
Journal of Cancer 2024, Vol. 15 
 

 
https://www.jcancer.org 

6223 

Journal of Cancer 
2024; 15(19): 6223-6231. doi: 10.7150/jca.93712 

Research Paper 

Deep Neural Network and Radiomics-based Magnetic 
Resonance Imaging System for Predicting Microvascular 
Invasion in Hepatocellular Carcinoma 
Zhao-Yi Lin1,2*, Kuang Chen1,2*, Jia-Rui Chen1,2*, Wei-Xiang Chen3, Jin-Feng Li4, Cheng-Gang Li2, 
Guo-Quan Song4, Yan-Zhe Liu2, Jin Wang1,2, Rong Liu1,2, Ming-Gen Hu1,2 

1. Medical School of Chinese PLA, 100853, China. 
2. Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese PLA General Hospital, 100853, China. 
3. Department of Automation, Tsinghua University, 10084, China. 
4. Department of Radiology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. 

* These authors contributed equally to this work. 

 Corresponding authors: Minggen Hu; Address: Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, 28 
Fuxing Road, Beijing, 100853, China, E-mail: huminggen@301hospital.com.cn. Rong Liu; Address: Faculty of Hepato-Pancreato-Biliary Surgery, The First 
Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China, E-mail: liurong301@126.com. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2023.12.29; Accepted: 2024.09.25; Published: 2024.10.14 

Abstract 

Background: Accurate preoperative evaluation of microvascular invasion (MVI) in hepatocellular 
carcinoma (HCC) is crucial for surgeons to make informed decisions regarding appropriate treatment 
strategies. However, it continues to pose a significant challenge for radiologists. The integration of 
computer-aided diagnosis utilizing deep learning technology emerges as a promising approach to enhance 
the prediction accuracy. 
Methods: This experiment incorporated magnetic resonance imaging (MRI) scans with six different 
sequences. After a cross-sequence registration preprocess, a deep neural network was employed for the 
segmentation of hepatocellular carcinoma. The final prediction model was constructed by combining 
radiomics features with clinical features. The selection of clinical features for the final model was 
determined through univariate analysis. 
Results: In this study, we analyzed MRI scans obtained from a cohort of 420 patients diagnosed with 
HCC. Among them, 140 cases exhibited MVI, while the remaining 280 cases comprised the non-MVI 
group. The radiomics features demonstrated strong predictive capability for MVI. By extracting radiomic 
features from each MRI sequence and subsequently integrating them, we achieved the highest area under 
the curve (AUC) value of 0.794±0.033. Specifically, for tumor sizes ranging from 3 to 5 cm, the AUC 
reached 0.860±0.065. 
Conclusions: In this study, we present a fully automatic system for predicting MVI in HCC based on 
preoperative MRI. Our approach leverages the fusion of radiomics and clinical features to achieve 
accurate MVI prediction. The system demonstrates robust performance in predicting MVI, particularly in 
the 3-5 cm tumor group. 
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1. Introduction 
Hepatocellular carcinoma (HCC) is a prevalent 

primary liver malignancy, necessitating effective 
treatment strategies such as surgical resection and 
liver transplantation[1-3]. However, HCC exhibits 

high postoperative recurrence rates, reaching 
approximately 70% after surgical resection and 35% 
after liver transplantation[4]. Microvascular invasion 
(MVI) has been confirmed as an independent risk 
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factor contributing to tumor recurrence and 
metastasis following liver resection in HCC 
patients[5]. Thus, precise preoperative evaluation of 
MVI in liver cancer facilitates informed treatment 
decisions by surgeons. Patients at high risk of MVI 
should undergo Chouinard segment-based 
anatomical liver resection to minimize the recurrence 
rate. HCC patients undergoing liver transplantation 
exhibit improved prognoses when MVI is absent[6]. 
Histopathological examination remains the current 
diagnostic standard for MVI. However, the 
intratumoral heterogeneity that results in sampling 
errors and potential implant metastasis renders 
preoperative biopsy detection of MVI unfeasible. 
While the morphological characteristics of tumors can 
aid in MVI prediction, the definition of these 
characteristics primarily relies on subjective reader 
judgment and lacks objective and quantitative 
indicators. Gradually, magnetic resonance imaging 
(MRI) examinations have been employed for 
preoperative MVI prediction due to their ability to 
provide soft tissue contrast, reflect tumor-related 
changes in blood flow, offer multiple sequences, and 
avoid radiation exposure. While the morphological 
characteristics of tumors can aid in MVI prediction, 
the definition of these characteristics primarily relies 
on subjective reader judgment and lacks objective and 
quantitative indicators. 

