriguingly, this analysis revealed 
an augmented prognostic predictive capacity within 
the training cohort. Specifically, patients with 
elevated TMB demonstrated a strong association with 
an inferior prognosis, while those with low TMB 
exhibited a more favorable prognosis (P=0.0085) 
(Figure 2G). These findings underscore the 
significance of incorporating TMB assessment for a 
comprehensive understanding of prognostic 
dynamics in cancer. This approach offers invaluable 
insights for personalized therapeutic strategies based 
on mutational profiles. 

Aging-associated molecular alterations in 
oncogenic signaling pathways 

To elucidate the mechanistic link between aging 
and cancer, we explored the underlying pathways 
through Gene Ontology (GO) and Kyoto 
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Encyclopedia of Genes and Genomes (KEGG) 
analyses based on differentially expressed genes 
(DEGs) between patients in the high- and low-risk 
groups. The GO and KEGG enrichment analyses 
revealed a distinct enrichment profile in the high-risk 
group, emphasizing immune responses such as 
leukocyte-mediated immunity, mononuclear cell 
differentiation, plasma membrane signaling receptor 
complex, T-cell receptor complex, antigen binding, 
and immune receptor activity (Figure 3A-B). 
Additionally, gene set enrichment analysis (GSEA) 
revealed the aggregation of gene sets related to the 
IFN-γ and IFN-α response and inflammation within 
the high-risk group, indicating a potential association 
between these pathways and aging-induced cancer 
progression (Figure 3C). These findings provide 
valuable insights into the molecular underpinnings of 

the impact of aging on cancer development, 
emphasizing the intricate involvement of immune- 
related processes and signaling pathways. To 
comprehensively assess molecular functional 
disparities between patients in the high- and low-risk 
groups, 16 cancer-related pathway activities were 
calculated[33,34]. This study revealed distinctive 
patterns of cell cycle dynamics, known for their 
impact on tissue regeneration, function, 
inflammation, and tumorigenesis. Specifically, 
patients in the high-risk group exhibited elevated 
cycle signature scores, indicative of increased activity 
within the cell cycle[35] (Figure 3F). This observation 
suggests a potential association between heightened 
cell cycle activity and an elevated risk profile, offering 
valuable insights into the potential drivers of cancer 
progression influenced by aging[35].  

 

 
Figure 2. Aging-associated mutational patterns in cancer. (A) Comparison of mutation profiles between high and low-risk groups. (B-C) Summary plots of the cohort 
displaying the distribution of mutated strains based on mutation type and SNV classification, with stacked bar graphs showing the top 10 mutated genes. (D) Boxplot illustrating 
the correlation between risk scores and TMB in the breast cancer cohort. (E) Correlation between risk scores and TMB levels. (F) Kaplan-Meier survival analysis of TMB, risk 
scores, and OS in the breast cancer cohort. (G) Kaplan-Meier survival analysis of TMB and OS in the TCGA breast cancer cohort. 
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Figure 3. Aging-associated molecular alterations in oncogenic signaling pathways. (A) GO enrichment analysis of upregulated aging-related DEGs. (B) KEGG 
pathways of upregulated aging-related DEGs. (C-E) Gene set enrichment analysis (GSEA) of aging-related prognostic models. (F)Boxplot of label scores for 16 cancer cell states 
in high/low-risk groups based on GSVA scores. Paired two-sided Wilcoxon test.  
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Aging-associated alterations in the tumor 
microenvironment 