Radiomics is a quantitative approach to the 
description of medical imaging. While lacking a strict 
definition, radiomics aims to quantitatively extract 
replicable information, including measures of 
heterogeneity and shape, from diagnostic images. It 
can be utilized independently or in conjunction with 
demographic, histological, genomic, or proteomic 
data to address diverse clinical challenges [7]. 
Computer-aided diagnosis (CAD) technology has 
gained widespread use in radiomics. Currently, the 
foremost technology for computer-aided diagnosis 
and treatment is deep learning, which employs 
large-scale datasets to construct deep neural 
networks[8]. Deep learning has demonstrated 
comparable accuracy to radiologists in diagnosing 
and analyzing survival outcomes in various diseases, 
including lung cancer, skin cancer, and breast 
cancer[9-14]. In recent studies, Wu.[15] employed 
deep learning techniques to predict the presence of 
MVI in medical imaging with promising results. 
However, their study was limited to a relatively small 
cohort of 117 cases, and the network training process 
required manual cropping of tumor areas. Similarly, 
Nebbia et al. [16] achieved a notable area under the 
curve (AUC) of 0.8669 in MVI prediction using five 
different MRI sequences. Nevertheless, this approach 
also relied on manual marking of the tumor area. 

To address these limitations, this article 
introduces a novel deep learning-based method for 
fully automated MVI prediction. The proposed 
method combines radiomics and clinical features to 
enhance prediction accuracy and provide valuable 
guidance for surgeons in selecting appropriate 
surgical plans and postoperative treatments. 

Materials and Methods 
Patients 

In this study, we conducted a retrospective 
analysis of patients who underwent liver cancer 
treatment at our hospital between January 2018 and 
June 2020. The inclusion criteria encompassed 
patients who met the following conditions: (1) no 
prior treatment for hepatocellular carcinoma, (2) 
underwent contrast-enhanced liver MRI examination 
within one month before surgery, with images 
meeting the required standards for evaluation, (3) 
absence of extrahepatic metastasis according to 
preoperative evaluation, and (4) availability of 
complete clinical features within seven days before 
surgery and postoperative pathology reports. The 
diagnosis of MVI was based on the Sumie 
standard[17]. Patients meeting any of the following 
criteria were excluded: (1) a prior history of 
malignancy, (2) identification of tumor thrombus in 
hepatic vessels through MRI examination, and (3) 
incomplete availability of clinical features. 

In this study, we employed a rigorous search 
strategy to identify and enroll a cohort of 420 
consecutive patients, with 140 patients allocated to the 
microvascular invasion (MVI) group and 280 patients 
assigned to the non-MVI group. Given the limited 
nature of the available data, we adopted a robust 
methodology to ensure reliable results. Specifically, 
we performed 20 independent tests, with each test 
employing a 3:1:4 random division of the dataset into 
training, validation, and test cohorts, respectively. The 
training cohorts were utilized for model training, the 
validation cohorts were employed to optimize 
hyper-parameters, such as different sequences or 
sequence fusion, and the test cohorts were used to 
evaluate the final performance metrics of our 
proposed method. 

Pipeline of the Automatic System 
Our study presented in Figure 1 illustrates the 

comprehensive approach we employed, 
encompassing registration, segmentation, feature 
extraction, and classification. Our neural network 
builds upon the Res-Unet architecture, a modified 
version of Unet specifically designed for this 
purpose[18, 19]. Notably, we successfully automated 
the identification of HCC-related areas, a task that 
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previously consumed significant time in radiomics 
analysis studies. This streamlined end-to-end training 
process is widely regarded as a superior solution. 

Radiology Protocols 
MRI examinations were conducted using a 3.0 T 

MR system (Discovery 750W, General Electric 
Company, America) in accordance with established 
protocols. The imaging parameters for the six distinct 
sequences employed are provided below: 

T2-weighted imaging (T2-WI): TR = 12000 ms, 
TE = 90 ms, slice thickness = 7 mm, Voxel Size = 1.76 × 
1.32×7.00 mm, FOV = 38.0 cm, matrix = 256 × 256 

Diffusion-weighted imaging (DWI): TR = 5000 
ms, TE = 56.1 ms, slice thickness = 7 mm, Voxel Size = 
2.97 × 2.97×7.00 mm, FOV = 38.0 cm, matrix = 256 × 
256 

T1-weighted imaging (T1-WI) (pre-contrast): TR 
= 3.7 ms, TE = 1.1 ms, slice thickness = 7 mm, Voxel 
Size = 1.98 × 1.56×5.00 mm, FOV = 38.0 cm, matrix = 
256×256 

T1-WI (arterial phase): TR = 2.8 msec, TE = 1.3 
msec, slice thickness= 7 mm, Voxel Size = 1.98 × 
1.56×5.00 mm, FOV = 40.0 cm, matrix = 256 × 256 

T1-WI (portal phase): TR = 2.8 msec, TE = 1.3 
msec, slice thickness = 7 mm, Voxel Size = 1.98 × 
1.56×5.00 mm, FOV = 40.0 cm, matrix = 256 × 256 

T1-WI (hepatobiliary phase): TR = 2.8 msec, TE = 
1.3 msec, slice thickness = 7 mm, Voxel Size = 1.98 × 
1.56×5.00 mm, FOV = 40.0 cm, matrix = 256 × 256 

During the examination, a dosage of 0.2 
mmol/kg of Gadoxetic acid disodium 
(GD-EOB-DTPA) was administered intravenously at a 
rate of 1.5 ml/s. 

Clinical Features 
Each patient underwent liver function test, blood 

routine examination and coagulation function test 
within 7 days before surgery. Additionally, serum 
tumor marker tests were conducted, encompassing 
α-fetoprotein (AFP), carcinoma embryonic antigen 
(CEA), CA125, CA15-3, CA724, and CA19-9. 
Screening for hepatitis was performed through the 
measurement of hepatitis B surface antigen (HBsAg), 
hepatitis B surface antibody (HBsAb), hepatitis B e 
antibody (HBeAb), hepatitis B e antigen (HBeAg), 
hepatitis B core antibody (HBcAb), and hepatitis C 
antibody (HCVAb). Tumor characteristics were 
assessed using MRI, where the maximum diameter 
and number of tumors were quantified. 

Image Annotations for HCC-related Areas  
Although our approach was primarily 

automated, manual annotations were still required to 
train our deep neural networks and assess the 
performance of our method. To obtain accurate 
annotations for HCC-related regions, we engaged the 
expertise of two experienced radiologists (LJ and SG) 
with 15 years of experience in the field. A research 
assistant then verified the consistency of the 
segmentations, and experienced radiologists 
reviewed and refined the final segmentation. The 
HCC-related areas were visualized using MRI. Given 
the presence of six different sequences that were not 
aligned, each radiologist was tasked with annotating 
three distinct sequences: T1-WI pre-contrast, T1-WI 
hepatobiliary phase, and T2-WI. The margins of HCC 
in DWI were often indistinct; therefore, annotations 
were not performed on this sequence. T1-WI 

 
Figure 1. Workflow of the whole system proposed. 
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pre-contrast and T1-WI hepatobiliary phase 
represented the beginning and end time points of the 
T1-WI imaging, respectively, during which patients 
may have changed positions. T2-WI sequences 
typically had different spacing from T1-WI, 
necessitating the annotation of T2-WI. The 
radiologists employed 3D slicer (version 4.10.1) to 
generate all segmentation marks. As other methods 
commonly rely on manual annotations for radiomics, 
these annotations were also utilized to extract 
radiomics features. In subsequent experiments, we 
compared the results obtained using our proposed 
pipeline with those obtained when the area was 
manually annotated. 

Registration for Alignment between Multi 
Sequences 

In this study, all patients underwent 
multi-sequence MRI scans within a brief time interval 
of approximately 30 minutes. Despite the majority of 
patients remaining motionless during the scans. We 
aimed to address the potential misalignment issue in 
multi-sequence MRI scans. In this study, we 
employed the SimpleElastix tool for initial 
alignment[20].  