In an endeavor to meticulously investigate the 
distinct cellular compositions of high- and low-risk 
patients, we collected publicly available single-cell 
RNA sequencing (scRNA-seq) data paired with bulk 
RNA-seq data from cancers. By integrating data from 
24 samples with paired bulk and scRNA-seq 
information, we employed the mutual nearest 
neighbor (MNN) algorithm to mitigate batch effects. 
Rigorous quality control measures were applied to 
each individual sample, enabling the depiction of the 
cancer cellular landscape at single-cell resolution 
using uniform manifold approximation and 
projection (UMAP) visualization (Figure 4A). Using 
canonical lineage markers, we accurately annotated 
each cell population, which included epithelial cells, 
cycling cells, myeloid cells, T cells, B cells, plasma 
cells, cancer-associated fibroblasts (CAFs), endothelial 

cells, and pericytes (Figure 4B). For example, the 
expression of specific markers, such as CD79A, 
CD79B, and MS4A1 for B cells and EPCAM, KRT8, 
and KRT19 for epithelial cells, facilitated precise cell 
type identification[36,37]. The analysis of cellular 
subpopulations revealed distinctive compositions in 
the high- and low-risk groups, with significantly 
lower T-cell levels but higher frequencies of cycling 
cells, myeloid cells, and B cells in the high-risk group 
(Figure 4C). Further investigation of the functions of T 
cells within the high- to low-risk comparison revealed 
upregulation of the IFN-γ and IFN-α response in these 
T cells. In contrast, the low-risk cohort exhibited a 
downregulation of mTORC1 signaling and TNFα 
signaling via NF-κB (Figure 4D-G). These findings 
suggest that aging-driven alterations in the tumor 
microenvironment contribute to cancer 
susceptibility[38].  

 

 
Figure 4. Aging-associated alterations in tumor microenvironment. (A) UMAP plot depicting major cellular subgroups in cancer. (B) Bubble heatmap displaying 
expression levels of specific feature genes in cancer. The size of the circles represents the proportion of expressing cells, colored based on standardized expression levels. (C) 
Relative proportions of different cell types in high/low-risk tumors. (D-G) GSEA analysis of T cells in high/low-risk groups. 
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MTHFD2 as an aging-associated factor in 
cancer 

In the aforementioned studies, MTHFD2 
emerged as both a factor that accentuates aging 
vulnerability and a protective factor against cancer 
progression. Consequently, MTHFD2 was chosen for 
a more in-depth exploration of its intricate role in 
aging-related cancer. To comprehensively describe 
the expression of MTHFD2 across a spectrum of 
tissues and its correlation with clinicopathological 
features in cancer patients, we conducted an 
exhaustive exploration employing an online database. 
MTHFD2 was markedly upregulated in 31 tumors 
compared with 2 tumors (Figure 5A). The discernible 
expression patterns of MTHFD2 were found to be 
intricately linked with modifications in ten genes, 
including TP53, CDH1, and MAP3KI, whereas the 
mutation status significantly differed between the 
high- and low-expression groups of MTHFD2 (Figure 
5B). Single-cell analysis provided additional insights, 
showing that MTHFD2 was expressed mainly in T 
cells and myeloid subsets (Figure 5C). These 
simultaneous alterations in gene expression provide 
invaluable insights into the potential functions of 
MTHFD2. We conducted GO and GSEA analyses of 
the differentially expressed genes in the MTHFD2 
high- and low-expression cohorts. These results 
indicated that MTHFD2 participates in nuclear 
division and meiotic cell cycle processes, indicating 
that MTHFD2 regulates cell cycle dynamics (Figure 
5E-G). GSEA further confirmed this finding, revealing 
upregulated pathways, such as E2F targets and G2M 
checkpoints (Figure 5H), which are integral to 
mechanisms regulating the cell cycle. Given the 
pivotal role of the cell cycle in preserving cellular 
homeostasis and its intricate linkage to the aging 
process[39], our findings suggest that MTHFD2 may 
contribute to aging-related modifications involved in 
cell cycle regulation. Subsequently, by analyzing the 
expression level of MTHFD2 between the young and 
aging groups, it was found that MTHFD2 expression 
was higher in the young group (Figure 5I), which 
further confirmed that MTHFD2 may be involved in 
aging-related modifications. 