Following the alignment process, we performed 
rigid registration between the T1-weighted imaging 
(hepatobiliary phase) and all other sequences except 
it. This resulted in a nearly aligned set of sequences. 
To evaluate the registration performance, we utilized 
annotations derived from the same registration 
transforms. Specifically, the tumor areas in T1-WI 
(pre-contrast), T1-WI (hepatobiliary phase), and 
T2-WI were expected to overlap with each other. The 
Dice index, calculated as the intersectional area 
divided by the sum of both areas, served as the metric 
for measuring the matching score of different 
sequences. A higher Dice index following the 
registration process indicated improved matching 
between sequences, this step was shown to be 
beneficial.  

Segmentation for Automatic HCC-related 
Area’s segmentation 

In this study, we employed a Res-Unet-based 
deep neural network to automate the segmentation of 
HCC-related areas. Traditionally, these areas were 
manually delineated in radiomics analyses[18, 21]. 
Convolution and pooling processes were employed to 
extract deeper and more abstract features from the 
encoded images in the neural network. The 
application of deconvolutions and upsampling 
processes facilitates the reversal of the encoding 
process, yielding features or results with higher 
resolutions. By employing both approaches, the 

structure of Unet resembles the letter "U," enabling 
effective connections between the encoding and 
decoding parts, thus enhancing the overall outcome. 
Res-Unet employed Res-Blocks as replacements for all 
the convolutional blocks in Unet. Considering the 
presence of 6 sequences, the network's input module 
was updated to accommodate 6-channel input. The 
deep model was implemented using the Python 
programming language and the PyTorch package. 

The images underwent standardization, a 
process of remapping them into a suitable gray value 
range (0 to 1) required by the deep neural network. 
 Patch-based training and inference were 
employed for segmentation networks due to the 
GPU's inability to process the entire volume. During 
training, the patches were sampled with dimensions 
of (64, 128, 128) and a stride of (10, 20, 20). However, 
during testing, the stride was adjusted to (32, 100, 100) 
to expedite processing time. The training process 
involved 2000 steps with a learning rate of 0.0002, 
resulting in an approximate duration of 6 hours. The 
segmentation performance was evaluated using the 
Dice-index, comparing manual annotations with 
automatic segmentation. 

Radiomics Features Extractions 
Radiomics involves the analysis of image 

segments using manually defined statistical features, 
which are extracted using the Pyradiomics library[7]. 

The radiomics analysis encompasses a 
comprehensive set of features, including 3D-shape 
features, First Order Statistics, Gray Level 
Cooccurrence Matrix (GLCM), Gray Level Run 
Length Matrix (GLRLM), Gray Level Size Zone Matrix 
(GLSZM), Gray Level Dependence Matrix (GLDM), 
and Neighboring Gray Tone Difference Matrix 
(NGTDM). Based on the study conducted by Nebbia 
et al. [16], it was determined that the margin plays a 
significant role in predicting MVI. In our experiments, 
we incorporated this finding by extracting margin 
radiomics for each sequence. Unlike Nebbia et al. [16], 
who did not extract features from augmented images, 
such as wavelet-transform images and 
Laplacian-of-Gaussian images. However, our belief 
was that extracting as much information as possible 
would lead to a closer fit of the model; thus, we 
proceeded to extract all available radiomics features, 
resulting in14736-dimensional (14736-d) features for 
each multi-sequence volume. For dimensionality 
reduction, we employed Principal Component 
Analysis (PCA) on the features, resulting in a 
transformation to a 20-dimensional representation. 
The PCA parameters were derived from the training 
cohort and directly applied to the validation and test 
cohorts without additional fitting. 
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Final Classification Layer and Univariate 
Analysis 

In our study, we utilized a two-layer fully 
connected network for conducting multivariate 
analysis. To enhance the outcomes, we incorporated a 
Relu layer and Batch-normalization. The fusion of 
these features occurred in the second layer, and to 
mitigate overfitting, we employed dropout and 
l2-regularizations. The length of the elements in the 
radiomics layer was denoted as h1 , while that of 
clinical features was denoted as  h2, and the second 
layer was denoted as h3. The implementation of this 
network segment was carried out using the PyTorch 
framework. For univariate analysis, we employed the 
scikit-learn package[22] in Python to compare 
differences between groups using the t-test. In our 
experiments, we set h1 = 256, h2 = 256, h3 = 512 . 
Considering the potential instability of neural 
networks, we conducted 20 iterations of model testing 
and obtained averaged metrics along with confidence 
intervals. For each experiment, the data was divided 
into three cohorts, with 40% used for training, 10% for 
validation, and 50% for testing. Network parameters 
were reset for each test. MVI and not-MVI data were 
randomly sampled and distributed across these 
cohorts, ensuring nearly equal ratios of MVI and 
not-MVI in all three cohorts. 

Subset Analysis on Tumor Size 
The test cohort was stratified into distinct 

subsets based on the largest tumor diameter, as 
smaller tumors exhibited a decreased likelihood of 
demonstrating MVI. Small HCC (SHCC) was defined 
as either a single HCC nodule with a diameter of ≤5 
cm or no more than three HCC nodules with 
maximum diameters of ≤3 cm[23]. A single HCC 
nodule measuring less than 3 cm was considered 
indicative of early-stage HCC, based on the Barcelona 
Clinic Liver Cancer stage (BCLC) criteria[24]. 
Consequently, the patients were categorized into 
three groups: a group with tumors measuring less 
than 3 cm, a group with tumors measuring between 3 
cm and 5 cm, and a group with tumors measuring 
greater than 5 cm. Tumors within the intermediate 
size range of 3 cm to 5 cm posed a challenge as the size 
criterion had limited utility in this group. 

Metrics 
This study employed various evaluation metrics, 

including accuracy (ACC), area under the receiver 
operating characteristic curve (AUC), specificity 
(SPE), and sensitivity (SEN). ACC, SPE, and SEN 
represented the ratios of correct predictions, 
computed on the entire sample, positive samples, and 
negative samples, respectively. AUC served as a 

comprehensive metric for evaluating the classification 
system, with higher values indicating superior 
recognition of both positive and negative samples. 
The final metrics for the model were derived from the 
test cohort, while the hyper-parameters were selected 
based on the metrics obtained from the validation 
cohorts. Consequently, the results section will also 
present the validation metrics to provide a 
comprehensive assessment of the model's 
performance. 

Results 
Univariate Analysis 

Our study conducted a comprehensive 
univariate analysis to identify clinical features that 
exhibited statistically significant differences between 
two groups. The analysis revealed that seven clinical 
features, namely tumor size, aspartate 
aminotransferase, gamma-glutamyl transferase 
(GGT), total protein, lymphocyte ratio, plasma 
fibrinogen, and HBcAb, demonstrated significant 
differences between the groups (p<0.01) (Table S1). 

Multi-sequence Registration and 
Segmentation 

This study presents an evaluation of the 
registration performance in HCC imaging, employing 
manually annotated HCC-related areas. The 
registration performance was quantified by 
calculating the Dice index between the pre-contrast 
T1-WI and the transformed T1-WI (hepatobiliary 
phase) as well as T2-WI segmentations. This metric 
provided a measure of the alignment accuracy 
achieved by the transformation process in aligning the 
HCC-related areas. Furthermore, segmentation 
performance was assessed using the Dice index, 
which measured the agreement between the predicted 
segmentations and the annotated ground truth. For 
the test dataset, the Dice index was determined to be 
0.762 (Table S2). 

Multi- sequence Classification 
The classification system incorporates radiomics 

features extracted from radiomics feature extraction 
and a set of seven clinical features, thus referred to as 
multi-modal classification. The results demonstrate 
that utilizing all imaging sequences yields superior 
performance compared to any individual sequence 
(Table 1). Furthermore, the results indicate that the 
automatic system outperforms the manual-assisted 
method (Table 2). The proposed method integrates 
clinical and radiomics features and serves as an 
automatic segmentation system. Evaluation against 
other methods shows that the proposed approach 
achieves an AUC of 0.794 ± 0.033, surpassing all other 
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methods (Figure 2). Moreover, the proposed method 
exhibits improved performance specifically for 

tumors of intermediate sizes (3-5cm) with an AUC of 
0.860±0.065 (Figure 3). 