MTHFD2 loss drives senescence-like 
alterations to foster tumor growth 

In our meticulous exploration of the intricate 
interplay between MTHFD2 and tumor growth 
during the aging process, we initiated MTHFD2 
knockdown experiments employing B16F10 and 
MC38 cells as our experimental model[40] (Figure 
6A). Strikingly, we observed notable metamorphoses 
in cell morphology within the MTHFD2 knockdown 

group, which appeared enlarged and flattened in 
shape, with increased cytoplasmic granularity, 
vacuolization, and altered nuclear morphology. 
Simultaneously, the levels of β-galactosidase, which 
serves as a biomarker for senescence, were measured 
in cells subjected to MTHFD2 knockdown and CDDP 
(Cisplatin) treatment (positive control)[41,42] (Figure 
6C). Moreover, the rate of cell proliferation 
significantly decreased under MTHFD2 knockdown 
conditions (Figure 6B). Additionally, the perturbation 
of the cell cycle in B16F10 and MC38 cells was 
meticulously examined through flow cytometry, 
which revealed a pronounced blockade in the G0/G1 
phase within the MTHFD2 knockdown group (Figure 
6D). This finding strongly suggested a potential link 
between MTHFD2 manipulation and impediments in 
the progression of the cell cycle. Concurrently, the 
mRNA and protein levels of P21, a pivotal checkpoint 
in the cell cycle, were increased in the MTHFD2 
knockdown group (Figure 7A). Consistent results 
confirmed the presence of senescence-associated 
secretory factors such as VEGF in the MTHFD2 
knockdown group (Figure 7B). We investigated this 
possibility by employing B16F10 cells with MTHFD2 
knockdown in a subcutaneous tumor model. In 
contrast, MTHFD2 knockdown promoted faster 
tumor growth (Figure 7C-D). Immunohistochemical 
analysis revealed significantly greater P21, VEGF, and 
IL-8 staining in tumor tissues from the MTHFD2 
knockdown group than in those from the control 
group. Additionally, there was a notable increase in 
CD8+ T-cell staining (Figure 7E-F). This multifaceted 
approach not only underscores the potential 
involvement of MTHFD2 loss in propelling a 
senescent state but also highlights its potential 
significance in modulating tumor behavior. 

Discussion 
Aging, an intricate biological process, is 

intricately intertwined with increased susceptibility to 
senescence-related diseases, notably cancer. Our 
detailed examination of senescence-related disparities 
across diverse cancer types revealed age to be a 
pivotal determinant of cancer prognosis, with 
individuals aged 60 years and older exhibiting 
increased vulnerability. By summarizing four 
different aging-related databases and using the 
Cox-LASSO algorithm, we obtained aging-associated 
gene alterations and aging-related risk scores, 
coupled with the integration of the TMB and 
exploration of oncogenic signaling pathways, which 
enriches our understanding of the molecular 
intricacies shaping cancer outcomes. The dissection of 
the cellular landscape within different risk groups 
reveals the complexities of the tumor microenviron-
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ment, providing a nuanced perspective. We identified 
MTHFD2 as both an aging risk factor and a protective 

factor in aging-related cancer. 

 

 
Figure 5. MTHFD2 as an aging-associated factor in cancer. (A) Differential expression of MTHFD2 in different cancer types based on pan-cancer analysis. (B) Oncoplot 
displaying the somatic landscape of the tumor cohort. Genes are sorted by their mutation frequency, and samples are sorted by MTHFD2 expression, as indicated by the color 
bar (bottom). The side bar graph shows the -log10-transformed q values estimated using MutSigCV. The waterfall plot shows the mutation information for each gene in each 
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sample. Color annotations for various cancer types are displayed at the bottom. The barplot above the legend shows the number of mutations per sample. (C) Boxplot showing 
the expression levels of MTHFD2 in tumor tissues compared to normal cells. (D) Volcano plot constructed using fold-change values and p-adjusted values. Red dots represent 
upregulated genes; blue dots represent downregulated genes; gray dots represent non-significant genes. (E-G) GO and GSEA analysis of differentially expressed genes in 
MTHFD2 high-expressing and low-expressing cohorts. (H) Expression of MTHFD2 in different age groups. (I) Expression of MTHFD2 in different staging groups. 

 
Figure 6. MTHFD2 loss drives cellular senescence. (A) RT-qPCR analysis of MTHFD2 knockdown (one-way ANOVA test). (B) Growth rate of MTHFD2 knockdown cells 
(one-way ANOVA test). (C) β-galactosidase staining level in MTHFD2 knockdown group. (D) Flow cytometry analysis of cell cycle in MTHFD2 knockdown cells. 
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Figure 7. MTHFD2 loss drives aging-like alterations to foster tumor growth. (A) Protein level of P21 in MTHFD2 knockdown group. (B) mRNA levels of P21 and 
VEGF in MTHFD2 knockdown group (one-way ANOVA test). (C) Tumor growth curve of C57BL/6J mice injected with MTHFD2 knockdown B16F10 cells (two-way ANOVA 
test). (D) Photographs of dissected tumors (n ≥ 6). (E-F) Immunohistochemical staining in tumor tissues with MTHFD2 knockdown. A significance level of P<0.05 indicates 
statistical significance. In the Figures, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, and "ns" indicates no statistical significance. 
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By analyzing the cell composition of the high- 
and low-risk groups, it was found that the T-cell 
composition of the high-risk group was significantly 
lower than that of the low-risk group, and T-cell 
exhaustion plays a pivotal role in rendering older 
individuals vulnerable to infections and cancer[43]. 
This decline is responsible for elevated susceptibility 
to infection and cancer[44]. Further investigations into 
the functions of T cells within the high- to low-risk 
group revealed the upregulation of the IFN-γ and 
IFN-α response in these T cells, and the roles of IFN-γ 
and IFN-α are complex. While they contribute to 
immune surveillance against cancer, persistent 
activation or dysregulation of these interferons may 
also play a role in chronic inflammation, which is a 
hallmark of aging and a risk factor for cancer. 

MTHFD2 is a crucial enzyme involved in cellular 
metabolism, particularly in the folate metabolic 
pathway. This enzyme plays a profound role in 
nucleotide synthesis, which is essential for DNA 
replication and cellular proliferation. MTHFD2 
catalyzes the conversion of 5,10-methylenetetra-
hydrofolate to 5,10-methenyltetrahydrofolate, an 
essential step in the synthesis of purines, amino acids, 
and other important molecules within the cell. 
MTHFD2 has garnered attention for its involvement 
in various cellular processes linked to cancer 
progression. Multiple investigations have under-
scored the propensity for increased MTHFD2 
expression across diverse cancer types, including 
breast, lung, colorectal, and pancreatic malignancies 
[18]. Notably, MTHFD2 is preferentially upregulated 
in undifferentiated or poorly differentiated 
tumors[45], suggesting its cancer-specific expression 
pattern. In addition to its metabolic functions, 
MTHFD2 has been implicated in promoting cancer 
immune evasion. By steering the folate cycle toward 
the maintenance of adequate UDP-GlcNAc levels, 
MTHFD2 propels the O-GlcNAcylation of cMYC, 
thereby bolstering cMYC stability and PD-L1 
transcription[46]. Nevertheless, the functional 
repertoire of MTHFD2 is intricate and multifaceted. 
Although MTHFD2 is primarily expressed within the 
mitochondria, it is also present in the nucleus. TH9619 
effectively inhibits both the dehydrogenase and 
cyclohydrolase activities of MTHFD1/2. MTHFD1, 
found in the cytoplasm, shares similar functions with 
MTHFD2. TH9619 inhibits MTHFD1 activity, 
preventing the incorporation of formate produced by 
the mitochondria into dTMP. It selectively targets 
nuclear MTHFD2 without affecting mitochondrial 
MTHFD2, leading to an overflow of formate from the 
mitochondria. Consequently, cancer cells undergo cell 
death despite high MTHFD2 expression[47]. In 
addition, recent studies have indicated that MTHFD2 