 

Table 1. Single sequence results and combined sequences results 
Sequence Validation  Test  

ACC AUC SEN SPE ACC AUC SEN SPE 
DWI 0.790±0.087 0.924±0.073 0.713±0.187 0.857±0.096 0.693±0.03 0.749±0.018 0.242±0.087 0.986±0.023 
T1-WI (pre-contrast)  0.767±0.107 0.822±0.137 0.431±0.222 0.97±0.026 0.645±0.062 0.670±0.055 0.362±0.239 0.881±0.105 
T1-WI (arterial phase) 0.771±0.128 0.815±0.176 0.643±0.259 0.866±0.069 0.671±0.03 0.767±0.094 0.231±0.101 0.957±0.017 
T1-WI (portal phase) 0.867±0.059 0.917±0.068 0.726±0.102 0.959±0.054 0.610±0.034 0.779±0.031 1.00±0.0 0.323±0.059 
T1-WI (hepatobiliary 
phase) 

0.810±0.075 0.910±0.092 0.677±0.11 0.898±0.135 0.519±0.019 0.775±0.011 0.962±0.033 0.151±0.049 

T2-WI  0.786±0.064 0.856±0.091 0.746±0.138 0.837±0.095 0.593±0.134 0.778±0.058 0.857±0.302 0.509±0.251 
All † 0.793±0.134 0.882±0.058 0.857±0.302 0.509±0.251 0.689±0.127 0.794±0.033 0.900±0.138 0.536±0.091 

All results here use proposed parameter setting. 
† means the proposed sequence setting.  
The value after ±is the range of 95% CI. 

 

Table 2. Multi-model classification results using all sequences compared with different settings 

Seg. Radiomics Clinical ACC AUC SPE SEN 
Manual √ √ 0.723±0.069 0.797±0.074 0.621±0.222 0.828±0.091 
Manual √ × 0.771±0.028  0.703±0.122  0.782±0.132  0.827±0.059 
Auto √ × 0.638±0.094 0.674±0.057 0.762±0.451 0.408±0.112 
Auto† √ √ 0.689±0.127 0.794±0.033 0.900±0.138 0.536±0.091 
× √ 0.555±0.057 0.535±0.033 0.383±0.125 0.624±0.075 
†is the proposed parameter setting.  
Seg. means segmentation method. 
The value after ±is the range of 95% CI. 

 

 
Figure 2. ROC curve for automated method; (a) clinical and radiomics features; (b) radiomics features (without clinical features); (c) clinical features (without radiomics 
features). The blue area is 95% CI. 

 
Figure 3. ROC curve for proposed method in subset groups; (a) <3cm group; (b) 3-5cm group; (c) >5cm group. The blue area is 95% CI. 
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Figure 4. Comparison of prediction and manually annotated segmentation of HCC-related areas. a. An example with a small area (not MVI). b. An example with a large area 
(MVI). The red area means predicted tumor area and the green means manually annotations of tumor area. 

 

Discussion 
MVI is recognized as a significant risk factor for 

postoperative recurrence of HCC. Therefore, the 
accurate preoperative prediction of MVI assumes 
paramount importance in guiding the selection of 
appropriate surgical candidates and liver transplant 
recipients. In this context, the integration of 
computer-aided diagnostic technology and imaging 
holds immense potential as an analytical tool. This 
approach combines a range of data mining algorithms 
and statistical analysis tools with high-throughput 
imaging functions to derive predictive information. 

Previous investigations have examined the 
applicability of deep learning approaches in the 
prediction of MVI using MRI[15, 16]. However, these 
studies have encountered challenges stemming from 
the limited number of available cases, posing 
difficulties in training deep neural networks and 
requiring manual delineation of tumor regions as a 
prerequisite for network training. In our current 
study, we have overcome these challenges by 
incorporating a considerably large number. 

Additionally, deep neural networks were 
utilized in our study to perform segmentation of 
HCC-related areas, replacing conventional manual 
methods, thereby significantly reducing labor and 
time requirements. While the automatic 
segmentations may not exhibit perfect concordance 

with manual annotations, the radiomics features 
derived from these segmentations demonstrate 
comparable performance. This phenomenon stems 
from the inherent characteristics of the target areas, 
which are often small and prone to occasional 
offsetting or mismatching when compared to the 
ground-truth, leading to lower Dice scores (Figure 4). 
Future research endeavors should consider the 
inclusion of larger sample sizes to facilitate improved 
performance and robustness of automatic 
segmentation techniques. 