inhibition induces apoptosis solely in UQCR11-null 
cells, while it does not affect UQCR11-intact cells[48]. 
This suggests that the apoptotic effect of MTHFD2 
inhibition is specific to cancer cells. Inversely, under 
conditions of oxygen deprivation or impaired electron 
transport chain activity, MTHFD2 maintains a 
substantial supply of NADH through the promotion 
of serine catabolism, leading to cell death. In hypoxic 
cells with compromised respiration, inhibition of 
MTHFD2 partially restores NADH levels and 
facilitates cell proliferation[45]. These findings 
suggest a potential anticancer role for MTHFD2. Our 
findings reveal that deletion of MTHFD2 contributes 
to cellular senescence. Similarly, prior research has 
revealed that the colocalization of MTHFD2 with 
DNA replication sites in the nucleus promotes cell 
cycle progression. Deletion of MTHFD2 leads to 
S-phase cell cycle arrest and fosters a senescence-like 
state[49]. Additionally, MTHFD2 is expressed in 
developing embryos but is notably absent in most 
healthy adult tissues, including proliferating ones[50]. 
This observation implies a decrease in MTHFD2 
expression with age. MTHFD2 deletion increases the 
infiltration of CD8+ T cells in B16F10 tumors. The 
potential mechanisms are manifold. Initially, 
senescent cancer cells manifest hyperploidy, 
rendering them genomically unstable and enabling 
the presentation of tumor antigens to activate 
immunosurveillance, which entails the recruitment of 
immune effectors such as B, NK, NKT, and T 
cells[51,52]. Furthermore, the senescence-associated 
secretory phenotype (SASP) factor VEGF fosters 
angiogenesis, thereby facilitating T cell infiltration. 
Nonetheless, the buildup of senescent cells in 
tumor-bearing mice precipitates T-cell exhaustion[53]. 
For instance, IL-8, elevated in MTHFD2-depleted 
cells, augments PD-1 expression in CD8+ T cells, 
leading to T-cell exhaustion. Therefore, the deletion of 
MTHFD2 facilitates the infiltration of CD8+ T cells 
into tumors but compromises their functional activity. 
Hence, we propose a novel perspective suggesting 
that MTHFD2 exerts its anticancer effect by retarding 
the aging process. 

However, some limitations are noted in this 
study. First, numerous studies have demonstrated 
that aging is a significant contributor to the 
development and progression of cancer. Based on 
data analysis related to breast cancer and animal 
experiments, this study revealed that downregulation 
of MTHFD2 can promote cellular senescence, thereby 
accelerating tumor growth. As such, our study may 
lack sufficient novelty. Second, the mechanisms 
involved in this study were not further investigated. 
For instance, we did not explore how downregulation 
of MTHFD2 promotes cellular senescence and its 
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impact on tumor immunity during this process. The 
prognostic role of MTHFD2 in cancer patients 
requires validation in additional cohorts to confirm its 
prognostic significance. Finally, the exact effect of 
MTHFD2 downregulation on the tumor 
microenvironment remains unclear due to the lack of 
single-cell sequencing or multi-parameter flow 
cytometry analyses. 

In summary, the process of aging leads to 
heightened genetic mutations within tumors, triggers 
the activation of pathways essential for tumor 
proliferation and spread, and promotes an 
immunosuppressive microenvironment. The 
identification of MTHFD2 as a suppressor in tumors 
associated with aging implies that maintaining its 
expression and functionality may offer a potential 
therapeutic approach for addressing such 
tumors[54,55]. Future research directions for 
MTHFD2 in the diagnosis and treatment of elderly 
cancer patients could focus on several key areas. 
These include investigating MTHFD2 as a diagnostic 
and prognostic biomarker by examining its 
expression patterns across different cancer types and 
age groups and analyzing its relationship with patient 
outcomes. Additionally, understanding the molecular 
mechanisms of MTHFD2 in cellular metabolism and 
immune regulation, particularly in the context of 
aging-related metabolic changes and T-cell 
functionality, will be crucial. Developing specific 
MTHFD2 targeting drugs and assessing their efficacy 
and safety, both as standalone treatments and in 
combination with existing therapies, is another 
important avenue[56]. Moreover, focusing on clinical 
trials involving elderly cancer patients and studying 
then age-related expression and function of MTHFD2 
can provide insights into its role in slowing down 
aging-associated cancer progression and improving 
therapeutic outcomes for this population[57]. 

Materials and Methods 
Datasets 

The clinical pathological information from 1255 
breast cancer patients treated at the Breast and 
Thyroid Surgery Department of Wuhan University 
People's Hospital between 2008 and 2016. 
RNA-sequencing expression matrix and clinical 
information of breast cancer samples and 
para-cancerous tissues were downloaded from the 
Cancer Genome Atlas (TCGA) database on UCSC 
Xena (https://xena.ucsc.edu/). Two additional 
independent datasets (GSE20685 and GSE58812) and 
single-cell RNA-seq data and bulk RNA-seq data 24 of 
breast tumors (GSE176078) were obtained from the 
GEO database (https://www.ncbi.nlm.nih.gov/ 

geo/). Aging-related genes were collected from 
SenMayo (https://genomics.senescence.info/cells/), 
cell age (https://genomics.senescence.info/cells/), 
SeneQuest (http://Senequest.net), and the Aging 
Atlas (https://ngdc.cncb.ac.cn/aging/index). Soma-
tic mutation data were downloaded from the 
Genomic Data Commons (GDC) (https://portal 
.gdc.cancer.gov/). The somatic mutation data, sorted 
in the form of Mutation Annotation Format (MAF), 
were analyzed and used to calculate the Tumor 
Mutation Burden (TMB) using the R package 
maftools. 

Construction and validation of aging-related 
prognostic signature 

To identify genes associated with aging and 
construct a prognostic signature, we conducted two 
types of regression analyses: univariate Cox -LASSO 
regression. Through this analysis, we were able to 
identify 19 genes: MTHFD2, EIF4EBP1, SDC1, 
RAD54B, LIMCH1, CAB39L, ULBP2, CACNA1H, WT1, 
GATA4, SYT1, ELOVL2, DOK7, S100B, BCL2A1, IFNG, 
FOXE1, MAP2K6. These genes were used to develop 
an aging-related prognostic model based on these 
genes. To categorize breast cancer patients, we 
calculated the risk score for each patient in the 
training set using the following formula: 

Risk score=∑ni=∑(Coefi*xi) 

The cancer patients were classified into high-risk 
and low-risk groups based on the median of their risk 
scores[58,59]. The R package survivalROC was 
utilized to estimate the predictive sensitivity of the 
risk score. The efficacy of the model was assessed in 
the validation set using the same coefficient and cutoff 
values that were employed in the training set. 

Biological functional analysis between 
high/low-risk group patients 

The DESeq2 R package was utilized to analyze 
differentially expressed genes (DEGs). DEGs were 
identified using a cutoff of an adjusted p-value of less 
than 0.05 and a fold change of |Log2| greater than 1. 
Gene set enrichment analysis (GSEA) was conducted 
using the clusterProfiler R package. Fisher's exact test 
was employed to determine significant indicators, 
with a false discovery rate (FDR)-corrected p-value 
threshold of less than 0.05. Single-sample gene set 
enrichment analysis was performed using the GSVA 
R package[60]. Gene signatures of recurrent cancer 
cell states were obtained from a previous study. 