In previous studies, deep learning models for 
MVI prediction have primarily relied on training with 
imaging features alone. However, it is important to 
consider that certain clinical features are closely 
associated with HCC development and MVI 
prediction. Zhao et al.[25] reported on predictors of 
MVI before surgery for multifocal liver cancer. They 
found that higher GGT levels, tumor diameter >8 cm, 
and tumor number >3 were the preoperative 
predictors in multifocal liver cancer patients. Another 
recent study involving 165 patients with HCC 
revealed that aspartate aminotransferase levels and 
lymphocyte ratios independently predicted MVI[26]. 
Hepatitis B viral infection is a major risk factor for 
cirrhosis and hepatocellular carcinoma[27]. HBV 
leads to increased invasiveness of hepatocellular 
carcinoma, and HBV may play an important role in 
initiating the development of MVI[28]. In our 
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investigation, we observed elevated levels of 7 clinical 
features in the MVI group compared to the non-MVI 
group. We evaluated the predictive performance of 
clinical features, radiographic features, and their 
fusion using automated methods. Our findings 
indicate that the integration of clinical and 
radiographic features through automated methods 
yields superior predictive performance and merits 
further consideration. 

The management of HCC is contingent upon 
factors such as tumor size, the severity of liver 
disease, and vascular invasion. Liver transplantation 
eligibility criteria encompass the following: single 
tumor≤5cm or multiple tumors diameter≤3cm; No 
evidence of vascular invasion and regional lymph 
node or distant metastasis (Milan criteria)[29]. 
Additionally, the prognosis of liver transplantation 
and hepatectomy is closely linked to tumor size and 
the presence of MVI[5, 6]. Moreover, tumor size is also 
a contributing factor to MVI[25]. It is evident that 
smaller HCC tumors exhibit a reduced likelihood of 
MVI, whereas larger tumors display an increased 
likelihood of MVI due to their ability to invade 
adjacent vessels. Consequently, preoperative 
prediction of MVI in patients with medium-sized 
tumors poses a challenge. In our study, we employed 
a proposed method across different size groups and 
observed superior performance in the medium-sized 
group compared to others. These findings validate the 
efficacy of our system in accurately identifying MVI, 
particularly within the medium-size tumor group 
(3-5cm). Based on our survey, limited research has 
focused on cases within this challenging group. We 
aspire to gather more cases in this particular cohort in 
the future to address this issue comprehensively. 

We have undertaken an end-to-end deep 
learning approach, devoid of radiomics, whereby 
images or volumes are inputted to generate 
predictions. Nevertheless, both the 2-D image method 
and the 3-D volume method proved unsuccessful in 
our experiments. We attempted to replicate the 
approach employed by Wu[15], involving the 
masking of HCC areas or the cropping of their 
bounding boxes, yet the network still did not yield 
satisfactory results. These attempts resulted in 
accuracies ranging from 52% to 66%. We postulated 
that the CNN struggles to discern valuable features 
from the images due to the relatively small size of our 
dataset in comparison to conventional natural images. 
Conversely, when employing radiomics to extract 
features, the deep neural network can effectively learn 
parameters for feature processing and generate 
predictions. 

In future research, we anticipate that 
augmenting the dataset for this deep learning-based 

approach will lead to improved outcomes. Our 
findings demonstrate the efficacy of the experiments 
in predicting MVI using the radiomics-based method, 
providing reliable performance. However, the deep 
learning-based method necessitates a larger dataset 
for comprehensive evaluation. Furthermore, despite 
analyzing performance across different size groups, 
additional data is required to derive more robust 
conclusions. For future investigations, we hold the 
belief that the deep learning-based method has the 
potential to achieve superior results. 

Conclusions 
According to our investigation, we compiled a 

comprehensive dataset consisting of multi-sequence 
MRI scans and clinical data obtained from 420 cases of 
HCC. In this research, we introduce a fully automated 
system designed for the preoperative MRI-based 
prediction of MVI in HCC. Our experimental findings 
demonstrate that the integration of all available 
sequences and clinical features leads to the attainment 
of optimal performance. Remarkably, even within a 
subgroup characterized by tumor sizes ranging from 3 
to 5cm, the system maintains satisfactory performance 
levels, despite the heightened challenges and clinical 
importance associated with this particular subgroup. 
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