Cell culture 

We generated the B16F10/MC38-MTHFD2 cell 
line through knockdown experiments in B16F10/ 
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MC38 cells. We targeted two sites of the MTHFD2 
gene and obtained two knockdown cell lines, which 
we named B16F10/MC38-MTHFD2 sh1 and 
B16F10/MC38-MTHFD2 sh2, respectively. For our 
knockdown experiments, we used B16F10/MC38-NC 
as the negative control. All cells were cultured in 
Dulbecco's modified Eagle's medium (DMEM) 
supplemented with 10% fetal bovine serum and 1% 
penicillin/streptomycin at 37°C in 5% CO2. The 
shRNA sequences are listed below: 

MTHFD2-sh1: GCTCATGAAGAACACCAT 
TAT 

MTHFD2-sh2: CGGTCATCGATGTGGGAA 
TAA 

Stable cell line generation  
To generate stable shRNA knockdown cells, 

lentiviruses were generated in 293T using the PLKO.1 
lentivirus packaging system with gene-specific 
shRNAs. After 48 hours of lentivirus production, the 
media was collected and cell debris was removed 
using a 0.45 um microfiltration membrane. The 
lentivirus was immediately added to cells in a 6-well 
dish, along with 2 μg/ml polybrene. The cells were 
then diluted 1/20 and transferred to a 10 cm2 dish 24 
hours after transduction and analyzed by RT-qPCR to 
confirm knockdown. 

Cell proliferation assays 
CCK-8 (beyotime, Cell Counting Kit-8) was 

added to complete culture medium of the same 
volume, cultured for the same duration as the 
experimental group, and the absorbance at 450nm 
was measured together. Cells in logarithmic growth 
phase with good condition were selected to prepare 
cell suspension and counted. Approximately 100μl of 
cell suspension was seeded per well based on 
appropriate cell seeding density, with 4-6 replicate 
wells per group. The culture plate was pre-incubated 
in a cell culture incubator (37°C, 5% CO2) for 12-24 
hours to allow cells to reach the logarithmic growth 
phase. 10μl of CCK-8 reagent was added to each well. 
The culture plate was returned to the cell culture 
incubator and further incubated for 0.5-4 hours. The 
absorbance at 450nm wavelength (OD value) was 
measured using a microplate reader. The experiment 
was repeated three times, and the average of the 
experimental results was taken as the final 
experimental result. Cell viability (%) = [(As-Ab) / 
(Ac-Ab)] × 100%; As: Absorbance of the experimental 
group (including cells, culture medium, CCK-8 
solution, and drug solution); Ac: Absorbance of the 
control group (including cells, culture medium, 
CCK-8 solution, without drug); Ab: Absorbance of the 
blank group (including culture medium, CCK-8 

solution, without cells or drug). 

RNA isolation and Real-time PCR 
Total RNA was extracted from the samples using 

TRIzol (Vazyme, Shanghai), following the instructions 
provided by the manufacturer. Subsequently, cDNA 
was synthesized using the Reverse Transcript Kit 
(Vazyme). Real-time PCR was then carried out in 
triplicate using the SYBR Green Master Mixture 
(Vazyme) on the Real-time PCR Detection System 
(Roche). Quantification was determined based on the 
cycle threshold (Ct) value and calculated using the 
2-ΔΔCt method. The primer sequences are listed below: 

MTHFD2-forward: ACTCCCAGAGCACATTG 
ATG 

MTHFD2-reverse: CCAGCCACTACCACAT 
TCTT 

VEGF-forward: TCAAACCTCACCAAAGC 
CAG 

VEGF-reverse: TCTGAACAAGGCTCACAGTG 
P21-forward: ACATCTCAGGGCCGAAAAC 
P21-reverse: TGGAGACTGGGAGAGGG 

Preparation of cells for flow cytometry 
Cells were seeded according to experimental 

requirements, and cells were harvested when they 
reached the desired density. The original culture 
medium was collected into centrifuge tubes, 
1×trypsin digestion was added, and digestion was 
stopped by adding the original culture medium after 
the specified time, followed by centrifugation. The 
supernatant was removed, and the cells were resus-
pended in 1ml pre-chilled PBS buffer and transferred 
to 1.5ml Eppendorf tubes, then centrifuged at 4°C, 
1000g for 5 minutes. The supernatant was removed, 
leaving approximately 50μl, gently tapping the 
bottom of the tube to loosely separate the cells. The 
dispersed cell suspension was added to 1ml 
pre-chilled 70% ethanol, gently mixed by pipetting, 
and fixed at 4°C for at least 4 hours in the refrigerator. 
The fixed cells were removed, centrifuged at 4°C, 
1000g for 5 minutes, the supernatant was removed, 
1ml pre-chilled PBS buffer was added to resuspend 
the cells, followed by centrifugation, removal of the 
supernatant, leaving 50μl PBS buffer, and gently 
tapping the tube bottom to separate the cells. Dye 
preparation: Dyes were prepared according to the 
instructions based on the number of samples, with the 
entire process conducted in the dark. 500μl propidium 
iodide staining solution was added to each sample 
tube, mixed slowly with a pipette gun, incubated in 
the dark at 37°C for 30 minutes, after completion, data 
was saved using a flow cytometer, and subsequent 
processing was carried out. 
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Western blot analysis 
We electrophoresed equal amounts of lysates, 

ranging from 30 to 50 μg, onto polyvinylidene 
difluoride membranes. Subsequently, the membranes 
were blocked using PBST with 5% milk and probed 
with primary antibodies, specifically Actin (1:3000; 
Proteintech, P62736), and P21 (1:1000, Proteintech, 
P63000), overnight at 4°C. After washing thrice with 
PBST, the membranes were incubated for 1 h at room 
temperature with secondary antibodies, including 
goat anti-rabbit IgG-HRP (1:4000, Proteintech, 
SA00001-2) and goat anti-mouse IgG-HRP (1:2000, 
Proteintech, SA00001-1). 

Flow cytometry 
The stained cells were analyzed and sorted 

based on DNA-A and DNA-W of the Sytox Green 
fluorescence signal, as well as FSC and SSC light 
scattering. The analysis was conducted using an LSRII 
flow cytometer (Becton Dickinson, San Jose, CA, 
U.S.A.) with an excitation wavelength of 488 nm. The 
cells were sorted using a FACS Digital Vantage PE 
flow cytometer (Becton Dickinson) with the same 
excitation wavelength. The selected channels are as 
follows: Alexa Fluor™488: Excitation at 488 nm, 
emission collected in the 530/30 band; PI (Propidium 
Iodide): Excitation at 561 nm, emission collected in the 
610/20 band. 

Animal experimentation 
Seven-week-old male wild-type C57BL/6 mice 

were kept in a controlled environment with a 12-hour 
light/dark cycle, ensuring a consistent temperature 
and pathogen-free conditions. They had free access to 
food and water. The mice were sacrificed either when 
the tumor size reached 200 mm2 or when clear signs of 
discomfort were observed, in accordance with the 
guidelines established by the Institutional Animal 
Care and Use Committee of Tongji University Cancer 
Center, Shanghai Tenth People's Hospital, School of 
Medicine, Tongji University (22KN151).  

Statistical analysis  
This study independently repeated all 

experiments three times or more, and all data were 
analyzed using GraphPad Prism 8. The data are 
presented as mean ± SEM. Statistical differences were 
tested using one-way ANOVA, two-way ANOVA. A 
significance level of P < 0.05 indicates statistical 
significance. In the Figures, *P < 0.05, **P < 0.01, ***P < 
0.001, ****P < 0.0001, and "ns" indicates no statistical 
significance. 
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